Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 345: 123495, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38342431

ABSTRACT

Periphyton, a microbial assemblage of autotrophic and heterotrophic organisms, is vital to aquatic ecosystems. While exposure to macrolide antibiotics has been confirmed to reduce the biodiversity and damage the critical ecological functions in indoor microcosm bioassays, the distribution of periphyton along a macrolide antibiotic pollution gradient in a river has yet to be determined. Herein, we established the spatiotemporal distribution of five major macrolides, i.e., azithromycin (AZI), roxithromycin (ROX), erythromycin (ERY), clarithromycin (CLA), and anhydro erythromycin (ERY-H2O) in water and periphyton of Zao River (Xi'an, China), after which we evaluated the effects on the structures, photosynthetic activity, and carbon utilization capacity of periphyton in March, June, and September 2023. In contrast with the reference sites, the macrolides were identified in all sewage treatment plants (STPs) impacted sites with concentrations ranging from 0.05 to 2.18 µg/L in water and from not detected - 9.67 µg/g in periphyton. Regarding community structure, the occurrence of macrolides was negatively linked to FirmicutesExiguobacterium undae and Exiguobacterium sibiricum, CyanobacteriaOscillatoriales and Vischeria sp., and ChlorophytaMonostroma grevillei, Selenastrum sp. LU21 and Desmodesmus subspicatus. At the functional level, only the metabolism of phenolic acids was significantly decreased in river reach with high antibiotic levels in June, compared to the other five carbon sources that were not altered. The overall photosynthetic activity of periphytic photosystem II remained unchanged in both reference and STPs impacted groups throughout three seasons. Overall, the macrolides released from STPs were correlated with the altered periphytic structures in the river, whereas a similar trend was not detected for the community functions owing to the functional redundancy. A mesocosm experiments warrants further consideration to validate the field results.


Subject(s)
Periphyton , Water Pollutants, Chemical , Seasons , Ecosystem , Rivers/chemistry , Anti-Bacterial Agents/analysis , Macrolides , Erythromycin , Carbon , Water , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...