Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Int J Gen Med ; 17: 1233-1251, 2024.
Article in English | MEDLINE | ID: mdl-38562210

ABSTRACT

Background: Breast cancer (BC) continues to pose a substantial challenge to global health, necessitating an enhanced understanding of its fundamental mechanisms. Among its various pathological classifications, breast invasive carcinoma (BRCA) is the most prevalent. The role of the transcription factor forkhead box P3 (FOXP3), associated with regulatory T cells, in BRCA's diagnosis and prognosis remains insufficiently explored, despite its recognized importance. Methods: We examined the mRNA expression profile of FOXP3 in BRCA patients, assessing its correlation with disease detection, patient survival, immune checkpoint alterations, and response to anticancer drugs. Results: Our analysis revealed significantly elevated FOXP3 mRNA levels in BRCA patients, with a 95.7% accuracy for BRCA detection based on the area under the curve. High FOXP3 mRNA levels were positively correlated with overall survival and showed significant associations with CTLA4, CD274, PDCD1, TMB, and immune cell infiltration status. Furthermore, FOXP3 mRNA expression was linked to the efficacy of anticancer drugs and the tumor inflammation signature. Discussion: These findings suggest that FOXP3 serves as a promising biomarker for BRCA, offering valuable insights into its diagnosis and prognosis. The correlation between FOXP3 expression and immune checkpoint alterations, along with its predictive value for treatment response, underscores its potential in guiding therapeutic strategies. Conclusion: FOXP3 stands out as an influential factor in BRCA, highlighting its diagnostic accuracy and prognostic value. Its association with immune responses and treatment efficacy opens new avenues for research and clinical applications, positioning FOXP3 as a vital target for further investigation in BRCA management.

2.
Chaos ; 34(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38483810

ABSTRACT

Low earth orbit (LEO) satellite constellations have emerged as a promising architecture integrated with ground networks, which can offer high-speed Internet services to global users. However, the security challenges faced by satellite networks are increasing, with the potential for a few satellite failures to trigger cascading failures and network outages. Therefore, enhancing the robustness of the network in the face of cascading failures is of utmost importance. This paper aims to explore the robustness of LEO satellite networks when encountering cascading failures and then proposes a modeling method based on virtual nodes and load capacity. In addition, considering that the ground station layout and the number of connected satellites together determine the structure of the final LEO satellite network, we here propose an improved ground station establishment method that is more suitable for the current network model. Finally, the robustness of the LEO satellite networks is deeply studied under two different attacks and cost constraints. Simulations of LEO satellite networks with different topologies show that the maximum load attacks have a destructive impact on the network, which can be mitigated by adjusting the topology and parameters to ensure normal network operation. The current model and related results provide practical insights into the protection of LEO satellite networks, which can mitigate cascading risks and enhance the robustness of LEO systems.

3.
Genes Dis ; 11(4): 101119, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523672

ABSTRACT

Diabetic kidney disease is a leading cause of end-stage renal disease, making it a global public health concern. The molecular mechanisms underlying diabetic kidney disease have not been elucidated due to its complex pathogenesis. Thus, exploring these mechanisms from new perspectives is the current focus of research concerning diabetic kidney disease. Ion channels are important proteins that maintain the physiological functions of cells and organs. Among ion channels, potassium channels stand out, because they are the most common and important channels on eukaryotic cell surfaces and function as the basis for cell excitability. Certain potassium channel abnormalities have been found to be closely related to diabetic kidney disease progression and genetic susceptibility, such as KATP, KCa, Kir, and KV. In this review, we summarized the roles of different types of potassium channels in the occurrence and development of diabetic kidney disease to discuss whether the development of DKD is due to potassium channel dysfunction and present new ideas for the treatment of DKD.

4.
Small ; 19(50): e2304406, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37616512

ABSTRACT

Defect-rich carbon materials are considered as one of the most promising anodes for potassium-ion batteries due to their enormous adsorption sites of K+ , while the realization of both rate capability and cycling stability is still greatly limited by unstable electrochemical kinetics and inevitable structure degradation. Herein, an Fe3+ -induced hydrothermal-pyrolysis strategy is reported to construct well-tailored hybrid carbon nanotubes network architecture (PP-CNT), in which the short-range graphitic nanodomains are in-situ localized in the pea pod shape hypocrystalline carbon. The N,O codoped hypocrystalline carbon region contributes to abundant defect sites for potassium ion storage, ensuring high reversible capacity. Meanwhile, the short-range graphitic nanodomains with expanded interlayer spacing facilitate stable K+ migration and fast electron transfer. Furthermore, the finite element analysis confirms the volume expansion caused by K+ intercalation can be availably buffered due to the multidirection stress release effect of the unique porous pea pod shape, endowing carbon nanotubes with superior structural integrity. Consequently, the PP-CNT anode exhibits superior potassium-storage performance, including high reversible capacity, exceptional rate capability, and ultralong cycling stability. This work opens a new avenue for the fabrication of advanced carbon materials for achieving durable and fast potassium storage.

5.
Cell Signal ; 109: 110792, 2023 09.
Article in English | MEDLINE | ID: mdl-37406787

ABSTRACT

OBJECTIVES: miR-142-3P is a tumor suppressor in various malignant cancers. However, the function of miR-142-3P in papillary thyroid carcinoma (PTC) remains to be elucidated. The aim of this study was to explore the function and mechanism of miR-142-3P in PTC. METHODS: Real Time Quantitative PCR (RT-qPCR) was used to assess the expression of miR-142-3P and Fibronectin 1 (FN1) in PTC. The correlation between FN1 and miR-142-3P expression was analyzed by Spearman's correlation analysis. Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion assay and wound healing measures evaluated the effect of miR-142-3P and FN1 on cell proliferation, migration and invasion. Dural Luciferase reported gene assay evaluated the interaction between miR-142-3P and 3' untranslated region (UTR) of FN1. The Epithelial-Mesenchymal-Transition (EMT) and apoptosis related marker genes were measured using western blot analysis (WB). RESULTS: miR-142-3P was significantly decreased in both PTC specimens and relevant cell lines. Functionally, miR-142-3P inhibited cell proliferation, migration, invasion and EMT, and induced the cell apoptosis in PTC. In addition, miR-142-3P bound directly with 3' UTR of FN1 and negatively regulated the expression of FN1 in PTC. FN1 expression is elevated in PTC, and its aberrant high correlated with declines in recurrence-free survival (RFS). Moreover, FN1 promoted cell proliferation, migration, invasion and EMT, induced cell apoptosis in PTC cells. Depletion of FN1 rescues the effect of miR-142-3P inhibitor on cell proliferation, invasion, apoptosis and EMT via inactivating Focal Adhesion Kinase (FAK)/Extracellular Signal-Regulated Kinase (ERK) / Phosphoinostide 3-kinase (P13K) signaling. CONCLUSION: miR-142-3P suppressed cell proliferation, migration, invasion and EMT through modulating FN1/FAK/ERK/PI3K signaling in PTC, suggesting it as a potential therapeutic target for PTC.


Subject(s)
MicroRNAs , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Thyroid Neoplasms/pathology , Fibronectins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
6.
Sensors (Basel) ; 23(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37420601

ABSTRACT

To investigate the problem of the lag stability of the capacitance value during the level drop of the dirty U-shaped liquid level sensor, the equivalent circuit of the dirty U-shaped liquid level sensor was analyzed, and the transformer bridge's principle circuit that uses RF admittance technology was designed accordingly. Using the method of controlling a single variable, the measurement accuracy of the circuit was simulated when the dividing capacitance and the regulating capacitance had different values. Then, the right parameter values for the dividing capacitance and the regulating capacitance were found. On this basis, the change of the sensor output capacitance and the change of the length of the attached seawater mixture were controlled separately under the condition of removing the seawater mixture. The simulation outcomes showed that the measurement accuracy was excellent under various situations, validating the transformer principle bridge circuit's efficacy in minimizing the influence of the output capacitance value's lag stability.


Subject(s)
Electric Power Supplies , Computer Simulation , Electric Capacitance
7.
Materials (Basel) ; 16(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37512186

ABSTRACT

The segregation of the Fe element in Ti-10V-2Fe-3Al titanium alloy (Ti-1023) can lead to the generation of beta flecks, which seriously affects the performance of Ti-1023 products. During the heat treatment (HT) process at a high temperature, the Fe element in Ti-1023 ingots will migrate, making its distribution more uniform and reducing the segregation index. In this paper, the control of Fe micro-segregation in Ti-1023 ingots by homogenization HT was investigated. Firstly, dissection sampling and SEM-EDS analysis methods were used to study the distribution pattern of the Fe element in the equiaxed grains in the core of Ti-1023 ingots. It was found that the Fe content in the grain gradually increased along with the radial direction from the core to the grain boundary. Then, the homogenization HT experiments and numerical simulations of Ti-1023 at different HT temperatures from 1050 °C to 1200 °C were carried out. The results showed that the uniformity of Fe element distribution within grain can be significantly improved by the homogenization HT. With increasing HT temperature, Fe atoms migration ability increases, and the uniformity of Fe element distribution improves. Homogenization HT at 1150 °C and 1200 °C for 12 h can effectively reduce the degree of Fe element segregation.

8.
Front Physiol ; 14: 1127893, 2023.
Article in English | MEDLINE | ID: mdl-36923292

ABSTRACT

The inward-rectifying potassium channel subunit Kir5.1, encoded by Kcnj16, can form functional heteromeric channels (Kir4.1/5.1 and Kir4.2/5.1) with Kir4.1 (encoded by Kcnj10) or Kir4.2 (encoded by Kcnj15). It is expressed in the kidneys, pancreas, thyroid, brain, and other organs. Although Kir5.1 cannot form functional homomeric channels in most cases, an increasing number of studies in recent years have found that the functions of this subunit should not be underestimated. Kir5.1 can confer intracellular pH sensitivity to Kir4.1/5.1 channels, which can act as extracellular potassium sensors in the renal distal convoluted tubule segment. This segment plays an important role in maintaining potassium and acid-base balances. This review summarizes the various pathophysiological processes involved in Kir5.1 and the expression changes of Kir5.1 as a differentially expressed gene in various cancers, as well as describing several other disease phenotypes caused by Kir5.1 dysfunction.

9.
Front Surg ; 10: 1121292, 2023.
Article in English | MEDLINE | ID: mdl-36911613

ABSTRACT

Introduction: Gasless unilateral trans-axillary approach (GUA) thyroidectomy has witnessed rapid development in technologies and applications. However, the existence of surgical retractors and limited space would increase the difficulty of guaranteeing the visual field and disturb safe surgical manipulation. We aimed to develop a novel zero-line method for incision design to access optimal surgical manipulation and outcomes. Methods: A total of 217 patients with thyroid cancer who underwent GUA were enrolled in the study. Patients were randomly classified into two groups (classical incision and zero-line incision), and their operative data were collected and reviewed. Results: 216 enrolled patients underwent and completed GUA; among them, 111 patients were classified into the classical group, and 105 patients were classified into the zero-line group, respectively. Demographic data, including age, gender, and the primary tumor side, were similar between the two groups. The duration of surgery in the classical group was longer (2.66 ± 0.68 h) than in the zero-line group (1.40 ± 0.47 h) (p < 0.001). The counts of central compartment lymph node dissection were higher in the zero-line group (5.03 ± 3.02 nodes) than that in the classical group (3.05 ± 2.68 nodes) (p < 0.001). The score of postoperative neck pain was lower in the zero-line group (1.0 ± 0.36) than that in the classical group (3.3 ± 0.54) (p < 0.05). The difference in cosmetic achievement was not statistically significant (p > 0.05). Conclusion: The "zero-line" method for GUA surgery incision design was simple but effective for GUA surgery manipulation and worth promoting.

10.
Cell Death Dis ; 14(2): 172, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854759

ABSTRACT

Progressive albuminuria is the primary clinical symptom of diabetic nephropathy (DN), leading to a gradual decline in kidney function. DLX6-AS1 was the first reported long non-coding RNA (lncRNA) to participate in organogenesis and play crucial roles in the brain or neural cell development. Herein, we investigated the DLX6-AS1 (Dlx6-os1 in mice) role in DN pathogenesis. We found that DLX6-AS1 expression in DN patients correlated with the extent of albuminuria. Dlx6-os1 overexpression induced cellular damage and inflammatory responses in cultured podocytes through miR-346-mediated regulation of the GSK-3ß pathway. In various established diabetic and newly developed knockout mouse models, Dlx6-os1 knockdown/knockout significantly reduced podocyte injury and albuminuria. The Dlx6-os1 effects were remarkably modulated by miR-346 mimics or mutants and significantly diminished in podocyte-specific GSK-3ß-knockout mice. Thus, DLX6-AS1 (Dlx6-os1) promotes DN development by accelerating podocyte injury and inflammation through the upregulation of the GSK-3ß pathway, providing a novel molecular target for DN therapy.


Subject(s)
Albuminuria , Diabetic Nephropathies , Podocytes , RNA, Long Noncoding , Animals , Mice , Albuminuria/genetics , Albuminuria/metabolism , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Podocytes/metabolism , Podocytes/pathology , RNA, Long Noncoding/genetics , Signal Transduction
11.
Mol Carcinog ; 62(4): 450-463, 2023 04.
Article in English | MEDLINE | ID: mdl-36562476

ABSTRACT

Triple-negative breast cancer TNBC) is a malignant tumor with high incidence and high mortality that threaten the health of women worldwide. Circular RNAs (circRNAs) are a new class of noncoding RNAs that participate in the biological processes of various tumors, but the regulatory roles of circRNAs in TNBC have not been fully elucidated. In this study, the expression and characterization of circDUSP1 was detected via quantitative real-time PCR, nuclear-cytoplasmic fractionation assay, and fluorescence in situ hybridization. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circDUSP1 in TNBC. The interaction among circDUSP1, miR-761, DACT2 were confirmed by dual luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation experiments. We identified the circRNA named circDUSP1 that was inversely correlated with tumorigenesis and progression in TNBC. Overexpression of circDUSP1 significantly attenuated cell proliferation, migration, invasion, and epithelial-mesenchymal transition, while increased the sensitivity of TNBC cells to paclitaxel. In-depth mechanism analysis indicated that circDUSP1 acts as an endogenous sponge of miR-761 to reduce its suppression on target gene DACT2 expression in TNBC. Upregulation of miR-761 or downregulation of DACT2 partially reversed the biological process of TNBC and the prognosis of paclitaxel affected by circDUSP1. Taken together, our findings revealed a role for the regulation of the miR-761/DACT2 axis by circDUSP1 in the biological process of TNBC. These results provided new insights into the biological mechanism and targeted therapy of TNBC.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , RNA, Circular/genetics , In Situ Hybridization, Fluorescence , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Adaptor Proteins, Signal Transducing/metabolism
12.
Genes Genomics ; 45(1): 39-47, 2023 01.
Article in English | MEDLINE | ID: mdl-36371491

ABSTRACT

BACKGROUND: Substantial evidence suggests that non-coding RNAs, such as microRNAs (miRNAs), play a vital role in human cancer. Phosphoserine aminotransferase 1 (PSAT1) is a serine biosynthesis-related member of the aminotransferase family and is closely associated with worse prognosis in triple-negative breast cancer (TNBC). OBJECTIVE: The present study elucidated the molecular mechanisms underlying PSAT1 regulation by miRNAs in TNBC. METHODS: After collecting breast cancer and para-cancerous tissues, expression and functional testing of microRNA-195-5p (miR-195-5p) and PSAT1 were implemented both in vivo and in vitro. RESULTS: Abnormally low miR-195-5p expression was confirmed in TNBC tissues and cells. The specific targeting effect of miR-195-5p on PSAT1 was screened. Our observations revealed that biological tumor behavior was inhibited after miR-195-5p upregulation and this inhibition could be reversed by PSAT1 overexpression both in vivo and in vitro. CONCLUSION: Our study revealed the regulatory axis of miR-195-5p/PSAT1 in TNBC, suggesting a promising targeted therapy for clinical application.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Feedback , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis
13.
Foods ; 11(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36553700

ABSTRACT

This study is aimed at developing novel analytical methods to accurately visualize the spatial distribution of various endogenous components in Arctium lappa L. (A. lappa) roots, and to precisely guide the setting of pre-treatment operations during processing technologies and understand plant metabolism process. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) imaging technology was used for visual demonstration of the in situ spatial distribution in A. lappa roots. This work consisted of four steps: matrix selection, section preparation, matrix coating, and MALDI-TOF MS imaging analysis. Consequently, eight saccharides, four caffeoylquinic acids, four flavonoids, six amino acids, one choline, and one phospholipid were imaged and four unidentified components were found. Saccharides were distributed in the center, whereas caffeoylquinic acids and flavonoids were mainly present in the epidermis and cortex. Furthermore, amino acids were mainly detected in the phloem, and choline in the cambium, while phosphatidylserine was found in the secondary phloem and cambium. This study demonstrated that MALDI-TOF MS imaging technology could provide a technical support to understand the spatial distribution of components in A. lappa roots, which would promote the processing technologies for A. lappa roots and help us to understand the plant metabolism process.

14.
Proc Natl Acad Sci U S A ; 119(50): e2211713119, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36469770

ABSTRACT

The origin of the seed magnetic field that is amplified by the galactic dynamo is an open question in plasma astrophysics. Aside from primordial sources and the Biermann battery mechanism, plasma instabilities have also been proposed as a possible source of seed magnetic fields. Among them, thermal Weibel instability driven by temperature anisotropy has attracted broad interests due to its ubiquity in both laboratory and astrophysical plasmas. However, this instability has been challenging to measure in a stationary terrestrial plasma because of the difficulty in preparing such a velocity distribution. Here, we use picosecond laser ionization of hydrogen gas to initialize such an electron distribution function. We record the 2D evolution of the magnetic field associated with the Weibel instability by imaging the deflections of a relativistic electron beam with a picosecond temporal duration and show that the measured [Formula: see text]-resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to ~1% of the plasma thermal energy into magnetic energy, thus supporting the notion that the magnetic field induced by the Weibel instability may be able to provide a seed for the galactic dynamo.

15.
Opt Express ; 30(14): 25696-25706, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237094

ABSTRACT

Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013 cm-2 if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent'ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.

16.
Water Res ; 225: 119212, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36223677

ABSTRACT

Hydrated electron (eaq-) based photochemical processes have emerged as a promising technology for contaminant removal in water due to the mild operating conditions. This review aims to provide a comprehensive and up-to-date summary on eaq- based photochemical processes for the decomposition of various oxidative contaminants. Specifically, the characteristics of different photo-reductive systems are first elaborated, including the environment required to generate sufficient eaq-, the advantages and disadvantages of each system, and the comparison of the degradation efficiency of contaminants induced by eaq-. In addition, the identification methods of eaq- (e.g., laser flash photolysis, scavenging studies, chemical probes and electron spin resonance techniques) are summarized, and the influences of operating conditions (e.g., solution pH, dissolved oxygen, source chemical concentration and UV type) on the performance of contaminants are also discussed. Considering the complexity of contaminated water, particular attention is paid to the influence of water matrix (e.g., coexisting anions, alkalinity and humic acid). Moreover, the degradation regularities of various contaminants (e.g., perfluorinated compounds, disinfection by-products and nitrate) by eaq- are summarized. We finally put forward several research prospects for the decomposition of contaminants by eaq- based photochemical processes to promote their practical application in water treatment.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humic Substances , Electrons , Nitrates , Water Pollutants, Chemical/chemistry , Water Purification/methods , Photochemical Processes , Oxygen , Ultraviolet Rays
17.
Front Endocrinol (Lausanne) ; 13: 995972, 2022.
Article in English | MEDLINE | ID: mdl-36246907

ABSTRACT

Glucose-6-phosphate isomerase (GPI) plays an important part in gluconeogenesis and glycolysis through the interconversion of d-glucose-6-phosphate and d-fructose-6-phosphate, and its clinical significance still remains unclear in breast cancer (BRCA). We analyzed the expressions of GPI in BRCA patients to determine prognostic values. Our results showed that the expression levels of GPI were upregulated in BRCA patients, and a high GPI expression is correlated with poor overall survival (OS) in BRCA. At the same time, a high GPI expression is correlated with poor clinicopathological characteristics, such as stage III, over 60 years old, N3, HER2 negative, and estrogen receptor (ER) positive. Further analysis of the influence of GPI on the prognosis of BRCA suggested that 50 genes and 10 proteins were positively correlated with GPI, and these genes and proteins were mainly involved in cell cycle signaling pathways. In addition, in this study, we observed that GPI was closely related to N 6-methyladenosine (m6A) RNA methylation modification and immune cell infiltration and ferroptosis-related gene expression in BRCA, and there was a difference in m6A RNA methylation alterations, immune cell infiltration, and ferroptosis-related gene expression between the high GPI expression group and the low GPI expression group. Finally, we found that GPI in BRCA had 2.6% gene alterations, and BRCA patients with gene alteration of GPI had a poor prognosis in disease-free survival (DFS). Altogether, our work strongly suggested that GPI may serve as a new prognostic biomarker for BRCA patients.


Subject(s)
Breast Neoplasms , Biomarkers , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Glucose-6-Phosphate , Glucose-6-Phosphate Isomerase/analysis , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Humans , Middle Aged , Prognosis , RNA , Receptors, Estrogen
18.
Water Sci Technol ; 86(3): 511-529, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35960834

ABSTRACT

Nitrate loss in interflow caused serious nitrate pollution of neighboring water bodies in the purple soil region of China's Sichuan Province. In this study, Mg/Fe(Al)-calcined layered double hydroxides (Mg/Fe(Al)-CLDHs) with varied Mg/Fe(Al) ratios were synthesized for nitrate removal from interflow, and 3:1 Mg/Fe CLDH exhibited the best adsorption performance. The effects of initial pH, adsorbent dosage and co-existing anions on the adsorption performance were investigated by batch experiments. The best-fitting kinetic and isothermal models for nitrate adsorption were the pseudo-second-order model and Freundlich model, respectively, indicating that the adsorption process was a physical-chemical multilayer process. The maximum adsorption capacity of nitrate was 73.36 mg/g, which was higher than that of many other commonly used adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET) techniques, and the XRD and FT-IR results revealed that the adsorption mechanism involved original layered structure reconstruction and ion-exchange interaction. Under the coexistence of SO42- and Cl-, 75.63% nitrate in interflow could be removed after 6 h of adsorption. Overall, the synthesized Mg/Fe CLDH is an effective and low-cost nitrate adsorbent for in-situ nitrate removal.


Subject(s)
Nitrates , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Hydroxides/chemistry , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/chemistry
19.
Gland Surg ; 11(7): 1204-1211, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35935559

ABSTRACT

Background: Tumor metastasis to lymph nodes posterior to the right recurrent laryngeal nerve (LN-prRLN) is a main cause of disease recurrence in patients with papillary thyroid carcinoma (PTC), which may increase the risk of recurrence and secondary surgery, and the disruption of normal anatomical relationships during secondary surgery increases the risk of laryngeal nerve injury and hypoparathyroidism. However, controversy remains as to whether the dissection of LN-prRLN is required in cN0 PTC patients. The purpose of this study is to explore the factors associated with LN-prRLN metastasis in patients with cN0 PTC and the need for LN-prRLN node dissection in patients with cN0 PTC who undergo right central compartment dissection. Methods: The clinical data of 290 patients with cN0 PTC who received radical thyroid cancer surgery from December 2019 to March 2022 at our center were retrospectively analyzed. All the patients underwent thyroid lobectomy and right central lymph node dissection (CLND), along with other treatments. SPSS 26.0 statistical software was used for the analysis. The measurement data were compared using the rank-sum test, and the count data were compared using the chi-square test. Results: LN-prRLN metastasis was detected in 65 (22.4%) of the 290 cN0 PTC patients. The metastasis sites included level VIa (51.72%), the left central compartment (22.76%), and the prelaryngeal compartment (8.97%). The univariate analysis revealed that tumor multifocality, a tumor diameter >1 cm, capsular invasion, LN metastasis in the left central compartment, and level VIa positivity were influencing factors of LN-prRLN metastasis in PTC patients. The logistic regression analysis showed that a tumor diameter >1 cm (OR =2.897, 95% CI: 1.630-5.147, P<0.001), LN metastasis in the left central compartment (OR =3.724, 95% CI: 2.039-6.801, P<0.001), and level VIa (OR =3.405, 95% CI: 1.846-6.281, P<0.001) positivity were independent risk factors of LN-prRLN metastasis in PTC patients. Conclusions: The high-risk factors of LN-prRLN metastasis in cN0 PTC patients include a large tumor (a diameter >1 cm), lymph node metastasis in the left central compartment, and lymph node metastasis in level VIa. For patients with cN0 PTC undergoing right CLND, with high-risk factors of LN-prRLN metastasis, LN-prRLN dissection is recommended. Keywords: Papillary thyroid carcinoma (PTC); lymph nodes posterior to the right recurrent laryngeal nerve (LN-prRLN); central compartment lymph node dissection; risk factor.

20.
Front Genet ; 13: 898507, 2022.
Article in English | MEDLINE | ID: mdl-35754846

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is among malignancies with the highest fatality toll globally and minimal therapeutic options. Necroptosis is a programmed form of necrosis or inflammatory cell death, which can affect prognosis and microenvironmental status of HCC. Therefore, we aimed to explore the prognostic value of necroptosis-related lncRNAs (NRLs) in HCC and the role of the tumor microenvironment (TME) in immunotherapy. Methods: The RNA-sequencing data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). NRLs were identified by Pearson correlation analysis. The signature was constructed using the LASSO-Cox regression analysis and evaluated using the receiver operating characteristic curve (ROC) and the area under the Kaplan-Meier curve. The nomogram was built based on clinical information and risk score. Gene set enrichment analysis (GSEA), immunoassay, half-maximum inhibitory concentration (IC50) analysis of the risk group, and the HCC subtype identification based on NRLs were also carried out. Finally, we detected the expression of lncRNAs in HCC tissues and cell lines in vitro. Results: A total of 508 NRLs were screened out, and seven NRLs were constructed as a risk stratification system to classify patients into distinct low- and high-risk groups. Patients in the high-risk group had a significantly lower overall survival (OS) than those in the low-risk group. Using multivariate Cox regression analysis, we found that the risk score was an independent predictor of OS. Functional analysis showed that the immune status of different patients was different. The IC50 analysis of chemotherapy demonstrated that patients in the high-risk group were more sensitive to commonly prescribed drugs. qRT-PCR showed that three high-risk lncRNAs were upregulated in drug-resistant cells, and the expression in HCC tissues was higher than that in adjacent tissues. Conclusion: The prediction signature developed in this study can be used to assess the prognosis and microenvironment of HCC patients, and serve as a new benchmark for HCC treatment selection.

SELECTION OF CITATIONS
SEARCH DETAIL
...