Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Asian J Androl ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091129

ABSTRACT

The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.

2.
ACS Appl Mater Interfaces ; 16(34): 45319-45326, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39145897

ABSTRACT

The creation of synthetic materials that emulate the complexity of natural systems, such as enzymes, remains a challenge in biomimicry. Here, we present a simple yet effective strategy to introduce substrate selectivity and dynamic responsiveness into an enzyme-mimetic supramolecular material. We achieved this by anchoring γ-cyclodextrin to a fluorene-modified Lys/Cu2+ assembly, which mimics copper-dependent oxidase. The binding affinity among the components was examined using 1H NMR, isothermal titration calorimetry (ITC), and theoretical simulation. The γ-cyclodextrin acts as a host, forming a complex with the fluorenyl moiety and aromatic substrates of specific sizes. This ensures the proximity of the substrate reactive groups to the copper center, leading to size-selective enhancement of aromatic substrate oxidation, particularly favoring biphenyl substrates. Notably, α- and ß-cyclodextrins do not exhibit this effect, and the native oxidase lacks this selectivity. Additionally, the binding affinity of the aromatic substrate to the catalyst can be dynamically tuned by adding α-cyclodextrin or by irradiating with different wavelengths in the presence of competitive azo-guests, resulting in switched oxidative activities. This approach offers a new avenue for designing biomimetic materials with tailorable active site structures and catalytic properties.

3.
J Colloid Interface Sci ; 678(Pt A): 421-426, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39213994

ABSTRACT

Dynamic self-assembly has significant implications in the regulation of the enzyme activities. In this study, we present a histidine-based enzyme-mimicking catalyst, formed by the self-assembly of carefully-engineered FH-based short peptides with hemin, showcasing switchable catalytic activity of hemin due to externally induced reversible inclusion of a cucurbit[7]uril-peptide hybrid. 1H NMR, ITC and theoretical simulation are employed to examine the binding affinity between the guest and host components, and UV-vis spectra are used to investigate changes in the hemin coordination environment. The histidine segment of the short peptide can be partially shielded by the cucurbituril and released following addition of the azo compound, leading to a decrease and subsequent restoration of the histidine-hemin coordination affinity and hemin activity. The photoisomeriziable nature of the azo compound enabled the activation of FHH/hemin activity to be switched on and off by exposure to different wavelengths of light. During the operation, the Phe residue remained within the cucurbituril, allowing reversible inclusion and exposure of the histidine residues. The hemin stayed connected to FHH/cucurbit[7]uril hybrid, preventing the severe aggregation of hemin and irreversible deactivation. This work may provide insights into engineering the dynamic behaviors of the cofactor-dependent catalytic assemblies.

4.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829106

ABSTRACT

Human lifespan is considerably long, while mouse models can simulate the entire human lifespan in a relatively short period, with one year of mouse life roughly equivalent to 40 human years. Intracytoplasmic sperm injection (ICSI) is a commonly used assisted reproductive technology in clinical practice. However, given its relatively recent emergence about 30 years ago, the long-term effects of this technique on human development remain unclear. In this study, we established the ICSI combined with embryo transfer (ET) method using a mouse model. The results demonstrated that normal mouse sperm, after undergoing in vitro culture and subsequent ICSI, exhibited a fertilization rate of 89.57% and a two-cell rate of 87.38%. Following ET, the birth rate of offspring was approximately 42.50%. Furthermore, as the mice aged, fluctuations in glucose metabolism levels were observed, which may be associated with the application of the ICSI technique. These findings signify that the mouse ICSI-ET technique provides a valuable platform for evaluating the impact of sperm abnormalities on embryo development and their long-term effects on offspring health, particularly concerning glucose metabolism. This study provides important insights for further research on the potential effects of the ICSI technique on human development, emphasizing the necessity for in-depth investigation into the long-term implications of this technology.


Subject(s)
Blood Glucose , Embryo Transfer , Sperm Injections, Intracytoplasmic , Animals , Sperm Injections, Intracytoplasmic/methods , Embryo Transfer/methods , Mice , Female , Male , Blood Glucose/analysis , Blood Glucose/metabolism , Pregnancy
5.
Life (Basel) ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38398718

ABSTRACT

Light is an indispensable factor in the healthy growth of living organisms, and alterations in the photoperiod can have consequences for body homeostasis. The eyestalk is a photosensitive organ that secretes various hormones to regulate the Chinese mitten crab (Eriocheir sinensis). However, the photoperiod-dependent eyestalk patterns of gene expression that may underlie changes in body homeostasis are unknown. In this study, we investigated the molecular mechanisms involved in eyestalk transcriptomic responses in E. sinensis under different photoperiod regimes on days 2, 4, and 6. The photoperiods tested were 12, 24, and 0 h light/day. In total, we obtained 110, 958, 348 clean datasets and detected 1809 differentially expressed genes (DEGs). Genes involved in the crustacean hyperglycemic hormone superfamily and juvenile hormones were observed, which play important roles in gonadal development, growth, and immunity in E. sinensis and may also be involved in photoperiod adaptation. In addition, the MAPK signaling pathway was the only signaling pathway identified in the continuous light group but was absent in the continuous darkness group. We suggest that the MAPK pathway is highly responsive to light input during the subjective night and insensitive to light during the middle of the subjective day. These results provide insight into the molecular mechanisms underlying the effects of photoperiod on the immune regulation of E. sinensis.

6.
Nano Lett ; 24(8): 2520-2528, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359360

ABSTRACT

Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Lignin/chemistry , Copper , Oxidoreductases , Catalysis , Amino Acids
7.
Biomedicines ; 11(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37761020

ABSTRACT

The initiation of atherosclerotic plaque is characterized by endothelial cell inflammation. In light of gasdermin E's (GSDME) role in pyroptosis and inflammation, this study elucidates its function in atherosclerosis onset. Employing Gsdme- and apolipoprotein E-deficient (Gsdme-/-/ApoE-/-) and ApoE-/- mice, an atherosclerosis model was created on a Western diet (WD). In vitro examinations with human umbilical vein endothelial cells (HUVECs) included oxidized low-density lipoprotein (ox-LDL) exposure. To explore the downstream mechanisms linked to GSDME, we utilized an agonist targeting the stimulator of the interferon genes (STING) pathway. The results showed significant GSDME activation in ApoE-/- mice arterial tissues, corresponding with atherogenesis. Gsdme-/-/ApoE-/- mice displayed fewer plaques and decreased vascular inflammation. Meanwhile, GSDME's presence was confirmed in endothelial cells. GSDME inhibition reduced the endothelial inflammation induced by ox-LDL. GSDME was linked to mitochondrial damage in endothelial cells, leading to an increase in cytoplasmic double-stranded DNA (dsDNA). Notably, STING activation partially offset the effects of GSDME inhibition in both in vivo and in vitro settings. Our findings underscore the pivotal role of GSDME in endothelial cells during atherogenesis and vascular inflammation, highlighting its influence on mitochondrial damage and the STING pathway, suggesting a potential therapeutic target for vascular pathologies.

8.
RSC Adv ; 13(34): 23648-23658, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37555092

ABSTRACT

A series of bimetallic and monometallic catalysts comprising Au and Sn nanoparticles loaded on graphene oxide (GO) and reduced graphene oxide (rGO) were prepared using three distinct techniques: two-step immobilization, co-immobilization, and immobilization. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), and Inductively-coupled plasma optical emission spectroscopy (ICP-OES) were used to characterize the chemical and physical properties of prepared Au-Sn bimetallic and Au or Sn monometallic nanocatalysts. The catalytic performance of the prepared nanocatalysts was evaluated in the selective oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) using O2 as an oxidizing agent under moderate conditions. To obtain the optimal BzH yield, the experimental conditions and parameters, including the effects of the reaction time, temperature, pressure, and solvent type on BzOH oxidation, were optimized. Under optimal reaction conditions, bimetallic Au-Sn nanoparticles supported on GO (AuSn/GO-TS, 49.3%) produced a greater yield of BzH than the AuSn/rGO-TS catalysts (35.5%). The Au-Sn bimetallic catalysts were more active than the monometallic catalysts. AuSn/GO-TS and AuSn/rGO-TS prepared by the two-step immobilization method were more active than AuSn/GO-CoIM and AuSn/rGO-CoIM prepared by co-immobilization. In addition, the AuSn/GO-TS and AuSn/rGO-TS catalysts were easily separated from the mixture by centrifugation and reused at least four times without reducing the yield of BzH. These properties make Au-Sn bimetallic nanoparticles supported on GO and rGO particularly attractive for the environmentally friendly synthesis of benzaldehyde.

9.
ACS Nano ; 17(16): 15388-15400, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37526429

ABSTRACT

Tumor metastasis contributes to the low overall survival of tumor patients, while transforming growth factor-ß (TGFß) has been recognized as a prominently promoting factor in the development of tumor metastasis. Platelets reserve abundant TGFß, which will be secreted to peripheral blood after activation, and they are the dominant source of circulating TGFß. Therefore, downregulation of platelet-derived TGFß is expected to inhibit the metastasis of circulating tumor cells. Here, unfolded human serum albumin (HSA)-coated perfluorotributylamine (PFTBA) nanoparticles were constructed to display a favorable platelet delivery and an antiplatelet effect to downregulate platelet-derived TGFß in vitro and in blood plasma. PFTBA@HSA-mediated TGFß downregulation impaired epithelial-mesenchymal transition of tumor cells as well as their migration and invasion behaviors and enhanced immune surveillance of NK cells. Intravenous injection of PFTBA@HSA effectively reduced tumor metastasis on the lungs or liver to improve the survival rate of mice on multiple metastatic models, including CT26 colon cancer, B16F10 melanoma, and 4T1 breast cancer. Compared with the clinical antiplatelet drug ticagrelor, PFTBA@HSA reduced bleeding risk when displaying a favorable downregulation on platelet-derived TGFß, thereby obtaining a higher therapy benefit. Together, this study confirmed that downregulation of platelet-derived TGFß by PFTBA@HSA will be a potential approach and therapeutic candidate for the prevention of tumor metastasis.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Mice , Animals , Female , Breast Neoplasms/pathology , Transforming Growth Factor beta , Albumins , Serum Albumin, Human , Cell Line, Tumor , Neoplasm Metastasis/prevention & control
10.
Front Pharmacol ; 14: 1184588, 2023.
Article in English | MEDLINE | ID: mdl-37593179

ABSTRACT

Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE-/- mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs). In vivo studies there was plaque formation, GSDMD activation, and caspase-1 activation in aortas, which increased gradually from 6 to 18 weeks of age, and increased markedly at 14 and 18 weeks of age. ApoE-/- mice were administered Z-LLSD-FMK (200 µg/day), Z-YVAD-FMK (200 µg/day), a combination of both, or vehicle control intraperitoneally from 14 to 18 weeks of age. Treatment significantly reduced lesion formation, macrophage infiltration in lesions, protein levels of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pyroptosis-related proteins such as activated caspase-1, activated GSDMD, cleaved interleukin(IL)-1ß, and high mobility group box 1 in aortas. No overt differences in plasma lipid contents were detected. In vitro treatment with these polypeptide inhibitors dramatically decreased the percentage of propidium iodide-positive BMDMs, the release of lactate dehydrogenase and IL-1ß, and protein levels of pyroptosis-related proteins both in supernatants and cell lysates elevated by lipopolysaccharide + nigericin. Notably however, there were no significant differences in the above-mentioned results between the Z-LLSD-FMK group and the Z-YVAD-FMK group, and the combination of both did not yield enhanced effects. These findings indicate that suppression of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and lesion development in ApoE-/- mice.

11.
J Affect Disord ; 339: 486-494, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37437732

ABSTRACT

OBJECTIVE: Previous studies have revealed the frontoparietal network (FPN) plays a key role in the imaging pathophysiology of bipolar disorder (BD). However, network homogeneity (NH) in the FPN among bipolar mania (BipM), remitted bipolar disorder (rBD), and healthy controls (HCs) remains unknown. The present study aimed to explore whether NH within the FPN can be used as an imaging biomarker to differentiate BipM from rBD and to predict treatment efficacy for patients with BipM. METHODS: Sixty-six patients with BD (38 BipM and 28 rBD) and 60 HCs participated in resting-state functional magnetic resonance imaging and neuropsychological tests. Independent component analysis and NH analysis were applied to analyze the imaging data. RESULTS: Relative to HCs, BipM patients displayed increased NH in the left middle frontal gyrus (MFG), and rBD patients displayed increased NH in the right inferior parietal lobule (IPL). Compared to rBD patients, BipM patients displayed reduced NH in the right IPL. Furthermore, support vector machine results exhibited that NH values in the right IPL could distinguish BipM patients from rBD patients with 69.70 %, 57.89 %, and 91.67 % for accuracy, sensitivity, and specificity, respectively, and support vector regression results exhibited a significant association between predicted and actual symptomatic improvement based on the reduction ratio of the Young` Mania Rating Scale total scores (r = 0.466, p < 0.01). CONCLUSION: The study demonstrated distinct NH values in the FPN could serve as a valuable neuroimaging biomarker capable of differentiating patients with BipM and rBD, and NH values of the left MFG as a potential predictor of early treatment response in patients with BipM.

12.
Adv Healthc Mater ; 12(23): e2300484, 2023 09.
Article in English | MEDLINE | ID: mdl-37036385

ABSTRACT

A novel class of agents is developed based on the core engineering of open-shelled organic mixed-valence (MV) systems, which enable tunable absorption and emission across the near infrared (NIR)-I to III biowindow (700-1850 nm) by adjusting the number of central nitrogen oxidation sites and the length of the conjugated bridge. Organic mixed-valence (MV) systems are synthesized through a one-step partial chemical oxidation of starburst oligoarylamines, with varying nitrogen oxidation sites and conjugated bridge lengths, including tris(4-[diethylamino]phenyl)aminen+ (T4EPAn + ), N,N,N',N'-tetrakis(4-[diisobutylamino]phenyl)-1,4-phenylenediaminen+ (TPDAn + ), and N,N,N',N'-tetrakis(4-methoxyphenyl)benzidinen+ (TMPBn + ). The absorption wavelength of the MV systems redshifted clearly as the number of central nitrogen oxidation sites increased or the conjugated bridge length is prolonged. T4EPAn + with one central nitrogen oxidation site exhibits fluorescence emission in the range of 900-1400 nm, while TPDAn + with two central nitrogen oxidation sites demonstrate strong heat generation capabilities. Additionally, the absorption peak of TMPBn + with a biphenyl conjugated bridge reaches up to 1610 nm. Especially, these MV systems are highly stable for biological applications due to their high steric hindrance and hyperconjugation effect. These characteristics make MV systems promising candidates for constructing NIR-I/II/III emitters and photothermal agents, representing a significant advance toward developing the next generation of NIR-I to III agents.


Subject(s)
Engineering , Nitrogen , Oxidation-Reduction
13.
Neuroreport ; 34(6): 323-331, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37010493

ABSTRACT

Brain network abnormalities in emotional response exist in bipolar mania. However, few studies have been published on network degree centrality of first-episode, drug-naive bipolar mania, and healthy controls. This study aimed to assess the utility of neural activity values analyzed via degree centrality methods. Sixty-six first-episode, drug-naive patients with bipolar mania and 60 healthy controls participated in resting-state functional magnetic resonance rescanning and scale estimating. The degree centrality and receiver operating characteristic (ROC) curve methods were used for an analysis of the imaging data. Relative to healthy controls, first-episode bipolar mania patients displayed increased degree centrality values in the left middle occipital gyrus, precentral gyrus, supplementary motor area, Precuneus, and decreased degree centrality values in the left parahippocampal gyrus, right insula and superior frontal gyrus, medial. ROC results exhibited degree centrality values in the left parahippocampal gyrus that could distinguish first-episode bipolar mania patients from healthy controls with 0.8404 for AUC. Support vector machine results showed that reductions in degree centrality values in the left parahippocampal gyrus can be used to effectively differentiate between bipolar disorder patients and healthy controls with respective accuracy, sensitivity, and specificity values of 83.33%, 85.51%, and 88.41%. Increased activity in the left parahippocampal gyrus may be a distinctive neurobiological feature of first-episode, drug-naive bipolar mania. Degree centrality values in the left parahippocampal gyrus might be served as a potential neuroimaging biomarker to discriminate first-episode, drug-naive bipolar mania patients from healthy controls.


Subject(s)
Bipolar Disorder , Brain , Humans , Brain/diagnostic imaging , Bipolar Disorder/diagnostic imaging , Mania , Magnetic Resonance Imaging/methods , Occipital Lobe
14.
Chronobiol Int ; 40(5): 569-580, 2023 05.
Article in English | MEDLINE | ID: mdl-36927299

ABSTRACT

Feeding rhythms affect a range of physiological functions in crustaceans. To investigate their effect on the physiological functions of Eriocheir sinensis, herein, we analyzed the influence of different feeding times on the hepatopancreas transcriptome via high-throughput sequencing. We harvested the hepatopancreas of crabs at 12:00 on day 11 of the experiment. We weighted the crabs before and after the experiment and found that those in the 06:00 group had the highest weight gain rate. In addition, 512 differentially expressed genes (DEGs) were grouped into nine distinct clusters. Functional enrichment analysis of DEGs showed that E. sinensis metabolic and immune processes were affected by the feeding time. Furthermore, we mapped the DEGs involved in retinol metabolism and the lysosome pathway. To our knowledge, this is the first comparative transcriptomic analysis of the hepatopancreas of E. sinensis based on different feeding times, which provides multi-level information to reveal the mechanism underlying the regulation of feeding rhythms in E. sinensis.


Subject(s)
Hepatopancreas , Transcriptome , Animals , Hepatopancreas/metabolism , Circadian Rhythm/genetics , Gene Expression Profiling
15.
Sci Rep ; 13(1): 5253, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002260

ABSTRACT

MicroRNAs (miRNAs) are small endogenous non-coding RNAs. In crustaceans, miRNAs might be involved in the regulation of circadian rhythms. Many physiological functions of crustaceans including immunity and hormone secretion exhibit circadian rhythms, but it remains unclear whether specific miRNAs contribute to the alteration of crustacean physiological processes under circadian rhythms. This study investigated the mechanisms of miRNA regulation of circadian rhythms in the Chinese mitten crab (Eriocheir sinensis), one of China's most important aquaculture species. We obtained eyestalks from crab specimens at four time points (6:00; 12:00; 18:00; 24:00) during a 24-h period. We identified 725 mature miRNAs, with 23 known miRNAs differentially expressed depending on the time of day. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the putative target genes for differentially expressed miRNAs were significantly enriched in the immune response and endocrine-related pathways. Numerous putative target genes are involved in the circadian-related pathways and enriched on circadian-control genes. These results suggest that the expression of miRNAs regulates some specific physiological functions in E. sinensis under circadian cycles. We also profiled various putative target genes enriched under the circadian-related pathway. This study performed miRNA expression in the eyestalks of E. sinensis during a 24-h daily cycle, providing insights into the molecular mechanism underlying crustacean circadian rhythms and suggesting miRNAs' role in studying crustacean physiology should not be overlooked.


Subject(s)
Brachyura , MicroRNAs , Animals , MicroRNAs/metabolism , High-Throughput Nucleotide Sequencing , Brachyura/genetics , Brachyura/metabolism , Gene Expression Profiling/methods
16.
Biomater Sci ; 11(10): 3394-3413, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36847174

ABSTRACT

Achieving effective drug delivery to traverse the blood-brain barrier (BBB) and target tumor cells remains the greatest challenge for brain tumor therapy. Importantly, the overexpressed membrane receptors on the brain endothelial cells, especially transferrin receptor 1 (TfR1), which mediate their ligands/antibodies to overcome the BBB by transcytosis, have been emerging as promising targets for brain tumor therapy. By employing ligands (e.g., transferrin, H-ferritin), antibodies or targeting peptides of TfR1 or aptamers, various functional nano-formulations have been developed in the last decade. These agents showed great potential for the treatment of brain diseases due to their ideal size, high loading capacity, controlled drug release and suitable pharmacokinetics. Herein, we summarize the latest advances on TfR1-targeted nanomedicine for brain tumor therapy. Moreover, we also discuss the strategies of improving stability, targeting ability and accumulation of nano-formulations in brain tumors for better outcomes. In this review, we hope to provide inspiration for the rational design of TfR1-targeted nanomedicine against brain tumors.


Subject(s)
Brain Neoplasms , Endothelial Cells , Humans , Endothelial Cells/metabolism , Nanomedicine , Brain/metabolism , Blood-Brain Barrier/metabolism , Receptors, Transferrin , Brain Neoplasms/drug therapy , Drug Delivery Systems , Transferrin
17.
Carbohydr Polym ; 306: 120595, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746586

ABSTRACT

Waxy rice, which lacks amylose, is an important variant in rice, and its starches have been widely used. New waxy rice varieties generated via the CRISPR/Cas9 gene-editing system is described. Herein, four waxy rice starches with different physicochemical properties were successfully obtained by the CRISPR/Cas9 editing Waxy (Wx) gene. The results showed that the amylose content (AC) of wx mutant starches ranged from 0.26 to 1.78 %, and CZBwx1 starches had the best gel consistency and highest water solubility among all wx mutants. Mutations of Wxb allele produced more short-chains (degree of chain polymerization (DP) 6-11), and less medium- and long-chains (DP12-70) than that of Wxa, while the AC of Wxa allele mutants was higher than the mutations of Wxb allele. The gelatinization temperature (GT) of wxa mutant starches was higher than that of wxb mutant starches. Moreover, we found that the GT and amylopectin fine structure type of waxy rice starch did not change after Wx gene editing. Based on these findings, it is possible to produce waxy rice starch with different physicochemical properties, containing target GT and chain length distributions of amylopectin.


Subject(s)
Amylopectin , Oryza , Amylopectin/chemistry , Amylose/chemistry , Oryza/genetics , Oryza/chemistry , Temperature , Gene Editing , Starch/chemistry
18.
Adv Sci (Weinh) ; 10(9): e2206851, 2023 03.
Article in English | MEDLINE | ID: mdl-36709479

ABSTRACT

Photodynamic therapy (PDT) is a light triggered therapy by producing reactive oxygen species (ROS), but traditional PDT may suffer from the real-time illumination that reduces the compliance of treatment and cause phototoxicity. A supramolecular photoactive G-quartet based material is reported, which is self-assembled from guanosine (G) and 4-formylphenylboronic acid/1,8-diaminooctane, with incorporation of riboflavin as a photocatalyst to the G4 nanowire, for post-irradiation photodynamic antibacterial therapy. The G4-materials, which exhibit hydrogel-like properties, provide a scaffold for loading riboflavin, and the reductant guanosine for the riboflavin for phototriggered production of the therapeutic H2 O2 . The photocatalytic activity shows great tolerance against room temperature storage and heating/cooling treatments. The riboflavin-loaded G4 hydrogels, after photo-irradiation, are capable of killing gram-positive bacteria (e.g., Staphylococcus aureus), gram-negative bacteria (e.g., Escherichia coli), and multidrug resistant bacteria (methicillin-resistant Staphylococcus aureus) with sterilization ratio over 99.999%. The post-irradiated hydrogels also exhibit great antibacterial activity in the infected wound of the rats, revealing the potential of this novel concept in the light therapy.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Wound Infection , Rats , Animals , Escherichia coli , Riboflavin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Wound Infection/drug therapy , Hydrogels/therapeutic use
19.
Fish Shellfish Immunol ; 132: 108482, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36503058

ABSTRACT

Photoperiod plays an important role in the growth, development, and metabolism of crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. The hepatopancreas is an important source of innate immune molecules; however, hepatopancreatic patterns of gene expression depending on the photoperiod-which may underlie changes in immune mechanisms-remain unknown. To study the molecular basis of immune regulation in the Chinese mitten crab (Eriocheir sinensis) under different light conditions, a new generation of high-throughput Illumina sequencing technology was used, and functional genes associated with immune function in the hepatopancreas of this crab were explored via assembly of high-quality sequences, gene annotation, and classification. A total of 383,899,798 clean reads from the hepatopancreas of the normal group (12 h/12 h L:D), 387,936,676 clean reads from the continuous light group (24 h/0 h L:D), and 384,872,734 clean reads from the continuous darkness group (0 h/24 h L:D) were obtained. Compared with the normal group, 141, 152, 60, 87, 90, and 101 differentially expressed genes were identified in the groups exposed to continuous light for 2 days, continuous darkness for 2 days, continuous light for 4 days, continuous darkness for 4 days, continuous light for 6 days, and continuous darkness for 6 days, respectively. The results of this study revealed that under continuous light and dark conditions, the crabs were most affected by light on day 2, but the interference gradually decreased with time. We suggest that long-term light or dark treatment makes crabs adaptable to fluctuations in the photoperiod. The expression of genes associated with immune response patterns was found to change during different photoperiods. Prophenoloxidase (proPO) and serine proteinase (kazal-type serine proteinase inhibitor 1 and serine proteinase inhibitor-3) in the proPO-activating system were significantly upregulated in the 2-day continuous light group. Glutathione peroxidase 3 was significantly downregulated under continuous light exposure, while cyclooxygenase was upregulated in the continuous light and dark environments. These results provide insights into the molecular mechanism underlying the effects of the photoperiod on immune regulation and the physiological activity of E. sinensis.


Subject(s)
Brachyura , Photoperiod , Animals , Hepatopancreas , Molecular Sequence Annotation , Immunity, Innate , Brachyura/genetics
20.
Sci Rep ; 12(1): 22206, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564429

ABSTRACT

Feeding time is an important factor affecting the physiological activity and feeding rhythm of crustaceans. However, little is known about the factors and mechanisms contributing to variations in feeding time in aquatic species or their impacts. Moreover, the gut microbiome largely affects host physiology and is associated with diet. To investigate the effects of different feeding times on the composition of intestinal bacterial communities, high-throughput 16S rRNA sequencing was used to monitor the gut bacteria of the Chinese mitten crab Eriocheir sinensis over a 10-day period under different feeding times: 06:00 h, 12:00 h, 18:00 h, and 24:00 h. Weight gain of the day-fed groups was significantly higher than that of the night-fed groups. Two probiotics, Akkermansia muciniphila and Faecalibacterium prausnitzii, were detected in the intestines of crabs in the 12:00 group. In addition, the diversity and richness of the flora in the 12:00 group were slightly higher than those in the other treatment groups. These results collectively indicate that different feeding times change the intestinal flora composition of Chinese mitten crabs, and further identified specific feeding times associated with a more significant weight gain effect. Our findings provide important insights into improving farming strategies for Chinese mitten crabs.


Subject(s)
Brachyura , Feeding Behavior , Animals , Bacteria/genetics , Brachyura/genetics , Diet , RNA, Ribosomal, 16S/genetics , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL