Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Schizophrenia (Heidelb) ; 10(1): 52, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760414

ABSTRACT

The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.

2.
Article in English | MEDLINE | ID: mdl-38780894

ABSTRACT

BACKGROUND: Although physician-pharmacist collaborative clinics for diabetes management have been shown to be effective and cost-effective worldwide, there is limited understanding of the factors that influence their sustainable implementation. This study aims to identify the associated factors and provide sustainability strategy to better implement physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers in China. METHODS: A sample of 43 participants were participated in face-to-face, in-depth, semi-structured interviews. Consolidated Framework for Implementation Research was used to identify facilitators and barriers to implementing physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers, and to explore discriminating factors between low and high implementation units. A sustainable strategy repository based on dynamic sustainability framework was established to inform further implementation. RESULTS: This study demonstrated that clear recognition of intervention benefits, urgent needs of patients, adaptive and tailored plan, highly collaborative teamwork and leadership support were the major facilitators, while the major barriers included process complexity, large number and poor health literacy of patients in primary areas, inappropriate staffing arrangements, weak financial incentives and inadequate staff competencies. Six constructs were identified to distinguish between high and low implementation units. Sixteen strategies were developed to foster the implementation of physician-pharmacist collaborative clinics, targeting Intervention, Practice setting, and Ecological system. CONCLUSION: This qualitative study demonstrated facilitators and barriers to implementing physician-pharmacist collaborative clinics for diabetes management in primary healthcare centers and developed theory-based strategies for further promotion, which has the potential to improve the management of diabetes and other chronic diseases in under-resourced areas.

3.
Noncoding RNA Res ; 9(3): 744-758, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38577019

ABSTRACT

Trastuzumab-induced cardiotoxicity (TIC) is a common and serious disease with abnormal cardiac function. Accumulating evidence has indicated certain non-coding RNAs (ncRNAs), functioning as competing endogenous RNAs (ceRNAs), impacting the progression of cardiovascular diseases. Nonetheless, the specific involvement of ncRNA-mediated ceRNA regulatory mechanisms in TIC remains elusive. The present research aims to comprehensively investigate changes in the expressions of all ncRNA using whole-transcriptome RNA sequencing. The sequencing analysis unveiled significant dysregulation, identifying a total of 43 circular RNAs (circRNAs), 270 long noncoding RNAs (lncRNAs), 12 microRNAs (miRNAs), and 4131 mRNAs in trastuzumab-treated mouse hearts. Subsequently, circRNA-based ceRNA networks consisting of 82 nodes and 91 edges, as well as lncRNA-based ceRNA networks comprising 111 nodes and 112 edges, were constructed. Using the CytoNCA plugin, pivotal genes-miR-31-5p and miR-644-5p-were identified within these networks, exhibiting potential relevance in TIC treatment. Additionally, KEGG and GO analyses were conducted to explore the functional pathways associated with the genes within the ceRNA networks. The outcomes of the predicted ceRNAs and bioinformatics analyses elucidated the plausible involvement of ncRNAs in TIC pathogenesis. This insight contributes to a better understanding of underlying mechanisms and aids in identifying promising targets for effective prevention and treatment strategies.

4.
Front Pharmacol ; 15: 1349043, 2024.
Article in English | MEDLINE | ID: mdl-38628642

ABSTRACT

Background: Valproic acid (VPA) stands as one of the most frequently prescribed medications in children with newly diagnosed epilepsy. Despite its infrequent adverse effects within therapeutic range, prolonged VPA usage may result in metabolic disturbances including insulin resistance and dyslipidemia. These metabolic dysregulations in childhood are notably linked to heightened cardiovascular risk in adulthood. Therefore, identification and effective management of dyslipidemia in children hold paramount significance. Methods: In this retrospective cohort study, we explored the potential associations between physiological factors, medication situation, biochemical parameters before the first dose of VPA (baseline) and VPA-induced dyslipidemia (VID) in pediatric patients. Binary logistic regression was utilized to construct a predictive model for blood lipid disorders, aiming to identify independent pre-treatment risk factors. Additionally, The Receiver Operating Characteristic (ROC) curve was used to evaluate the performance of the model. Results: Through binary logistic regression analysis, we identified for the first time that direct bilirubin (DBIL) (odds ratios (OR) = 0.511, p = 0.01), duration of medication (OR = 0.357, p = 0.009), serum albumin (ALB) (OR = 0.913, p = 0.043), BMI (OR = 1.140, p = 0.045), and aspartate aminotransferase (AST) (OR = 1.038, p = 0.026) at baseline were independent risk factors for VID in pediatric patients with epilepsy. Notably, the predictive ability of DBIL (AUC = 0.690, p < 0.0001) surpassed that of other individual factors. Furthermore, when combined into a predictive model, incorporating all five risk factors, the predictive capacity significantly increased (AUC = 0.777, p < 0.0001), enabling the forecast of 77.7% of dyslipidemia events. Conclusion: DBIL emerges as the most potent predictor, and in conjunction with the other four factors, can effectively forecast VID in pediatric patients with epilepsy. This insight can guide the formulation of individualized strategies for the clinical administration of VPA in children.

5.
Article in English | MEDLINE | ID: mdl-38400848

ABSTRACT

PURPOSE: Doxorubicin (Dox) is clinically limited due to its dose-dependent cardiotoxicity. Andrographolide (Andro) has been confirmed to exert cardiovascular protective activities. This study aimed to investigate protective effects of Andro in Dox-induced cardiotoxicity (DIC). METHODS: The cardiotoxicity models were induced by Dox in vitro and in vivo. The viability and apoptosis of H9c2 cells and the myocardial function of c57BL/6 mice were accessed with and without Andro pretreatment. Network pharmacology and RNA-seq were employed to explore the mechanism of Andro in DIC. The protein levels of Bax, Bcl2, NLRP3, Caspase-1 p20, and IL-1ß were qualified as well. RESULTS: In vitro, Dox facilitated the downregulation of cell viability and upregulation of cell apoptosis, after Andro pretreatment, the above symptoms were remarkably reversed. In vivo, Andro could alleviate Dox-induced cardiac dysfunction and apoptosis, manifesting elevation of LVPWs, LVPWd, EF% and FS%, suppression of CK, CK-MB, c-Tnl and LDH, and inhibition of TUNEL-positive cells. Using network pharmacology, we collected and visualized 108 co-targets of Andro and DIC, which were associated with apoptosis, PI3K-AKT signaling pathway, and others. RNA-seq identified 276 differentially expressed genes, which were enriched in response to oxidative stress, protein phosphorylation, and others. Both network pharmacology and RNA-seq analysis identified Tap1 and Timp1 as key targets of Andro in DIC. RT-QPCR validation confirmed that the mRNA levels of Tap1 and Timp1 were consistent with the sequenced results. Moreover, the high expression of NLRP3, Caspase-1 p20, and IL-1ß in the Dox group was reduced by Andro. CONCLUSIONS: Andro could attenuate DIC through suppression of Tap1 and Timp1 and inhibition of NLRP3 inflammasome activation, serving as a promising cardioprotective drug.

6.
Food Chem Toxicol ; 185: 114490, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325638

ABSTRACT

Although olanzapine (OLZ) remains one of the most efficacious antipsychotic medications for the treatment of schizophrenia, there are significant tolerability issues related to its metabolic profile such as weight gain and dyslipidemia. Our previous studies have demonstrated that progesterone receptor membrane component 1 (PGRMC1) plays a key role in antipsychotic-induced metabolic side effects. Prebiotics showed positive effects on lipid metabolism, however, limited studies focused on their therapeutic potential and mechanisms in treating antipsychotic-induced lipid metabolic disorders. Herein, our study aims to explore the effects of the prebiotic B-GOS on lipid disturbances induced by OLZ and elucidate its underlying mechanisms via PGRMC1 pathway. In an 8-week study, long-term intraperitoneal administration of OLZ at a dosage of 8 mg/kg/day in mice induced lipid disturbances as manifested by significantly increased lipid indexes in plasma and liver. B-GOS effectively alleviated the OLZ-induced abnormal lipid metabolism by enhancing the diversity of the gut microbiota, with a 100-fold increase in Akkermansia abundance and a 10-fold decrease in Faecalibaculum abundance. Followed by the B-GOS related changes of gut microbiota, OLZ-induced substantial hepatic inhibition of PGRMC1, and associated protein factors of Wnt signaling pathway (Wnt3a, ß-catenin, and PPAR-γ) were reversed without affecting plasma levels of short-chain fatty acids. Taken together, prebiotics like B-GOS enriching Akkermansia offer a promising novel approach to alleviate antipsychotic-induced lipid disturbances by modulating the PGRMC1-Wnt signaling pathway.


Subject(s)
Antipsychotic Agents , Mice , Animals , Olanzapine/adverse effects , Antipsychotic Agents/toxicity , Wnt Signaling Pathway , Akkermansia , Up-Regulation , Lipids , Membrane Proteins , Receptors, Progesterone
7.
Front Pharmacol ; 15: 1275814, 2024.
Article in English | MEDLINE | ID: mdl-38333008

ABSTRACT

Objective: This study aimed to investigate the potential association between biological disease-modifying antirheumatic drugs (bDMARDs) and pericarditis and uncover relevant clinical characteristics in ankylosing spondylitis (AS). Methods: Reports of pericarditis recorded in the FDA Adverse Event Reporting System (FAERS) (January 2004-December 2022) were identified through the preferred term "pericarditis." Demographic and clinical characteristics were described, and disproportionality signals were assessed through the reporting odds ratio (ROR) and information component (IC). A significant signal was detected if the lower bound of IC (IC025) was more than zero. Results: We found 1,874 reports of pericarditis with bDMARDs (11.3% of cases with fatal outcomes). Adalimumab (IC025 3.24), infliximab (IC025 4.90), golimumab (IC025 5.40), certolizumab (IC025 5.43), etanercept (IC025 3.24), secukinumab (IC025 3.97), and ustekinumab (IC025 7.61) exhibit significant disproportionality signals compared to other medications in the FAERS database. After excluding pre-existing diseases and co-treated drugs that may increase the susceptibility of pericarditis, the disproportionality signal associated with infliximab, certolizumab, etanercept, secukinumab, and ustekinumab remained strong. Pericarditis cases associated with all bDMARDs were predominantly recorded in women aged 25-65 years. Conclusion: More reports of pericarditis were detected with AS patients on bDMARDs than with other drugs in the overall database. Further studies are warranted to investigate the underlying mechanisms and identify patient-related susceptibility factors, thus supporting timely diagnosis and safe(r) prescribing of bDMARDs.

8.
Clin Pharmacol Drug Dev ; 13(1): 14-20, 2024 01.
Article in English | MEDLINE | ID: mdl-37986709

ABSTRACT

Zidovudine/lamivudine tablets are nucleoside reverse transcriptase inhibitors that are used to treat human immunodeficiency virus. The objective of this study was to investigate the bioequivalence and pharmacokinetics (PKs) of test and reference preparations of zidovudine/lamivudine tablets in healthy Chinese subjects. We designed a randomized, open, single-center, single-dose, 2-crossover experiment with a 7-day washout period involving 20 healthy subjects. The subjects were given a single dose of the test or reference preparation after fasting overnight for 10 hours. Blood samples were subsequently collected at scheduled time points from 0 hour (preadministration) up to 24 hours postadministration. The plasma concentrations of zidovudine and lamivudine were determined by a validated ultra-performance liquid chromatography-tandem mass spectrometry method. Analysis of variance (ANOVA) was used to compare differences in the mean values of key PK parameters between the 2 preparations. Bioequivalence was evaluated by 2 one-sided t-tests and 90% confidence intervals (CIs) of the geometric mean ratio (GMR). In total, 19 of the 20 subjects completed the trial. Based on the analysis of PK parameters, the relative bioavailability of zidovudine and lamivudine was 101.1% ± 2.0% and 100.3% ± 1.5%, respectively. ANOVA found no significant difference in primary PK parameters when compared between the 2 formulations, and the 90% CIs of the GMR of the 2 formulations were within the bioequivalence margins of 80%-125%. No serious adverse events occurred. Thus, we confirmed that the 2 preparations were bioequivalent in healthy Chinese volunteers. Our analysis demonstrated that both products showed good tolerance in all subjects.


Subject(s)
Lamivudine , Zidovudine , Humans , China , Healthy Volunteers , Lamivudine/pharmacokinetics , Tablets , Therapeutic Equivalency , Zidovudine/pharmacokinetics
9.
Environ Res ; 245: 117995, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38145731

ABSTRACT

BACKGROUND: The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. METHODS: We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. RESULT: Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P < 0.001). Climate types influenced these rates, with significant variability observed across different climates (P < 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. CONCLUSION: The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance.


Subject(s)
Escherichia coli Proteins , Quinolones , Escherichia coli , China/epidemiology , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology
10.
Front Pharmacol ; 14: 1292088, 2023.
Article in English | MEDLINE | ID: mdl-38143497

ABSTRACT

Doxorubicin is a widely used anticancer drug in clinical practice for the treatment of various human tumors. However, its administration is associated with cardiotoxicity. Administration of doxorubicin with low side effects for cancer treatment and prevention are, accordingly, urgently required. The human body harbors various endogenous metal ions that exert substantial influences. Consequently, extensive research has been conducted over several decades to investigate the potential of targeting endogenous metal ions to mitigate doxorubicin's side effects and impede tumor progression. In recent years, there has been a growing body of research indicating the potential efficacy of metal ion-associated therapeutic strategies in inhibiting doxorubicin-induced cardiotoxicity (DIC). These strategies offer a combination of favorable safety profiles and potential clinical utility. Alterations in intracellular levels of metal ions have been found to either facilitate or mitigate the development of DIC. For instance, ferroptosis, a cellular death mechanism, and metal ions such as copper, zinc, and calcium have been identified as significant contributors to DIC. This understanding can contribute to advancements in cancer treatment and provide valuable insights for mitigating the cardiotoxic effects of other therapeutic drugs. Furthermore, potential therapeutic strategies have been investigated to alleviate DIC in clinical settings. The ultimate goal is to improve the efficacy and safety of Dox and offer valuable insights for future research in this field.

11.
Front Bioeng Biotechnol ; 11: 1322514, 2023.
Article in English | MEDLINE | ID: mdl-38155924

ABSTRACT

Liver disease has emerged as a significant worldwide health challenge due to its diverse causative factors and therapeutic complexities. The majority of liver diseases ultimately progress to end-stage liver disease and liver transplantation remains the only effective therapy with the limitations of donor organ shortage, lifelong immunosuppressants and expensive treatment costs. Numerous pre-clinical studies have revealed that extracellular vesicles released by mesenchymal stem cells (MSC-EV) exhibited considerable potential in treating liver diseases. Although natural MSC-EV has many potential advantages, some characteristics of MSC-EV, such as heterogeneity, uneven therapeutic effect, and rapid clearance in vivo constrain its clinical translation. In recent years, researchers have explored plenty of ways to improve the therapeutic efficacy and rotation rate of MSC-EV in the treatment of liver disease. In this review, we summarized current strategies to enhance the therapeutic potency of MSC-EV, mainly including optimization culture conditions in MSC or modifications of MSC-EV, aiming to facilitate the development and clinical application of MSC-EV in treating liver disease.

12.
Article in English | MEDLINE | ID: mdl-37943365

ABSTRACT

PURPOSE: Trastuzumab is a landmark agent in the treatment of human epidermal growth factor receptor-2(HER2)-positive breast cancer. Nevertheless, trastuzumab also comes with unexpected cardiac side effects. Hyperoside is a natural product that serves beneficial roles in cardiovascular disease. This study aimed to explore the effect and mechanism of hyperoside in trastuzumab-induced cardiotoxicity. METHODS: A female C57BL/6 mice cardiotoxicity model was established via intraperitoneally injecting with trastuzumab (10 mg/kg/day, once every other day, cumulative dosage to 40 mg/kg) with or without hyperoside (15 or 30 mg/kg/day) administration. In vitro, the H9c2 cells were exposed to 1 µM trastuzumab with or without hyperoside (100 or 200 µM) administration. Cardiac function was evaluated by echocardiographic, myocardial enzymes levels, and pathological section examinations. TUNEL staining and Annexin V-FITC/ propidium iodide flow cytometry were used to analyze the cardiomyocyte apoptosis. RESULTS: Compared to the control group, the LVEF, LVFS was decreased and the concentrations of cTnT, CK, CK-MB and LDH in mice were significantly increased after treatment with trastuzumab. Collagen deposition and cardiomyocyte hypertrophy were observed in the myocardium of the trastuzumab group. However, these changes were all reversed by different doses of hyperoside. In addition, hyperoside attenuated trastuzumab-induced myocardium apoptosis and H9c2 cells apoptosis through inhibiting the expressions of cleaved caspase-3 and Bax. Trastuzumab abolished the PI3K/Akt signaling pathway in mice and H9c2 cells, while co-treatment of hyperoside effectively increased the ratio of p-Akt/Akt. CONCLUSION: Hyperoside inhibited trastuzumab-induced cardiotoxicity through activating the PI3K/Akt signaling pathway. Hyperoside may be a promising therapeutic approach to trastuzumab-induced cardiotoxicity.

13.
Clin Drug Investig ; 43(10): 773-783, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37755660

ABSTRACT

BACKGROUND AND OBJECTIVE: Although tumor lysis syndrome was reported with obinutuzumab and rituximab, the association with CD20 monoclonal antibodies for chronic lymphocytic leukemia is unclear. METHODS: A disproportionality analysis was conducted to investigate the link between CD20 monoclonal antibodies and tumor lysis syndrome by accounting for known confounders and comparing with other anticancer drugs, using data from the US Food and Drug Administration Adverse Event Reporting System. Reporting odds ratios and the information component were calculated as disproportionality measures. A stepwise sensitivity analysis was conducted to test the robustness of disproportionality signals. Bradford Hill criteria were adopted to globally assess the potential causal relationship. RESULTS: From 2004 to 2022, 197, 368, 41, and 14 tumor lysis syndrome reports were detected for obinutuzumab, rituximab, ofatumumab, and alemtuzumab (CD52 monoclonal antibody), respectively. Disproportionality signals were found for the above four monoclonal antibodies when compared with other anticancer drugs. Sensitivity analyses confirmed robust disproportionality signals for obinutuzumab, rituximab, and ofatumumab. The median onset time was 4.5, 1.5, and 2.5 days for rituximab, obinutuzumab, and ofatumumab, respectively. A potential causal relationship was fulfilled by assessing Bradford Hill criteria. CONCLUSIONS: This pharmacovigilance study on the FDA Adverse Event Reporting System detected a plausible association between CD20 monoclonal antibodies (but not CD52) and tumor lysis syndrome by assessing the adapted Bradford Hill criteria. Urgent clarification of drug- and patient-related risk factors is needed through large comparative population-based studies.

14.
Front Pharmacol ; 14: 1253770, 2023.
Article in English | MEDLINE | ID: mdl-37670939

ABSTRACT

Background: Time and space constraints have often hindered the provision of optimal pharmaceutical care, limiting medication therapy management. Social media tools have gained significant popularity in the field of pharmaceutical care. This study aimed to develop a WeChat-based intelligent medication manager platform that facilitates online pharmaceutical care and encourages self-management. Methods: We developed a WeChat-based Internet pharmacy service platform called Xiang Medicine Guidance (XMG). Through the analysis of surveys and user access data, we evaluated the demand and utilization of the XMG platform and assessed patients' satisfaction with its services. Patients' adherence before and after the XMG platform intervention was also investigated. Results: The XMG platform was launched in November 2022, offering medication guidance, reminders, and consultation services through the WeChat mini-program. By the end of April 2023, the platform had attracted 141.2 thousand users, accumulating 571.0 thousand visits. Moreover, 1,183 clients sought online medication consultations during this period. Six months after the launch of XMG, an impressive 91.02% of users expressed their satisfaction with the platform. The medication reminders and consultations provided by XMG significantly contributed to medication adherence, with 56.02% of users categorized as having good adherence, better than the previous 47.26%. Conclusion: Through its services and features, XMG empowers patients to better manage their medications, seek professional advice, and adhere to their prescribed treatment plans. XMG has the potential to positively impact public health on a broader scale.

15.
Phytomedicine ; 120: 155046, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37659297

ABSTRACT

BACKGROUND: Doxorubicin (Dox), a chemotherapeutic agent known for its efficacy, has been associated with the development of severe cardiotoxicity, commonly referred to as doxorubicin-induced cardiotoxicity (DIC). The role and mechanism of action of phloretin (Phl) in cardiovascular diseases are well-established; however, its specific function and underlying mechanism in the context of DIC have yet to be fully elucidated. OBJECTIVE: This research aimed to uncover the protective effect of Phl against DIC in vivo and in vitro, while also providing a comprehensive understanding of the underlying mechanisms involved. METHODS: DIC cell and murine models were established. The action targets and mechanism of Phl against DIC were comprehensively examined by systematic network pharmacology, molecular docking, transcriptomics technologies, transcription factor (TF) prediction, and experimental validation. RESULTS: Phl relieved Dox-induced cell apoptosis in vitro and in vivo. Through network pharmacology analysis, a total of 554 co-targeted genes of Phl and Dox were identified. Enrichment analysis revealed several key pathways including the PI3K-Akt signaling pathway, Apoptosis, and the IL-17 signaling pathway. Protein-protein interaction (PPI) analysis identified 24 core co-targeted genes, such as Fos, Jun, Hif1a, which were predicted to bind well to Phl based on molecular docking. Transcriptomics analysis was performed to identify the top 20 differentially expressed genes (DEGs), and 202 transcription factors (TFs) were predicted for these DEGs. Among these TFs, 10 TFs (Fos, Jun, Hif1a, etc.) are also the co-targeted genes, and 3 TFs (Fos, Jun, Hif1a) are also the core co-targeted genes. Further experiments validated the finding that Phl reduced the elevated levels of Hif3a (one of the top 20 DEGs) and Fos (one of Hif3a's predicted TFs) induced by Dox. Moreover, the interaction between Fos protein and the Hif3a promoter was confirmed through luciferase reporter assays. CONCLUSION: Phl actively targeted and down-regulated the Fos protein to inhibit its binding to the promoter region of Hif3a, thereby providing protection against DIC.


Subject(s)
Cardiotoxicity , Phloretin , Animals , Mice , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Doxorubicin/adverse effects , Repressor Proteins , Apoptosis Regulatory Proteins
16.
Neuropsychobiology ; 82(6): 346-358, 2023.
Article in English | MEDLINE | ID: mdl-37673050

ABSTRACT

INTRODUCTION: Progesterone receptor component 1 (PGRMC1) has been identified as a potential target in atypical antipsychotic drug-induced metabolic disturbances as well as neuroprotection in the central nervous system. In our study, we aimed to figure out the essential role of PGRMC1 signaling pathway underlying clozapine-induced cognitive impairment. METHODS: In male SD rats, we utilized recombinant adeno-associated viruses (BBB 2.0) and the specific inhibitor of PGRMC1 (AG205) to regulate the expression of PGRMC1 in the brain, with a special focus on the hippocampus. Treatments of clozapine and AG205 were conducted for 28 days, and subsequent behavioral tests including modified elevated plus maze and Morris water maze were conducted to evaluate the cognitive performance. Hippocampal protein expressions were measured by Western blotting. RESULTS: Our study showed that long-term clozapine administration led to cognitive impairment as confirmed by behavioral tests as well as histopathological examination in the hippocampus. Clozapine inhibited neural survival through the PGRMC1/EGFR/GLP1R-PI3K-Akt signaling pathway, leading to a decrease in the downstream survival factor, brain-derived neurotrophic factor (BDNF), and simultaneously promoted neural apoptosis in the rat hippocampus. Intriguingly, by targeting at the hippocampal PGRMC1, we found that inhibiting PGRMC1 mimics, while its upregulation notably mitigates clozapine-induced cognitive impairment through PGRMC1 and its downstream signaling pathways. CONCLUSION: PGRMC1-overexpression could protect hippocampus-dependent cognitive impairment induced by clozapine. This effect appears to arise, in part, from the upregulated expression of PGRMC1/EGFR/GLP1R and the activation of downstream PI3K-Akt-BDNF and caspase-3 signaling pathways.


Subject(s)
Clozapine , Cognitive Dysfunction , Rats , Male , Animals , Clozapine/adverse effects , Brain-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Rats, Sprague-Dawley , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Signal Transduction , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Hippocampus , ErbB Receptors/metabolism , ErbB Receptors/pharmacology
17.
Schizophr Res ; 260: 12-22, 2023 10.
Article in English | MEDLINE | ID: mdl-37543007

ABSTRACT

Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.


Subject(s)
RNA, Long Noncoding , Schizophrenia , Animals , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/metabolism , Biomarkers/metabolism , Signal Transduction/genetics , Genetic Variation , Mammals/genetics , Mammals/metabolism
18.
Nat Prod Res ; : 1-7, 2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37574795

ABSTRACT

Aimed to explore the mechanisms and targets of Diwu Yanggan Capsule (DWYG), a traditional Chinese medicine in liver regeneration, we used the TCMSP to obtain the active ingredients and targets of DWYG and the GEO database to obtain the DEGs related to liver regeneration. We also searched for liver regeneration-related genes in disease databases and integrated them with the herbal and GEO data to screen for potential targets of DWYG in liver regeneration. Enrichment analysis using R language and molecular docking of the key targets and active ingredients were constructed. We found 73 potential targets of DWYG in liver regeneration and revealed that DWYG may act through pathways such as MAPK, TNF, and IL-17. We also found that quercetin was a major component of DWYG with low binding energy to three key targets. Our results suggest that DWYG can facilitate liver regeneration and quercetin may be its core ingredient.

19.
Biochem Pharmacol ; 214: 115662, 2023 08.
Article in English | MEDLINE | ID: mdl-37331637

ABSTRACT

Trastuzumab (Tra), the first humanized monoclonal antibody that targets human epidermal growth factor receptor 2 (HER2), is commonly used alongside doxorubicin (Dox) as a combination therapy in HER2-positive breast cancer. Unfortunately, this leads to a more severe cardiotoxicity than Dox alone. NLRP3 inflammasome is known to be involved in Dox-induced cardiotoxicity and multiple cardiovascular diseases. However, whether the NLRP3 inflammasome contributes to the synergistic cardiotoxicity of Tra has not been elucidated. In this study, primary neonatal rat cardiomyocyte (PNRC), H9c2 cells and mice were treated with Dox (15 mg/kg in mice or 1 µM in cardiomyocyte) or Tra (15.75 mg/kg in mice or 1 µM in cardiomyocyte), or Dox combined Tra as cardiotoxicity models to investigate this question. Our results demonstrated that Tra significantly potentiated Dox-induced cardiomyocyte apoptosis and cardiac dysfunction. These were accompanied by the increased expressions of NLRP3 inflammasome components (NLRP3, ASC and cleaved caspase-1), the secretion of IL-ß and the pronounced production of ROS. Inhibiting the activation of NLRP3 inflammasome by NLRP3 silencing significantly reduced cell apoptosis and ROS production in Dox combined Tra-treated PNRC. Compared with the wild type mice, the systolic dysfunction, myocardial hypertrophy, cardiomyocyte apoptosis and oxidative stress induced by Dox combined Tra were alleviated in NLRP3 gene knockout mice. Our data revealed that the co-activation of NLRP3 inflammasome by Tra promoted the inflammation, oxidative stress and cardiomyocytes apoptosis in Dox combined Tra-induced cardiotoxicity model both in vivo and in vitro. Our results suggest that NLRP3 inhibition is a promising cardioprotective strategy in Dox/Tra combination therapy.


Subject(s)
Cardiotoxicity , Inflammasomes , Rats , Mice , Humans , Animals , Inflammasomes/metabolism , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Trastuzumab , Reactive Oxygen Species/metabolism , Doxorubicin/toxicity , Doxorubicin/metabolism , Myocytes, Cardiac/metabolism , Apoptosis , Oxidative Stress
20.
Phytother Res ; 37(9): 4196-4209, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37246409

ABSTRACT

Clinical application of doxorubicin (Dox) in cancer chemotherapy is limited by its cardiotoxicity. Present study aimed to demonstrate the effect and mechanism of hyperoside in Dox-induced cardiotoxicity. C57BL/6 mice were injected with 12 mg/kg of Dox, and 1 µM Dox was exposed to primary cardiomyocytes. Cardiac function was evaluated by echocardiographic and myocardial enzyme levels. Cardiomyocyts apoptosis was analyzed by TUNEL staining and flow cytometry. Network pharmacology and molecular docking were utilized to explore potential targets of hyperoside. Protein expressions were detected by western blot and enzyme activities were determined by colorimetry. Cardiac dysfunction and cardiomyocyte apoptosis induced by Dox were attenuated by hyperoside. Mechanism of hyperoside was mainly related to "oxidative stress" pathway. Hyperoside exhibited strong binding activities with nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs, the main source of ROS in cardiomyocytes) and cyclooxygenases (COXs). Experiments proved that hyperoside suppressed the ROS generation and the elevated activities of NOXs and COXs induced by Dox. Dox also triggered the activation of NLRP3 inflammasome, which was reversed by hyperoside. Hyperoside bound to NOXs and COXs, which prevents Dox-induced cardiotoxicity by inhibiting NOXs/ROS/NLRP3 inflammasome signaling pathway. Hyperoside holds promise as a therapeutic strategy for Dox-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Inflammasomes , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Mice, Inbred C57BL , Doxorubicin/pharmacology , Signal Transduction , Myocytes, Cardiac , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...