Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Plant J ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506334

ABSTRACT

Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.

2.
Plant Cell Environ ; 47(5): 1526-1542, 2024 May.
Article in English | MEDLINE | ID: mdl-38251320

ABSTRACT

Zinc (Zn) deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Nevertheless, despite its primary importance, how rice responds to Zn deficiency remains poorly understood. This study presents genetic evidence supporting the crucial role of OsbZIP48 in regulating rice's response to Zn deficiency, consistent with earlier findings in the model plant Arabidopsis. Genetic inactivation of OsbZIP48 in rice seedlings resulted in heightened sensitivity to Zn deficiency and reduced Zn translocation from roots to shoots. Consistently, OsbZIP48 was constitutively expressed in roots, slightly induced by Zn deficiency in shoots and localized into nuclei induced by Zn deficiency. Comparative transcriptome analysis of the wild-type plants and osbzip48 mutant grown under Zn deficiency enabled the identification of OsbZIP48 target genes, including key Zn transporter genes (OsZIP4 and OsZIP8). We demonstrated that OsbZIP48 controlled the expressions of these genes by directly binding to their promoters, specifically to the Zn deficiency response element motif. This study establishes OsbZIP48 as a critical transcription factor in rice's response to Zn deficiency, offering valuable insights for developing Zn-biofortified rice varieties to combat global Zn limitation.


Subject(s)
Arabidopsis , Oryza , Transcription Factors/genetics , Transcription Factors/metabolism , Oryza/metabolism , Zinc/metabolism , Gene Expression Profiling , Arabidopsis/genetics , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant
3.
Plant Cell ; 36(2): 383-403, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37847118

ABSTRACT

The Casparian strip (CS) is a ring-like lignin structure deposited between endodermal cells that forms an apoplastic barrier to control the selective uptake of nutrients in vascular plants. However, the molecular mechanism of CS formation in rice (Oryza sativa), which possesses one CS each in the endodermis and exodermis, is relatively unknown. Here, we functionally characterized CS INTEGRITY FACTOR1 (OsCIF1a, OsCIF1b), OsCIF2, and SCHENGEN3 (OsSGN3a, OsSGN3b) in rice. OsCIF1s and OsCIF2 were mainly expressed in the stele, while OsSGN3s localized around the CS at the endodermis. Knockout of all three OsCIFs or both OsSGN3s resulted in a discontinuous CS and a dramatic reduction in compensatory (less localized) lignification and suberization at the endodermis. By contrast, ectopic overexpression of OsCIF1 or OsCIF2 induced CS formation as well as overlignification and oversuberization at single or double cortical cell layers adjacent to the endodermis. Ectopic co-overexpression of OsCIF1 and SHORTROOT1 (OsSHR1) induced the formation of more CS-like structures at multiple cortical cell layers. Transcriptome analysis identified 112 downstream genes modulated by the OsCIF1/2-OsSGN3 signaling pathway, which is involved in CS formation and activation of the compensatory machinery in native endodermis and nonnative endodermis-like cell layers. Our results provide important insights into the molecular mechanism of CIF-mediated CS formation at the root endodermal and nonendodermal cell layers.


Subject(s)
Arabidopsis , Oryza , Arabidopsis/genetics , Oryza/genetics , Plant Roots/metabolism , Cell Wall/metabolism , Peptides/metabolism , Signal Transduction/genetics
4.
J Gene Med ; 26(1): e3615, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123364

ABSTRACT

BACKGROUND: The aim of this study was to determine the effect of human urine-derived stem cells (HUSCs) for the treatment of spinal cord injury (SCI) and investigate associated the molecular network mechanism by using bioinformatics combined with experimental validation. METHODS: After the contusive SCI model was established, the HUSC-expressed specific antigen marker was implanted into the injury site immediately, and the Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) was utilized to evaluate motor function so as to determine the effect of HUSCs for the neural repair after SCI. Then, the geneCards database was used to collect related gene targets for both HUSCs and SCI, and cross genes were merged with the findings of PubMed screen. Subsequently, protein-protein interaction (PPI) network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment, as well as core network construction, were performed using Cytoscape software. Lastly, real-time quantitative polymerase chain reaction (PCR) and immunofluorescence were employed to validate the mRNA expression and localization of 10 hub genes, and two of the most important, designated as cadherin 1 (CDH1) and integrin subunit beta 1 (ITGB1), were identified successfully. RESULTS: The immunophenotypes of HUSCs were marked by CD90+ and CD44+ but not CD45, and flow cytometry confirmed their character. The expression rates of CD90, CD73, CD44 and CD105 in HUSCs were 99.49, 99.77, 99.82 and 99.51%, respectively, while the expression rates of CD43, CD45, CD11b and HLA-DR were 0.08, 0.30, 1.34 and 0.02%, respectively. After SCI, all rats appeared to have severe motor dysfunction, but the BBB score was increased in HUSC-transplanted rats compared with control rats at 28 days. By using bioinformatics, we obtained 6668 targets for SCI and 1095 targets for HUSCs and identified a total of 645 cross targets between HUSCs and SCI. Based on the PPI and Cytoscape analysis, CD44, ACTB, FN1, ITGB1, HSPA8, CDH1, ALB, HSP90AA1 and GAPDH were identified as possible therapeutic targets. Enrichment analysis revealed that the involved signal pathways included complement and coagulation cascades, lysosome, systemic lupus erythematosus, etc. Lastly, quantificational real-time (qRT)-PCR confirmed the mRNA differential expression of CDH1/ITGB1 after HUSC therapy, and glial fibrillary acidic protein (GFAP) immunofluorescence staining showed that the astrocyte proliferation at the injured site could be reduced significantly after HUSC treatment. CONCLUSIONS: We validated that HUSC implantation is effective for the treatment of SCI, and the underlying mechanisms associated with the multiple molecular network. Of these, CDH1 and ITGB1 may be considered as important candidate targets. Those findings therefore provided the crucial evidence for the potential use of HUSCs in SCI treatment in future clinic trials.


Subject(s)
Spinal Cord Injuries , Rats , Humans , Animals , Rats, Sprague-Dawley , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Stem Cells , RNA, Messenger/metabolism , Integrins/therapeutic use
5.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069359

ABSTRACT

Rice (Oryza sativa) exhibits tremendous aluminum (Al)-tolerance. The C2H2-transcription factor (TF) ART1 critically regulates rice Al tolerance via modulation of specific gene expression. However, little is known about the posttranscriptional ART1 regulation. Here, we identified an ART1-interacted gene OsNAC016 via a yeast two-hybrid (Y2H) assay. OsNAC016 was primarily expressed in roots and weakly induced by Al. Immunostaining showed that OsNAC016 was a nuclear protein and localized in all root cells. Knockout of OsNAC016 did not alter Al sensitivity. Overexpression of OsNAC016 resulted in less Al aggregation within roots and enhanced Al tolerance in rice. Based on transcriptomic and qRT-PCR evaluations, certain cell-wall-related or ART-regulated gene expressions such as OsMYB30 and OsFRDL4 were altered in OsNAC016-overexpressing plants. These results indicated that OsNAC016 interacts with ART1 to cooperatively regulate some Al-tolerance genes and is a critical regulatory factor in rice Al tolerance.


Subject(s)
Oryza , Oryza/metabolism , Aluminum/toxicity , Aluminum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism
7.
J Environ Manage ; 342: 118129, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37172346

ABSTRACT

Rapid urbanization has reduced the capacity of cities to mitigate and withstand disasters. Strengthening urban ecological resilience (ER) is important for improving urban self-organization. Geographical characteristics and developmental status of different cities lead to a more complex relationship between urbanization and ER. Using the three major urban agglomerations in China, we constructed a new framework for assessing the ER from a landscape and ecological processes perspective, and analyzed the driving heterogeneity of urbanization on ER. The results indicated that the ER of Yangtze River Delta (YRD) and Pearl River Delta (PRD) decreased continuously from 2000 to 2018, while the ER of Beijing-Tianjin-Hebei (BTH) decreased from 2000 to 2010, and then increased from 2010 to 2018. The resilience level of PRD was significantly lower than those of BTH and YRD. The urbanization process had a negative impact on ER, and the contribution of urbanization factors to ER varied significantly across cities, and population factors have the most direct influence. Curve fitting analysis further deepened our understanding of heterogeneity, investigating from the perspective of landscape and driving factors, and suggesting improvement measures. This study can deepen the understanding of the impact of urbanization on resilience and provide scientific guidance for achieving regional sustainability.


Subject(s)
Rivers , Urbanization , Cities , Beijing , China
8.
Environ Sci Pollut Res Int ; 30(21): 59861-59876, 2023 May.
Article in English | MEDLINE | ID: mdl-37012569

ABSTRACT

The urban heat island effect is an increasingly serious problem in urban areas. Previous studies suggest that spatial variation in the urban land surface temperature (LST) is determined by interactions among urban morphological factors, but few studies have explored the main factors that affect the LST in different seasons in complex urban areas, especially at a fine scale. By considering the central Chinese city of Jinan as an example, we selected 19 parameters related to the architectural morphological factors, ecological basis factors, and humanistic factors and explored their effects on the LST in different seasons. A correlation model was used to identify the key factors and to analyze the main impact thresholds in different seasons. In the four seasons, the 19 factors all had significant correlations with LST. In particular, architectural morphological factors comprising the average building height and high building ratio had significant negative correlations with the LST in the four seasons. The architectural morphological factors comprising the floor area ratio, spatial concentration degree, building volume density, and urban surface pattern index comprising the mean nearest neighbor distance to green land, as well as humanistic factors comprising the point of interest density, nighttime light intensity, and human activity intensity of land surface had significant positive correlations with LST in the summer and autumn. Ecological basis factors made the main contributions to the LST in the spring, summer, and winter, whereas humanistic factors contributed the most in the autumn. The contributions of architectural morphological factors were relatively low in the four seasons. The dominant factors differed in each season but their thresholds had similar characteristics. The results obtained in this study deepen our understanding of the relationships between urban morphology and the urban heat island effect, and provide practical suggestions for improving the urban thermal environment through reasonable building planning and management.


Subject(s)
Environmental Monitoring , Hot Temperature , Humans , Temperature , Seasons , Cities , Environmental Monitoring/methods
9.
Article in English | MEDLINE | ID: mdl-36767204

ABSTRACT

Intense human activities have led to profound changes in landscape patterns and ecological processes, generating certain ecological risks that seriously threaten human wellbeing. Ecological risk assessment from a landscape perspective has become an important tool for macroecosystem landscape management. This research improves the framework and indices of the ecological risk assessment from a landscape perspective, evaluates the land use pattern and landscape ecological risk dynamics in the Yellow River Ecological Economic Belt (YREEB), analyzes the spatiotemporal variation, and identifies key areas for ecological risk management. The results indicate the following: The main land use types in the region are grassland and cropland, but the area of cropland and grassland decreased during the study period, and with the accelerated urbanization, urban land is the only land use type that continued to increase over the 20-year period. The ecological risk in the YREEB tended to decrease, the area of low ecological risk zones increased, while the area of high ecological risk zones gradually decreased. Most areas are at medium risk level, but the risk in central Qinghai and Gansu is obviously higher, and there is a dispersed distribution of local high- and low-risk zones. A total of 37.7% of the study area is identified as critical area for future risk management, and the potential for increased risk in these areas is high. These results can provide a basis for sustainable development and planning of the landscape and the construction of ecological civilization in ecologically fragile areas.


Subject(s)
Ecosystem , Rivers , Humans , Urbanization , Sustainable Development , Risk Assessment , China , Conservation of Natural Resources/methods
10.
Article in English | MEDLINE | ID: mdl-36833548

ABSTRACT

Hyperspectral technology has proven to be an effective method for monitoring soil salt content (SSC). However, hyperspectral estimation capabilities are limited when the soil surface is partially vegetated. This work aimed to (1) quantify the influences of different fraction vegetation coverage (FVC) on SSC estimation by hyperspectra and (2) explore the potential for a non-negative matrix factorization algorithm (NMF) to reduce the influence of various FVCs. Nine levels of mixed hyperspectra were measured from simulated mixed scenes, which were performed by strictly controlling SSC and FVC in the laboratory. NMF was implemented to extract soil spectral signals from mixed hyperspectra. The NMF-extracted soil spectra were used to estimate SSC using partial least squares regression. Results indicate that SSC could be estimated based on the original mixed spectra within a 25.76% FVC (R2cv = 0.68, RMSEcv = 5.18 g·kg-1, RPD = 1.43). Compared with the mixed spectra, NMF extraction of soil spectrum improved the estimation accuracy. The NMF-extracted soil spectra from FVC below 63.55% of the mixed spectra provided acceptable estimation accuracies for SSC with the lowest results of determination of the estimation R2cv = 0.69, RMSEcv = 4.15 g·kg-1, and RPD = 1.8. Additionally, we proposed a strategy for the model performance investigation that combines spearman correlation analysis and model variable importance projection analysis. The NMF-extracted soil spectra retained the sensitive wavelengths that were significantly correlated with SSC and participated in the operation as important variables of the model.


Subject(s)
Salinity , Soil , Least-Squares Analysis , Algorithms , Sodium Chloride , Sodium Chloride, Dietary
11.
Environ Res ; 217: 114870, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36435496

ABSTRACT

Gaofen-2 (GF-2) imagery data has been playing an important role in environmental monitoring. However, the scarcity of spectral bands makes GF-2 difficult to use in soil salinity estimation. In this paper, we combined spectral and textual features for soil salinity estimation from GF-2 imagery. The spectral features comprised five classes of predictors: spectral value, vegetation index, salinity index, brightness index, and intensity index. Four gray-level co-occurrence matrix (GLCM) indices were used as the textural features. The least absolute shrinkage and selection operator (LASSO) was applied to select features. Four methods, namely, Random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and partial least squares regression (PLSR) were applied and compared. To this end, 211 soil samples were collected in the Yellow River Delta through field investigation. The results showed that GF-2 imagery could successfully estimate soil salinity by integrating spectral and texture features, and among the four methods, the RF had the highest accuracy with the determination coefficient for cross-validation (R2CV), a root mean square error for cross-validation (RMSECV), and the ratio of the standard deviation to the root mean square error of prediction (RPD) of 0.82, 2.36 g kg-1, and 2.28, respectively. Especially, the impact of different scale features on the soil salinity estimation accuracy was evaluated. The optimal window size for features was 9 × 9 pixels, and increasing or decreasing the window size will decrease the estimation accuracy. The study provides a novel application to soil salinity estimation from remote sensing imagery.


Subject(s)
Salinity , Soil , Least-Squares Analysis , Environmental Monitoring/methods , Support Vector Machine
12.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233306

ABSTRACT

Salt stress is a critical limiting factor for rice growth and production. Although numerous salt-tolerant genes have been identified, the mechanism underlying salt stress tolerance in rice remains unclear. This study reports the need for an uncharacterized WRKY transcription factor OsWRKY54 for rice salt-tolerance. Salt stress resulted in a rapid induction of OsWRKY54 expression in roots. Immunostaining analysis showed that it was mainly expressed in the stele. The loss of OsWRKY54 resulted in greater Na accumulation in shoots and enhanced sensitivity of rice plants to salt stress. The real-time quantitative PCR (qRT-PCR) and transcriptome analysis revealed that OsWRKY54 regulated the expression of some essential genes related to salt tolerance, such as OsNHX4 and OsHKT1;5. Furthermore, OsWRKY54 was found to regulate OsHKT1;5 expression by directly binding to the W-box motif in its promoter. Thus, these results indicated that OsWRKY54 was a critical regulatory factor in salt tolerance in rice.


Subject(s)
Oryza , Salt Tolerance , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Oncol Lett ; 23(6): 186, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35527788

ABSTRACT

Circular RNAs (circRNAs/circs) have gained attention as a class of potential biomarkers for the early detection of multiple cancers. However, the functions and mechanisms of circRNAs in the oncogenesis of human colorectal cancer (CRC) remain to be elucidated. The present study aimed to investigate the roles of hsa_circ_0000523 and its parental gene methyltransferase-like 3 (METTL3) in regulating cell proliferation, apoptosis and invasion in the HCT116 human CRC cell line. To uncover the regulated function of hsa_circ_0000523 in HCT116 cells, a dual-luciferase reporter assay, flow cytometry, reverse transcription-quantitative PCR, Cell Counting Kit-8 assay, cell invasion and western blot assay were used. In HCT116 cells, hsa_circ_0000523 indirectly regulated METTL3 expression by suppressing the transcription of microRNA (miR)-let-7b. The expression of METTL3 promoted cell proliferation and suppressed apoptosis. In the present study, it was found that miR-let-7b promoted cell viability and inhibited apoptosis and invasion, while circ_0000523 exerted the opposite effects. Higher levels of METTL3 expression were associated with more aggressive tumor invasion. The present results suggest that circRNAs and METTL3 may be applied for highly sensitive diagnosis of CRC and for predicting prognosis in patients who have undergone therapy.

14.
Plant Cell ; 34(8): 2948-2968, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35543496

ABSTRACT

Plants have evolved a lignin-based Casparian strip (CS) in roots that restricts passive diffusion of mineral elements from the soil to the stele. However, the molecular mechanisms underlying CS formation in rice (Oryza sativa), which contains a CS at both the exodermis and endodermis, are poorly understood. Here, we demonstrate that CS formation at the rice endodermis is redundantly regulated by three MYELOBLASTOSIS (MYB) transcription factors, OsMYB36a, OsMYB36b, and OsMYB36c, that are highly expressed in root tips. Knockout of all three genes resulted in a complete absence of CS at the endodermis and retarded plant growth in hydroponic conditions and in soil. Compared with the wild-type, the triple mutants showed higher calcium (Ca) levels and lower Mn, Fe, Zn, Cu, and Cd levels in shoots. High Ca supply further inhibited mutant growth and increased Ca levels in shoots. Transcriptome analysis identified 1,093 downstream genes regulated by OsMYB36a/b/c, including the key CS formation gene OsCASP1 and other genes that function in CS formation at the endodermis. Three OsMYB36s regulate OsCASP1 and OsESB1 expression by directly binding to MYB-binding motifs in their promoters. Our findings thus provide important insights into the mechanism of CS formation at the endodermis and the selective uptake of mineral elements in roots.


Subject(s)
Oryza , Plant Roots , Cell Wall/metabolism , Minerals/metabolism , Oryza/genetics , Plant Roots/metabolism , Soil
15.
Article in English | MEDLINE | ID: mdl-35409542

ABSTRACT

Land use/land cover (LULC) and climate change are major driving forces that impact ecosystem services and affect human well-being directly and indirectly. Under the future interaction between LULC and climate change, the impact of different land management and climate change scenarios on water-related services is uncertain. Based on this, the CLUMondo model, which focuses on land use intensity, was used to simulate the land system under different land management scenarios in the future. By coupling the downscaled climate scenario data, this study used the InVEST and RUSLE models to estimate the annual water yield and soil erosion in 2050 in the Hengduan Mountain region and analyzed the variation differences in different sub-watersheds. The results indicated that, under the influence of LULC and climate change, when compared with the amount for 2020, the soil erosion in the Hengduan Mountain region in 2050 was reduced by 1.83, 3.40, and 2.91% under the TREND scenario, FOREST scenario, and CONSERVATION scenario, respectively, while the water yield decreased by 5.05, 5.37, and 5.21%, respectively. Moreover, the change in soil erosion in the study area was affected by precipitation and closely related to the precipitation intensity, and the impact of climate change on the water yield was significantly greater than that of LULC change. The spatial heterogeneity of soil erosion and water yield was obvious at the sub-watershed scale. In the future, soil erosion control should be strengthened in the northern regions, while water resource monitoring and early warning should be emphasized in the central-eastern regions. Our results provide scientific guidance for policy makers to formulate better LULC policies to achieve regional water and soil balance and sustainable management.


Subject(s)
Conservation of Natural Resources , Ecosystem , Climate Change , Humans , Soil , Water
16.
Appl Geogr ; 142: 102692, 2022 May.
Article in English | MEDLINE | ID: mdl-35399592

ABSTRACT

From the onset of the COVID-19 pandemic in 2020, studies on the microgeographies of epidemics have surged. However, studies have neglected the significant impact of multiple spatiotemporal units, such as report timestamps and spatial scales. This study examines three cities with localized COVID-19 resurgence after the first wave of the pandemic in mainland China to estimate the differential impact of spatiotemporal unit on exploring the influencing factors of epidemic spread at the microscale. The quantitative analysis results suggest that future spatial epidemiology research should give greater attention to the "symptom onset" timestamp instead of only the "confirmed" data and that "spatial transmission" should not be confused with "spatial sprawling" of epidemics, which can greatly reduce comparability between epidemiology studies. This research also highlights the importance of considering the modifiable areal unit problem (MAUP) and the uncertain geographic context problem (UGCoP) in future studies.

17.
Ibrain ; 8(3): 285-301, 2022.
Article in English | MEDLINE | ID: mdl-37786738

ABSTRACT

To explore the effect of electroacupuncture on spinal cord injury (SCI) involving immune-related factors and regeneration-related factors in rats. The model of spinal cord contusion was established by PCI 3000 instrument. Two types of acupuncture points were selected for electroacupuncture treatment on rats. The rats were tested once a week, and the fiber remodeling was detected by magnetic resonance imaging. Transcriptome sequencing was performed on spinal scar samples. Using Python to write code, statistical analysis and bioinformatics analysis of the correlation between transcriptome sequencing data and fiber reconstruction results are carried out. Lastly, the expression of CD4 and brain-derived neurotrophic factor (BDNF) in spinal cord scar was verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Electroacupuncture exhibited a positive effect on the recovery of motor function in rats after SCI. Bioinformatics analysis found a direct interaction between CD4 and BDNF. Transcriptome sequencing and PCR results verified that electroacupuncture significantly reduced the expression of CD4, and increased significantly the expression of BDNF, simultaneously corresponding to nerve regeneration in rats with SCI. Our results showed that electroacupuncture intervention in SCI rats improves neural behavior via inhibiting the expression of CD4 and increasing the expression of BDNF.

18.
Article in English | MEDLINE | ID: mdl-34948902

ABSTRACT

Risk assessments for COVID-19 are the basis for formulating prevention and control strategies, especially at the micro scale. In a previous risk assessment model, various "densities" were regarded as the decisive driving factors of COVID-19 in the spatial dimension (population density, facility density, trajectory density, etc.). However, this conclusion ignored the fact that the "densities" were actually an abstract reflection of the "contact" frequency, which is a more essential determinant of epidemic transmission and lacked any means of corresponding quantitative correction. In this study, based on the facility density (FD), which has often been used in traditional research, a novel micro-scale COVID-19 risk predictor, facility attractiveness (FA, which has a better ability to reflect "contact" frequency), was proposed for improving the gravity model in combination with the differences in regional population density and mobility levels of an age-hierarchical population. An empirical analysis based on spatiotemporal modeling was carried out using geographically and temporally weighted regression (GTWR) in the Qingdao metropolitan area during the first wave of the pandemic. The spatiotemporally nonstationary relationships between facility density (attractiveness) and micro-risk of COVID-19 were revealed in the modeling results. The new predictors showed that residential areas and health-care facilities had more reasonable impacts than traditional "densities". Compared with the model constructed using FDs (0.5159), the global prediction ability (adjusted R2) of the FA model (0.5694) was increased by 10.4%. The improvement in the local-scale prediction ability was more significant, especially in high-risk areas (rate: 107.2%) and densely populated areas (rate in Shinan District: 64.4%; rate in Shibei District: 57.8%) during the outset period. It was proven that the optimized predictors were more suitable for use in spatiotemporal infection risk modeling in the initial stage of regional epidemics than traditional predictors. These findings can provide methodological references and model-optimized ideas for future micro-scale spatiotemporal infection modeling.


Subject(s)
COVID-19 , Empirical Research , Humans , Population Density , SARS-CoV-2 , Spatial Regression
19.
BMC Plant Biol ; 21(1): 546, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34800972

ABSTRACT

BACKGROUND: NAC (NAM, ATAF and CUC) transcription factors (TFs) play vital roles in plant development and abiotic stress tolerance. Salt stress is one of the most limiting factors for rice growth and production. However, the mechanism underlying salt tolerance in rice is still poorly understood. RESULTS: In this study, we functionally characterized a rice NAC TF OsNAC3 for its involvement in ABA response and salt tolerance. ABA and NaCl treatment induced OsNAC3 expression in roots. Immunostaining showed that OsNAC3 was localized in all root cells. OsNAC3 knockout decreased rice plants' sensitivity to ABA but increased salt stress sensitivity, while OsNAC3 overexpression showed an opposite effect. Loss of OsNAC3 also induced Na+ accumulation in the shoots. Furthermore, qRT-PCR and transcriptomic analysis were performed to identify the key OsNAC3 regulated genes related to ABA response and salt tolerance, such as OsHKT1;4, OsHKT1;5, OsLEA3-1, OsPM-1, OsPP2C68, and OsRAB-21. CONCLUSIONS: This study shows that rice OsNAC3 is an important regulatory factor in ABA signal response and salt tolerance.


Subject(s)
Abscisic Acid/metabolism , Oryza/genetics , Oryza/physiology , Salt Stress/drug effects , Salt Tolerance/genetics , Transcription Factors/physiology , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype
20.
World J Gastrointest Surg ; 13(10): 1226-1234, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34754390

ABSTRACT

BACKGROUND: Nonoperative management (NOM) is a promising therapeutic modality for patients with perforated peptic ulcer (PPU). However, the risk factors for poor efficacy and adverse events of NOM are a concern. AIM: To investigate the factors predictive of poor efficacy and adverse events in patients with PPU treated by NOM. METHODS: This retrospective case-control study enrolled 272 patients who were diagnosed with PPU and initially managed nonoperatively from January 2014 to December 2018. Of these 272 patients, 50 converted to emergency surgery due to a lack of improvement (surgical group) and 222 patients were included in the NOM group. The clinical data of these patients were collected. Baseline patient characteristics and adverse outcomes were compared between the two groups. Logistic regression analysis and receiver operating characteristic curve analyses were conducted to investigate the factors predictive of poor efficacy of NOM and adverse outcomes in patients with PPU. RESULTS: Adverse outcomes were observed in 71 patients (32.0%). Multivariate analyses revealed that low serum albumin level was an independent predictor for poor efficacy of NOM and adverse outcomes in patients with PPU. CONCLUSION: Low serum albumin level may be used as an indicator to help predict the poor efficacy of NOM and adverse outcomes, and can be used for risk stratification in patients with PPU.

SELECTION OF CITATIONS
SEARCH DETAIL
...