Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Int J Biol Macromol ; 262(Pt 2): 129994, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325690

ABSTRACT

Coix seed polysaccharides had received increasing attention due to their diverse biological activities. In this study, a homogeneous polysaccharide (CSPW) was extracted and purified from coix seed. Furthermore, the saliva-gastrointestinal digestion and fecal fermentation behavior of CSPW were simulated in vitro. The results showed that CSPW was mainly composed of glucose. It cannot be degraded by the simulated salivary and intestinal digestive system, but can be degraded by the simulated gastric digestive system. After fermentation for 24 h, CSPW promoted the production of short-chain fatty acids (SCFAs), with acetic acid, propionic acid and n-butyric acid being the main metabolites. In addition, CSPW could significantly regulate the composition and microbial diversity of gut microbiota by increasing the relative abundance of beneficial bacteria, such as Limosilicactobacillus, Bifidobacterium and Collinsella. Finally, further analysis of functional prediction revealed that amino acid metabolism, nucleotide metabolism and carbohydrate metabolism were the most important pathways for CSPW to promote health. In summary, our findings suggested that CSPW could potentially be used as a good source of prebiotics because it can be used by gut microbiota to produce SCFAs and regulate the gut microbiota.


Subject(s)
Coix , Gastrointestinal Microbiome , Digestion , Fatty Acids, Volatile/metabolism , Feces/microbiology , Fermentation , Gastrointestinal Microbiome/physiology , Health Promotion , Polysaccharides/chemistry , Seeds/metabolism , Humans
2.
Immun Inflamm Dis ; 12(1): e1138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38270311

ABSTRACT

BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and progressive immunosuppression with high mortality. HLA-DR, CD64, and PD-1 were assumed to be useful biomarkers for sepsis prediction. However, the ability of a combination of these biomarkers has not been clarified. METHODS: An observational case-control study was conducted that included 30 sepsis patients, 30 critically ill patients without sepsis admitted to the intensive care unit (ICU), and 32 healthy individuals. The levels of HLA-DR, CD64, and PD-1 expression in peripheral blood immune cells and subsets was assayed on Days 1, 3, and 5, and the clinical information of patients was collected. We compared these biomarkers between groups and evaluated the predictive validity of single and combined biomarkers on sepsis mortality. RESULTS: The results indicate that PD-1 expression on CD4- CD8- T (PD-1+ CD4- CD8- T) (19.19% ± 10.78% vs. 9.88% ± 1.79%, p = .004) cells and neutrophil CD64 index (nCD64 index) (9.15 ± 5.46 vs. 5.33 ± 2.34, p = .001) of sepsis patients were significantly increased, and HLA-DR expression on monocytes (mHLA-DR+ ) was significantly reduced (13.26% ± 8.06% vs. 30.17% ± 21.42%, p = 2.54 × 10-4 ) compared with nonsepsis critically ill patients on the first day. Importantly, the expression of PD-1+ CD4- CD8- T (OR = 0.622, 95% CI = 0.423-0.916, p = .016) and mHLA-DR+ (OR = 1.146, 95% CI = 1.014-1.295, p = .029) were significantly associated with sepsis mortality. For sepsis diagnosis, the mHLA-DR+ , PD-1+ CD4- CD8- T, and nCD64 index showed the moderate individual performance, and combinations of the three biomarkers achieved greater diagnostic value (AUC = 0.899, 95% CI = 0.792-0.962). When adding PCT into the combined model, the AUC increased to 0.936 (95% CI = 0.840-0.983). For sepsis mortality, combinations of PD-1+ CD4- CD8- T and mHLA-DR+ , have a good ability to predict the prognosis of sepsis patients, with an AUC = 0.921 (95% CI = 0.762-0.987). CONCLUSION: These findings indicate that the combinations of HLA-DR, CD64, and PD-1 outperformed each of the single indicator in diagnosis and predicting prognosis of sepsis.


Subject(s)
Programmed Cell Death 1 Receptor , Sepsis , Humans , Prognosis , Case-Control Studies , Critical Illness , HLA-DR Antigens , Sepsis/diagnosis
3.
BMC Public Health ; 23(1): 2455, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062429

ABSTRACT

BACKGROUND: Fatigue is a common symptom of long COVID syndrome. Compared to male survivors, females have a higher incidence of post-COVID fatigue. Therefore, long-term follow-up is necessary to understand which groups of females are more vulnerable to post-COVID fatigue. METHODS: This is a nested case-control study of female COVID-19 survivors who were discharged from two designated hospitals in Wuhan, China in 2020, and received 2-year follow-up from March 1 to April 6, 2022. All patients completed the Checklist Individual Strength-subscale subjective fatigue (CIS-fatigue), a chronic obstructive pulmonary disease (COPD) assessment test (CAT), and the Hospital Anxiety and Depression Scale (HADS; including the HADS-Anxiety [HADS-A] and the HADS-Depression [HADS-D]). Individuals with CIS-fatigue scores of 27 or higher were classified as cases. The risk factors for fatigue was analysed with multivariable logistic regression analysis. RESULTS: A total of 899 female COVID-19 survivors were enrolled for analysis, including 47 cases and 852 controls. Compared with controls, cases had higher CAT, HADS-A and HADS-D scores, and showed a higher prevalence of symptoms, including anxiety (cases vs. controls, 44.7% vs. 4.0%, p < 0.001), chest tightness (21.2% vs. 2.3%, p < 0.001), dyspnoea (19.1% vs. 0.8%, p < 0.001) and so on. In multivariable logistic regression analysis, age (OR, 1.03; 95% CI, 1.01-1.06; p = 0.02) and cerebrovascular disease (OR, 11.32; 95% CI, 2.87-43.00; p < 0.001) were risk factors for fatigue. Fatigue had a statistically significant moderate correlation with depression (r = 0.44, p < 0.001), but not with CAT ≥ 10. CONCLUSION: Female COVID-19 patients who had cerebrovascular disease and older age have higher risk of fatigue. Patients with fatigue have higher CAT scores, and are more likely to have concurrent depression.


Subject(s)
COVID-19 , Cerebrovascular Disorders , Humans , Male , Female , Depression/etiology , Patient Discharge , COVID-19/epidemiology , Case-Control Studies , Post-Acute COVID-19 Syndrome , Fatigue/epidemiology , Fatigue/etiology , Anxiety/etiology , Survivors
4.
Respir Res ; 24(1): 227, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741976

ABSTRACT

BACKGROUND: Functional alveolar regeneration is essential for the restoration of normal lung homeostasis after acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Lung is a relatively quiescent organ and a variety of stem cells are recruited to participate in lung repair and regeneration after lung tissue injury. However, there is still no effective method for promoting the proliferation of endogenous lung stem cells to promote repair and regeneration. METHODS: Using protein mass spectrometry analysis, we analyzed the microenvironment after acute lung injury. RNA sequencing and image cytometry were used in the alveolar epithelial type 2 cells (AEC2s) subgroup identification. Then we used Sftpc+AEC2 lineage tracking mice and purified AEC2s to further elucidate the molecular mechanism by which CTGF regulates AEC2s proliferation both in vitro and in vivo. Bronchoalveolar lavage fluid (BALF) from thirty ARDS patients who underwent bronchoalveolar lavage was collected for the analysis of the correlation between the expressing of Krt5 in BALF and patients' prognosis. RESULTS: Here, we elucidate that AEC2s are the main facultative stem cells of the distal lung after ALI and ARDS. The increase of connective tissue growth factor (CTGF) in the microenvironment after ALI promoted the proliferation of AEC2s subpopulations. Proliferated AEC2s rapidly expanded and differentiated into alveolar epithelial type 1 cells (AEC1s) in the regeneration after ALI. CTGF initiates the phosphorylation of LRP6 by promoting the interaction between Krt5 and LRP6 of AEC2s, thus activating the Wnt signaling pathway, which is the molecular mechanism of CTGF promoting the proliferation of AEC2s subpopulation. CONCLUSIONS: Our study verifies that CTGF promotes the repair and regeneration of alveoli after acute lung injury by promoting the proliferation of AEC2s subpopulation.


Subject(s)
Acute Lung Injury , Connective Tissue Growth Factor , Respiratory Distress Syndrome , Animals , Humans , Mice , Cell Proliferation , Connective Tissue Growth Factor/genetics , Pulmonary Alveoli , Regeneration
5.
Biomed Pharmacother ; 164: 114947, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269813

ABSTRACT

Ganoderenic acid D (GAD), extracted from the Chinese herb Ganoderma lucidum, was loaded onto a graphene oxide-polyethylene glycol-anti-epidermal growth factor receptor (GO-PEG-EGFR) carrier to develop a targeting antitumor nanocomposite (GO-PEG@GAD). The carrier was fabricated from PEG and anti-EGFR aptamer modified GO. Targeting was mediated by the grafted anti-EGFR aptamer, which targets the membrane of HeLa cells. Physicochemical properties were characterized by transmission electron microscopy, dynamic light scattering, X-ray powder diffraction, and Fourier transform infrared spectroscopy. High loading content (77.3 % ± 1.08 %) and encapsulation efficiency (89.1 % ± 2.11 %) were achieved. Drug release continued for approximately 100 h. The targeting effect both in vitro and in vivo was confirmed by confocal laser scanning microscopy (CLSM) and imaging analysis system. The mass of the subcutaneous implanted tumor was significantly decreased by 27.27 ± 1.23 % after treatment with GO-PEG@GAD compared with the negative control group. Moreover, the in vivo anti-cervical carcinoma activity of this medicine was due to activation of the intrinsic mitochondrial pathway.


Subject(s)
Antineoplastic Agents , Graphite , Humans , HeLa Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Graphite/chemistry , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Spectroscopy, Fourier Transform Infrared
6.
Aging Dis ; 14(6): 2238-2248, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37199576

ABSTRACT

To study the long-term symptom burden among older COVID-19 survivors 2 years after hospital discharge and identify associated risk factors. The current cohort study included COVID-19 survivors aged 60 years and above, who were discharged between February 12 and April 10, 2020, from two designated hospitals in Wuhan, China. All patients were contacted via telephone and completed a standardized questionnaire assessing self-reported symptoms, the Checklist Individual Strength (CIS)-fatigue subscale, and two subscales of the Hospital Anxiety and Depression Scale (HADS). Of the 1,212 patients surveyed, the median (IQR) age was 68.0 (64.0-72.0), and 586 (48.3%) were male. At the two-year follow-up, 259 patients (21.4%) still reported at least one symptom. The most frequently self-reported symptoms were fatigue, anxiety, and dyspnea. Fatigue or myalgia, which was the most common symptom cluster (11.8%; 143/1212), often co-occurred with anxiety and chest symptoms. A total of 89 patients (7.7%) had CIS-fatigue scores ≥ 27, with older age (odds ratio [OR], 1.08; 95% CI: 1.05-1.11, P < 0.001) and oxygen therapy (OR, 2.19; 95% CI: 1.06-4.50, P= 0.03) being risk factors. A total of 43 patients (3.8%) had HADS-Anxiety scores ≥ 8, and 130 patients (11.5%) had HADS-Depression scores ≥ 8. For the 59 patients (5.2%) who had HADS total scores ≥ 16, older age, serious illness during hospitalization and coexisting cerebrovascular diseases were risk factors. Cooccurring fatigue, anxiety, and chest symptoms, as well as depression, were mainly responsible for long-term symptom burden among older COVID-19 survivors 2 years after discharge.

7.
Chin J Traumatol ; 26(3): 155-161, 2023 May.
Article in English | MEDLINE | ID: mdl-37019724

ABSTRACT

PURPOSE: This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury. METHODS: AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis. RESULTS: The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11. CONCLUSION: EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.


Subject(s)
Alveolar Epithelial Cells , Lung Injury , Humans , Rats , Animals , Lung , Cell Movement/physiology
8.
J Surg Res ; 283: 824-832, 2023 03.
Article in English | MEDLINE | ID: mdl-36915009

ABSTRACT

BACKGROUND: Altered levels of inflammatory markers secondary to severe trauma present a major problem to physicians and are prone to interfering with the clinical identification of sepsis events. This study aimed to establish the profiles of cytokines in trauma patients to characterize the nature of immune responses to sepsis, which might enable early prediction and individualized treatments to be developed for targeted intervention. METHODS: A 15-plex human cytokine magnetic bead assay system was used to measure analytes in citrated plasma samples. Analysis of the kinetics of these cytokines was performed in 40 patients with severe blunt trauma admitted to our trauma center between March 2016 and February 2017, with an Injury Severity Score (ISS) greater than 20 with regard to sepsis (Sepsis-3) over a 14-d time course. RESULTS: In total, the levels of six cytokines were altered in trauma patients across the 1-, 3-, 5-, 7-, and 14-d time points. Additionally, IL-6, IL-10, IL-15, macrophage derived chemokine (MDC), GRO, sCD40 L, granulocyte colony-stimulating factor (G-CSF), and fibroblast growth factor (FGF)-2 levels could be used to provide a significant discrimination between sepsis and nonsepsis patients at day 3 and afterward, with an area under the curve (AUC) of up to 0.90 through a combined analysis of the eight biomarkers (P < 0.001). Event-related analysis demonstrated 1.5- to 4-fold serum level changes for these cytokines within 72 h before clinically apparent sepsis. CONCLUSIONS: Cytokine profiles demonstrate a high discriminatory ability enabling the timely identification of evolving sepsis in trauma patients. These abrupt changes enable sepsis to be detected up to 72 h before clinically overt deterioration. Defining cytokine release patterns that distinguish sepsis risk from trauma patients might enable physicians to initiate timely treatment and reduce mortality. Large prospective studies are needed to validate and operationalize the findings. TRIAL REGISTRATION: Clinicaltrials, NCT01713205. Registered October 22, 2012, https://register. CLINICALTRIALS: gov/NCT01713205.


Subject(s)
Sepsis , Wounds, Nonpenetrating , Humans , Cytokines , Triage , Sepsis/complications , Biomarkers , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/diagnosis , Phenotype
9.
Biology (Basel) ; 12(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36671814

ABSTRACT

Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.

10.
Food Res Int ; 162(Pt A): 112034, 2022 12.
Article in English | MEDLINE | ID: mdl-36461255

ABSTRACT

It is highly desirable to produce bread with both acceptable texture and health benefits. In this study, maltohexaose (G6) producing amylase AmyM and its truncation AmyM-TR2 from Corallococcus sp. strain EGB were used to determine their effects to bread quality and starch physicochemical properties. During bread fermentation, AmyM or AmyM-TR2 continuously degraded the starch, resulting in more obvious decrease in relative crystallinity, the ordered structure, pasting viscosities and gelatinization enthalpy of starch than in control. The dough treated with AmyM or AmyM-TR2 increased bread volume and slowly digestible starch content, decreased bread hardness, and extended bread shelf life and as compared with control, and the dough treated with AmyM-TR2 had better improvement effects than AmyM. The volume and slowly digestible starch content of bread from the treatment of AmyM-TR2 increased by 9.74% and 7.56% in normal wheat, 1.42% and 10.28% in waxy wheat as compared with AmyM, respectively. AmyM-TR2 affected the substrate targeting, proximity and structure disruption effects, which contributed to the degradation of more starch than AmyM.


Subject(s)
Bread , Triticum , Starch , alpha-Amylases , Waxes
11.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36454077

ABSTRACT

Sugar is crucial as an essential nutrient for humans as well as for providing texture, sweetness and so on to food. But with the rise in people's pursuit of health, it is becoming increasingly clear that excessive consumption of sugar can locate a load on the body. It has been that excessive sugar is associated with many diseases, such as dental caries, obesity, diabetes, and coronary heart disease. Therefore, researchers and industries are trying to reduce or substitute sugar in food without affecting the sensory evaluation. Substituting sugar with sweeteners is alternatively becoming the most traditional way to minimize its use. So far, the sweeteners such as stevia and xylitol have been are commercially applied. Several studies have shown that technological innovation can partially compensate for the loss in sweetness as a result of sugar reduction, such as cross-modal interactions that stimulate sweetness with aroma, nanofiltration that filters disaccharides and above, enzyme-catalyzed sugar hydrolysis, and microbial fermentation that turns sugar into sugar alcohol. This review summarizes these studies to enhance the safety and quality of sugar-reduced products, and will provide some theoretical frameworks for the food industry to reduce sugar in foods, meet consumers' needs, and promote human health.

12.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(9): 921-926, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36377444

ABSTRACT

OBJECTIVE: To explore the value of monocyte subsets and CD64 expression in the diagnosis and prognosis of sepsis. METHODS: A prospective case-control study was designed. 30 septic patients and 30 non-septic patients who were admitted to the intensive care unit (ICU) of the PLA Army Characteristic Medical Center from March 2021 to March 2022 were enrolled. After 1, 3, and 5 days of ICU admission, peripheral blood samples were taken from patients. Flow cytometry was used to detect the proportion of monocyte subsets and the expression level of CD64 on the surface, and the difference of expression between patients in two group was analyzed. The risk variables for sepsis were analyzed using single-factor and multi-factor Logistic regression. The diagnostic efficacy of each risk factor for sepsis was determined using the receiver operator characteristic curve (ROC curve). RESULTS: One day after ICU admission, the proportions of monocytes and classic monocytes in white blood cells (WBC) of septic patients were significantly lower than those of non-septic patients [proportion of monocytes to WBC: (4.13±2.03)% vs. (6.53±3.90)%, proportion of classic monocytes to WBC: 1.97 (1.43, 2.83)% vs. 3.37 (1.71, 5.98)%, both P < 0.05]. The proportion of non-classical monocytes in monocytes was significantly higher in septic patients than that in non-septic patients [(11.42±9.19)% vs. (6.57±4.23)%, P < 0.05]. The levels of CD64 expression in monocytes, classic monocytes, intermediate monocytes and non-classic monocytes were significantly higher in sepsis patients than those in non-septic patients [mean fluorescence intensity (MFI): 13.10±6.01 vs. 9.84±2.83 for monocytes, 13.58±5.98 vs. 10.03±2.84 for classic monocytes, 13.48±6.35 vs. 10.22±2.99 for intermediate monocytes, 8.21±5.52 vs. 5.79±2.67 for non-classic monocytes, all P < 0.05]. Multivariate Logistic regression research showed that CD64 in typical monocytes [odds ratio (OR) = 1.299, 95% confidence interval (95%CI) was 1.027-1.471, P = 0.025] and the proportion of non-typical monocytes in monocytes (OR = 1.348, 95%CI was 1.034-1.758, P = 0.027) were the independent risk factors for sepsis. ROC curve showed that the area under the ROC curve (AUC) of CD64 expression of classical monocytes, the fraction of non-classical monocytes in monocytes, and procalcitonin (PCT) in the diagnosis of sepsis was 0.871. A correlation analysis revealed a negative relationship between the acute physiology and chronic health status evaluation II (APACHE II) on the first, third, and fifth days following ICU admission and the expression level of CD64 in patients' classic monocytes (r values were -0.264, -0.428 and -0.368, respectively, all P < 0.05). CONCLUSIONS: Combining the proportion of non-classical monocytes in monocytes, the level of plasma PCT, and the CD64 expression of classic monocytes in peripheral blood has good efficacy in identifying sepsis and assessing its severity.


Subject(s)
Monocytes , Sepsis , Humans , Case-Control Studies , ROC Curve , Sepsis/diagnosis , Prognosis , Procalcitonin , Intensive Care Units , Retrospective Studies
13.
Exp Hematol Oncol ; 11(1): 63, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163285

ABSTRACT

BACKGROUND: Immunotherapies have emerged as potential treatments for metastatic castration-resistant prostate cancer (mCRPC). However, it is still unclear to identify the efficacy and safety of immunotherapy in large-scale samples. We performed a meta-analysis of 7 phase III randomized trials and 3 phase II trials comparing immunotherapy to placebo in mCRPC. METHODS: Searching the PubMed, ClinicalTrials and Cochrane Library, completed III/IV phase trials were identified. Data extraction was conducted according to the PRISMA statement. The measured outcomes were OS, PFS, ORR and AE. Based on the results of phase III randomized trials, 3 II phase trials with results were identified. RESULTS: A total of 4185 patients were available for evaluation of OS, and 3320 for PFS. Compared to placebo, immunotherapies were not able to improve OS (HR = 0.90; 95%CI 0.79-1.03; p = 0.13). However, immunotherapies, especially ICBs were able to decrease the risk of progression over placebo by 18% (HR = 0.82; 95%CI 0.68-1.00; p = 0.04). Significant ORR improvement was found in patients treated in ICBs (RR = 1.90; 95%CI 1.30-2.78; p < 0.001). Immunotherapies (OR = 1.01, 95% CI = 0.40-2.56; OR = 1.27, 95% CI = 0.72-2.25) were not associated with significant any grade TRAEs and 3-4 grade TRAEs. However, in subgroup analysis, ICBs (OR = 2.85, 95% CI = 2.27-3.57) and vaccines (OR = 0.78, 95% CI = 0.64-0.53) were associated with significant 3-4 grade TRAEs respectively. Moreover, ICBs alone induced positive PSA response [OR = 2.43(1.09-5.43), P = 0.03(I2 = 0%, P = 0.83)] and was effective in advanced PC even without classical therapies based on three phase II clinical trials about ICBs. CONCLUSIONS: Immunotherapies are not able to improve OS, but significantly improve PFS and ORR especially in ICBs treatment. Immunotherapies were not associated with significant TRAEs. However, in subgroup analysis, ICBs and vaccines were associated with significant 3-4 grade TRAEs.

14.
Sci China Life Sci ; 65(10): 1917-1928, 2022 10.
Article in English | MEDLINE | ID: mdl-35918604

ABSTRACT

Sepsis, defined as life-threatening organ failure caused by a dysregulated host response to severe infection, is a major cause of death among intensive care unit patients. Therapies targeting on immunomodulatory is a new research field in sepsis treatment. B- and T-lymphocyte attenuator (BTLA) is an inhibitory costimulatory factor molecule of B and T lymphocytes. Studies have shown that elevated expression of BTLA in lymphocytes can reduce mortality in sepsis, but its regulatory compounds and the underlying mechanism remains to be elucidated. Here, we show that treatment with CP-673451 significantly decreases mortality of septic mouse. CP-673451 is a PDGFR kinase inhibitor which can promote the expression of BTLA, inhibit the release of chemokines such as CXCL13, and reduce first the chemotaxis of B cells to the peripheral blood and vital organs. CP-673451 also inhibits both the release of cytokines and chemokines such as IL-1ß, IL-6, IL-10, TNF-α, CCL1, CCL2 and CCL7 and reduces both the chemotactic ability of T cells. This suggests that CP-673451 may prevent septic death by inhibiting lymphocyte chemotaxis and alleviating "cytokine storm". In conclusion, our study provides a new therapeutic target and an effective compound for sepsis treatment.


Subject(s)
Sepsis , T-Lymphocytes , Animals , Chemokines , Cytokines/metabolism , Interleukin-10 , Interleukin-6 , Mice , Receptors, Immunologic/metabolism , Sepsis/drug therapy , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha
15.
Carbohydr Polym ; 294: 119763, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868787

ABSTRACT

Three-dimensional (3D) printing is a new technique used to construct complex geometric forms for personalized nutrition and customization. With good rheological and gelling properties, starch materials have great potential in the 3D printed food industry. The successful printing of materials depends on various aspects, and current researches have focused on discussing the influence of the rheological properties of starch materials on printing, while the researches on the printing characteristics with other starch properties, material processing methods, printing process parameters are still insufficient. This review mainly focuses on the relationship between the material properties of starch foods and hot extrusion 3D printing, discussing the influence of material properties (rheology, adhesiveness, thermal properties, microstructure and component interaction) on the feasibility of printing. In addition, the effects of additives (hydrocolloids, lipids, fiber, protein, salt and other), processing methods, and process parameters (nozzle diameter, print height, print speed, and throughput) on printing are reviewed.


Subject(s)
Food , Printing, Three-Dimensional , Colloids , Rheology , Starch
16.
Int Immunopharmacol ; 108: 108730, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35354111

ABSTRACT

BACKGROUND: Neutrophil extracellular traps (NETs) are involved in the development of sepsis-induced acute respiratory distress syndrome (ARDS). Glycyrrhizin (GL), the main active ingredient of the traditional Chinese medicine Glycyrrhiza glabra, has anti-inflammatory, anti-viral, and immunomodulatory effects. OBJECTIVE: The study aims to explore the efficacy and potential mechanism of GL on sepsis-induced ARDS in mice. MATERIALS AND METHODS: Mice were randomly divided into 3 groups: Control, CLP, and GL + CLP. Mice sepsis ARDS model was induced by cecal ligation and puncture (CLP) followed by intraperitoneal GL treatment. Then, the 7-day survival rate of mice was recorded. The lung function of mice was determined by whole-body plethysmography. Lung pathology and scores were observed by hematoxylin-eosin staining. The wet/dry ratio (W/D) of the lung was measured by weighing method. The protein concentration in bronchoalveolar lavage fluid (BALF) was measured by the BCA method. NETs formation in lung tissue was detected by immunofluorescence. Furthermore, HMGB1、TLR9、MyD88 and IL6 expression in lung tissue were detected by western blot and by quantitative real-time PCR, respectively. RESULTS: The results showed that GL improved the survival rate, attenuated lung tissue injury and reduced the expression of inflammatory factors in mice with CLP-induced sepsis. Meanwhile, we confirmed that GL could inhibit TLR9 / MyD88 activation from reducing NETs formation by decreasing HMGB1 expression. The formation of NETs is regulated by HMGB1 / TLR9 / MyD88. In addition, GL improved lung function in mice with sepsis-induced ARDS. Lung function suggested that GL increased alveolar ventilation, alleviated ventilator fatigue and reduced airway resistance in mice with ARDS induced by sepsis. CONCLUSIONS: GL ameliorated sepsis-induced ARDS and reduced the NETs formation in lung tissues, which may be associated with the inhibition of the HMGB1 / TLR9 pathway.


Subject(s)
Extracellular Traps , HMGB1 Protein , Lung Injury , Respiratory Distress Syndrome , Sepsis , Animals , Disease Models, Animal , Extracellular Traps/metabolism , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , HMGB1 Protein/metabolism , Lung/pathology , Lung Injury/pathology , Mice , Myeloid Differentiation Factor 88/metabolism , Neutrophils/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Toll-Like Receptor 9/metabolism
17.
ACS Appl Mater Interfaces ; 13(41): 49266-49278, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34634200

ABSTRACT

Strain sensors with high sensitivity, long-term durability, and stretchability are required for flexible and wearable electronic devices. This paper reports a bilayer strain sensor consisting of carboxyl-functionalized carbon nanotubes (CNTs) and ionically crosslinked polysiloxane substrates based on unsaturated acid-amine interactions. Vacuum filtration was adopted to prepare the CNT films (2.74-4.70 µm in thickness) onto the polysiloxane substrates to prepare stretchable conductive strain sensors. The strain sensor exhibited self-healing ability, self-adhesiveness, high sensitivity, linearity, low hysteresis, and long-term durability with a gauge factor of 33.99 at 55% strain. The sensitivity and linearity could be adjusted by the thickness of the CNT layer. A crack-related mechanism was proposed in which increasing the thickness of the CNT layer led to simultaneously enhanced sensitivity and linearity. Finally, we investigated the detection of human activities (bending/unbending of fingers or knees) and subtle motions (coughing and swallowing). The fabricated strain sensor succeeded in meeting various needs with satisfactory sensing performance.

18.
Front Genet ; 12: 720313, 2021.
Article in English | MEDLINE | ID: mdl-34539750

ABSTRACT

PURPOSE: CXC chemokines are mediators which mediate immune cells migration to sites of inflammation and injury. Chemokine C-X-C motif ligand 16 (CXCL16) plays an important role in the occurrence and development of sepsis through leukocyte chemotaxis, leukocyte adhesion and endotoxin clearance. In this study, we selected a set of tagging single nucleotide polymorphisms (tag SNPs) in the CXCL16 gene and investigated their clinical relevance to the development of sepsis and multiple organ dysfunction syndrome (MODS) in patients with major trauma in three independent Chinese Han populations. METHODS: A total of 1,620 major trauma patients were enrolled in this study. Among these patients, 920 came from Chongqing in western China, 350 came from Zhejiang Province in eastern China, and 350 came from Guizhou Province in southwestern China. The improved multiplex ligation detection reaction (iMLDR) method was employed in the genotyping and genetic association analyses to determine the associations between CXCL16 haplotypes and sepsis morbidity rate and higher MOD scores in three cohorts. RESULTS: Only CXCL16 T123V181 haplotype was associated with an increased risk for sepsis morbidity and higher MOD scores in the three cohorts (OR = 1.89, P = 0.001 for the Chongqing cohort; OR = 1.76, P = 0.004 for the Zhejiang cohort; OR = 1.55, P = 0.012 for the Guizhou cohort). The effect of T123V181 haplotype on the chemotaxis, migration and endotoxin clearance of immune cells were further observed. Protein modeling analysis showed that T123 and V181 might alter the structure of the CXCL16 active center. Thus it enhanced the chemotaxis and adhesion ability of immunocytes. CONCLUSION: We demonstrate the mechanism of CXCL16 T123V181 haplotype which regulates the sepsis morbidity rate and thus provide a new biomarker for early diagnosis of sepsis and MODS. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier NCT01713205 (https://www.clinicaltrials.gov/ct2/results?cond=&term=+NCT01713205&cntry=&state=&city=&dist=).

19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(2): 223-228, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33729144

ABSTRACT

OBJECTIVE: To study the dynamic changes of cellular immune function in peripheral blood of trauma patients and its role in the evaluation of traumatic complications. METHODS: A prospective cohort study design was conducted. Patients with blunt trauma admitted to Chongqing Emergency Medical Center from November 2019 to January 2020 were consecutively enrolled. The peripheral blood samples were collected at 1, 3, 5, 7, and 14 days after injury. The expressions of CD64, CD274, and CD279 on the surface of neutrophils, lymphocytes, and monocytes as well as CD3+, CD4+ and CD8+ T lymphocyte subsets were measured by flow cytometry. The trauma patients were divided into different groups according to the injury severity score (ISS) and sepsis within 28 days after injury, respectively. The dynamic changes of cellular immune function in different time points after injury and differences between different groups were compared. Furthermore, the correlation with acute physiology and chronic health evaluation II (APACHE II), sequential organ failure assessment (SOFA), and ISS were evaluated by Pearson correlation analysis. RESULTS: A total of 42 patients with trauma were finally enrolled, containing 8 severe trauma patients with ISS greater than 25 scores, 17 patients with ISS between 16 and 25 scores, and 17 patients with ISS less than 16 scores. The sepsis morbidity rates were 14.3% (n = 6) within 28 days after injury. CD64 index and CD4+ T lymphocyte subsets were significantly increased at different time points after trauma (H = 15.464, P = 0.004; F = 2.491, P = 0.035). The CD64 index and positive rates of CD279 in neutrophils, lymphocytes, and monocytes were increased with the severity of injury at day 1 and day 3 after injury, respectively. At the first day after injury, CD64 index were 2.81±1.79, 1.77±0.92, 3.49±1.09; positive rate of CD279 in neutrophils were 1.40% (0.32%, 2.04%), 0.95% (0.44%, 2.70%), 12.73% (3.00%, 25.20%); positive rate of CD279 in lymphocytes were 3.77% (3.04%, 5.15%), 4.71% (4.08%, 6.32%), 8.01% (4.59%, 11.59%); positive rate of CD279 in monocytes were 0.57% (0.24%, 1.09%), 0.85% (0.22%, 1.25%), 6.74% (2.61%, 18.94%) from mild to severe injury groups, respectively. The CD64 index in severe injury group was significantly higher than that in moderate group, and the positive rates of CD279 in neutrophils, lymphocytes and monocytes of severe injury patients were higher than those in other two groups (all P < 0.05). At 3rd day after injury, compared to moderate group, severe injury patients had significantly higher CD64 index and positive rate of CD279 in lymphocytes [4.58±2.41 vs. 2.43±1.68, 7.35% (5.90%, 12.28%) vs. 4.63% (3.26%, 6.06%), both P < 0.05]. Compared with the non-sepsis patients, the sepsis patients had significantly higher CD64 index and positive rate of CD279 in monocytes at day 1 after injury [4.06±1.72 vs. 2.36±1.31, 3.29% (1.14%, 12.84%) vs. 0.67% (0.25%, 1.48%), both P < 0.05], and positive rate of CD279 in lymphocytes significantly higher at 3rd day after injury [8.73% (7.52%, 15.82%) vs. 4.67% (3.82%, 6.21%), P < 0.05]. In addition, correlation analysis showed that positive rate of CD279 in lymphocytes was positively correlated with SOFA and ISS, respectively (r values were 0.533 and 0.394, both P < 0.05), positive rate of CD279 in monocytes was positively correlated with APACHE II, SOFA and ISS scores, respectively (r values were 0.579, 0.452 and 0.490, all P < 0.01), positive rate of CD279 in neutrophils was positively correlated with APACHE II and ISS, respectively (r values were 0.358 and 0.388, both P < 0.05). CONCLUSIONS: CD64 index and CD279 expression in neutrophils, lymphocytes, and monocytes are significantly related to the severity and prognosis of trauma. Dynamic monitoring the cellular immune function may be helpful for assessing the prognosis of trauma patients.


Subject(s)
Sepsis , APACHE , Humans , Immunity , Injury Severity Score , Prognosis , Prospective Studies , ROC Curve , Retrospective Studies
20.
Infect Dis Ther ; 10(2): 739-751, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33624223

ABSTRACT

INTRODUCTION: Vanin-1 plays a pivotal role in oxidative stress and the inflammatory response. However, its relationship with traumatic sepsis remains unknown. The aim of our study was to evaluate whether plasma vanin-1 could be used for the early prediction of traumatic sepsis. METHODS: In this three-stage prospective cohort study, severe trauma patients admitted from January 2015 to October 2018 at two hospitals were enrolled. Plasma vanin-1 levels were measured by enzyme-linked immunosorbent assay (ELISA). The associations among variables and traumatic sepsis were identified by logistic regression models and the receiver operating characteristic (ROC) curve was analyzed to evaluate the diagnostic efficiency. RESULTS: A total of 426 trauma patients (22 in the discovery cohort, 283 in the internal test cohort, and 121 in the external validation cohort) and 16 healthy volunteers were recruited. The plasma vanin-1 of trauma patients was significantly higher than that of healthy volunteers (P < 0.05). Patients with sepsis had higher plasma vanin-1 than patients without sepsis in the discovery trauma cohort (P < 0.05). In the internal test cohort, plasma vanin-1 at day 1 after trauma was significantly associated with the incidence of sepsis (OR = 3.92, 95% CI 2.68-5.72, P = 1.62 × 10-12). As a predictive biomarker, vanin-1 afforded a better area under the curve (AUC) (0.82, 95% CI 0.77-0.87) than C-reaction protein (CRP) (0.62, 95% CI 0.56-0.68, P < 0.0001), procalcitonin (PCT) (0.66, 95% CI 0.60-0.71, P < 0.0001), and Acute Physiology and Chronic Health Evaluation II (APACHE II) (0.71, 95% CI 0.65-0.76, P = 6.70 × 10-3). The relevance was further validated in the external validation cohort (OR = 4.26, 95% CI 2.22-8.17, P = 1.28 × 10-5), with an AUC of 0.83 (95% CI 0.75-0.89). Vanin-1 could also improve the diagnostic efficiency of APACHE II (AUC = 0.85). CONCLUSIONS: Our study demonstrated that plasma vanin-1 increased among trauma patients and was independently associated with the risk of sepsis. Vanin-1 might be a potential biomarker for the early prediction of traumatic sepsis. TRIAL REGISTRATION: Clinicaltrials.gov Identifier, NCT01713205.

SELECTION OF CITATIONS
SEARCH DETAIL
...