Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38857885

ABSTRACT

AIMS: Klebsiella pneumoniae, an important opportunistic pathogen of nosocomial inflection, is known for its ability to form biofilm. The purpose of the current study is to assess how co- or mono-cultured probiotics affect K. pneumoniae's ability to produce biofilms and investigate the potential mechanisms by using a polyester nonwoven chemostat and a Caco-2 cell line. METHODS AND RESULTS: Compared with pure cultures of Lactobacillus rhamnosus and Lactobacillus sake, the formation of K. pneumoniae biofilm was remarkably inhibited by the mixture of L. rhamnosus, L. sake, and Bacillus subtilis at a ratio of 5:5:1 by means of qPCR and FISH assays. In addition, Lactobacillus in combination with B. subtilis could considerably reduce the adherence of K. pneumoniae to Caco-2 cells by using inhibition, competition, and displacement assays. According to the RT-PCR assay, the adsorption of K. pneumoniae to Caco-2 cells was effectively inhibited by the co-cultured probiotics, leading to significant reduction in the expression of proinflammatory cytokines induced by K. pneumoniae. Furthermore, the HPLC and RT-PCR analyses showed that the co-cultured probiotics were able to successfully prevent the expression of the biofilm-related genes of K. pneumoniae by secreting plenty of organic acids as well as the second signal molecule (c-di-GMP), resulting in inhibition on biofilm formation. CONCLUSION: Co-culture of L. sake, L. rhamnosus, and B. subtilis at a ratio of 5:5:1 could exert an antagonistic effect on the colonization of pathogenic K. pneumoniae by down-regulating the expression of biofilm-related genes. At the same time, the co-cultured probiotics could effectively inhibit the adhesion of K. pneumoniae to Caco-2 cells and block the expression of proinflammatory cytokines induced by K. pneumoniae.


Subject(s)
Biofilms , Coculture Techniques , Klebsiella pneumoniae , Probiotics , Biofilms/growth & development , Klebsiella pneumoniae/physiology , Humans , Probiotics/pharmacology , Caco-2 Cells , Bacillus subtilis/physiology , Bacillus subtilis/genetics , Lacticaseibacillus rhamnosus/physiology , Bacterial Adhesion , Lactobacillus/physiology , Cytokines/metabolism
2.
Bioresour Bioprocess ; 11(1): 17, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38647810

ABSTRACT

Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.

3.
Transl Oncol ; 40: 101847, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035445

ABSTRACT

BACKGROUND: Identifying biomarkers may lead to easier detection and a better understanding of pathogenesis of pancreatic ductal adenocarcinoma (PDAC). METHODS: Plasma small extracellular vesicles (sEV) from 106 participants, including 20 healthy controls (HC), 12 chronic pancreatitis (CP) patients, 12 benign pancreatic tumour (BPT) patients, and 58 PDAC patients, were profiled for microRNA (miRNA) sequencing. Three machine learning methods were applied to establish and evaluate the diagnostic model. RESULTS: The plasma sEV miRNA diagnostic signature (d-signature) selected using the three machine learning methods could distinguish PDAC patients from non-PDAC individuals, HC, and benign pancreatic disease (BPD, CP plus BPT) both in training and validation cohort. Combining the d-signature with carbohydrate antigen 19-9 (CA19-9) performed better than with each model alone. Plasma sEV miR-664a-3p was selected by all methods and used to predict PDAC diagnosis with high accuracy combined with CA19-9. Plasma sEV miR-664a-3p was significantly positively associated with the presence of vascular invasion, lower surgery ratio, and poor differentiation. MiR-664a-3p was mainly distributed in the PDAC cancer stroma, including fibers and vessels, and was accompanied by VEGFA expression. Overexpression of miR-664a-3p could promote the epithelial-mesenchymal transition (EMT) and angiogenesis. CONCLUSION: In conclusion, our study demonstrated the potential utility of the sEV-miRNA d-signature in the diagnosis of PDAC via machine learning methods. A novel sEV biomarker, miR-664a-3p, was identified for the diagnosis of PDAC. It can also potentially promote angiogenesis and metastasis, provide insight into PDAC pathogenesis, and reveal novel regulators of this disease.

4.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194941, 2023 06.
Article in English | MEDLINE | ID: mdl-37146713

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a poor prognosis. As a tumor inhibitor, the specific tumor suppressor mechanism of Sirtuin4(SIRT4) in PDAC remains elusive. In this study, SIRT4 was found to inhibit PDAC by impacting mitochondrial homeostasis. SIRT4 deacetylated lysine 547 of SEL1L and increased the protein level of an E3 ubiquitin ligase HRD1. As a central member of ER-associated protein degradation (ERAD), HRD1-SEL1L complex is recently reported to regulate the mitochondria, though the mechanism is not fully delineated. Here, we found the increase in SEL1L-HRD1 complex decreased the stability of a mitochondrial protein, ALKBH1. Downregulation of ALKBH1 subsequently blocked the transcription of mitochondrial DNA-coded genes, and resulted in mitochondrial damage. Lastly, a putative SIRT4 stimulator, Entinostat, was identified, which upregulated the expression of SIRT4 and effectively inhibited pancreatic cancer in vivo and in vitro.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Pancreatic Neoplasms , Humans , Mitochondria , Pancreatic Neoplasms/genetics , Homeostasis , AlkB Enzymes , AlkB Homolog 1, Histone H2a Dioxygenase , Proteins
5.
Sensors (Basel) ; 23(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36617102

ABSTRACT

Magnetic Barkhausen noise (MBN), sensitive to the microstructure of materials, can be applied in the surface decarburization depth detection of ferromagnetic specimens. However, the effects of core microstructures on the determination results of decarburization depth have not been explored. In this study, MBN was employed to evaluate the magnetic properties of the decarburized 60Si2Mn spring steels with martensitic and pearlitic core microstructures. Spring steel samples were austenitized at different times to generate different decarburization depths. Seven magnetic features were extracted from the MBN butterfly profiles. We used the variation coefficient, linear correlation coefficient, and normalized sensitivity to discuss the influence of the core microstructures on these seven features. The different core microstructures led to a large difference in the ability of MBN features to characterize the decarburization layer depth. However, three features of MBN butterfly profiles demonstrated an approximately linear dependency (linear correlation coefficient > 94%) on surface decarburization depth and monotonically increased with the increase in depth in both core microstructures of spring steels.


Subject(s)
Magnets , Steel , Physical Phenomena , Seasons , Magnetic Phenomena
6.
Materials (Basel) ; 15(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683061

ABSTRACT

Optimizing the heat treatment procedure with 13 mm diameter 38Si7 spring steel is critical for developing high-performance, low-cost, large spring steel for railway clips. The effects of quenching temperature, holding time, tempering temperature, and tempering time on the microstructure and mechanical properties were investigated using an orthogonal experiment, designed with four factors and three levels. The best heat treatment settings were explored, as well as the variation laws of mechanical properties, decarburization behavior, and fracture morphology. The results demonstrated that quenching temperature and tempering temperature had the most impact on plasticity and tempering temperature, while time had the most effect on strength. The optimized heat treatment schemes made the elongation increase by up to 106% and the reduction in area increase by up to 67%, compared with the standard BS EN 10089-2002, and there were mixed fractures caused by ductility and brittleness. The fracture tests showed a good performance of 20.2 GPa·%, and the heat treatment processes' minimum decarburization depth of 93.4 µm was determined. The optimized process would obtain stronger plastic deposition and better decarburization performance. The microstructure was simply lightly tempered martensite, and the matrix still retained the acicular martensite. The optimal heat treatment process is quenching at 900 °C for 30 min (water cooling), followed by tempering at 430 °C for 60 min (air cooling). The research led to a solution for increasing the overall mechanical characteristics and decreasing the surface decarburization of 38Si7 spring steel with a diameter of 13 mm, and it set the foundation for increasing the mass production of railway clips of this size.

7.
Front Oncol ; 12: 849717, 2022.
Article in English | MEDLINE | ID: mdl-35280819

ABSTRACT

Background: A Disintegrin and Metallopeptidase with Thrombospondin Type 1 Motif 12 (ADAMTS12), a member of the ADAMTS family of multidomain extracellular protease enzymes, is involved in the progression of many tumors. However, a pan-cancer analysis of this gene has not yet been performed. Its role in pancreatic adenocarcinoma (PAAD) also remains unclear. Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data (GTEx) databases were used to analyze ADAMTS12 expression in pan-cancer. We assessed the expression, clinical characteristics, prognostic significance, copy number alteration, methylation, and mutation of ADAMTS12 and its correlation with the tumor immune microenvironment. qRT-PCR and immunohistochemistry assays were also performed to validate the expression of ADAMTS12 in PAAD. Results: Through bioinformatics analysis and preliminary experimental verification, ADAMTS12 was found to be substantially overexpressed in PAAD. High expression level of ADAMTS12 was correlated with worse survival rates in patients with PAAD and high infiltration levels of tumor-associated macrophages, cancer-associated fibroblasts, immune checkpoint proteins, and immunosuppressive genes. Conclusion: Our findings suggest ADAMTS12 as a potential prognostic biomarker in PAAD. Elevated ADAMTS12 expression may also indicate an immunosuppressive microenvironment.

8.
Int J Biol Sci ; 18(3): 1288-1302, 2022.
Article in English | MEDLINE | ID: mdl-35173553

ABSTRACT

NF-κB signaling is active in more than 50% of patients with pancreatic cancer and plays an important role in promoting the progression of pancreatic cancer. Revealing the activation mechanism of NF-κB signaling is important for the treatment of pancreatic cancer. In this study, the regulation of TNFα/NF-κB signaling by VRK2 (vaccinia-related kinase 2) was investigated. The levels of VRK2 protein were examined by immunohistochemistry (IHC). The functions of VRK2 in the progression of pancreatic cancer were examined using CCK8 assay, anchorage-independent assay, EdU assay and tumorigenesis assay. The regulation of VRK2 on the NF-κB signaling was investigated by immunoprecipitation and invitro kinase assay. It was discovered in this study that the expression of VRK2 was upregulated in pancreatic cancer and that the VRK2 expression level was significantly correlated with the pathological characteristics and the survival time of patients. VRK2 promoted the growth, sphere formation and subcutaneous tumorigenesis of pancreatic carcinoma cells as well as the organoid growth derived from the pancreatic cancer mouse model. Investigation of the molecular mechanism indicated that VRK2 interacts with IKKß, phosphorylating its Ser177 and Ser181 residues and thus activating the TNFα/NF-κB signaling pathway. An IKKß inhibitors abolished the promotive effect of VRK2 on the growth of organoids. The findings of this study indicate that VRK2 promotes the progression of pancreatic cancer by activating the TNFα/NF-κB signaling pathway, suggesting that VRK2 is a potential therapeutic target for pancreatic cancer.


Subject(s)
I-kappa B Kinase , Pancreatic Neoplasms , Animals , Carcinogenesis , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Mice , NF-kappa B/metabolism , Pancreatic Neoplasms/genetics , Phosphorylation , Protein Serine-Threonine Kinases , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/metabolism , Pancreatic Neoplasms
9.
Cancer Lett ; 530: 16-28, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35033590

ABSTRACT

DNA damage repair is a major barrier for chemotherapy efficacy of pancreatic ductal adenocarcinoma (PDAC), including the efficacy of platinum-based and gemcitabine/nab-paclitaxel treatments. N6-methyladenosine modifications (m6A) have recently been reported to play a role in homologous recombination (HR) repair of DNA double strand breaks (DSBs); however, the mechanism of action remains unknown. Our previous work indicated that fisetin may be a promising anti-tumour agent that induces DNA damage. In this study, we reported that fisetin induced DSBs and suppressed HR repair through m6A modification in PDAC cells. The m6A writer ZC3H13 and PHF10, which is a subunit of the PBAF chromatin remodelling complex, were identified as the main molecules affected by fisetin treatment. To our knowledge, it's the first time that PHF10 was found and involved in the DNA damage response. PHF10 loss-of-function resulted in elevated recruitment of γH2AX, RAD51, and 53BP1 to DSB sites and decreased HR repair efficiency. Moreover, ZC3H13 knockdown downregulated the m6A methylation of PHF10 and decreased PHF10 translation in a YTHDF1-dependent manner. In conclusion, our study demonstrates that fisetin enhanced DSBs via ZC3Hl3-mediated m6A modification of PHF10, which may provide insight into novel therapeutic approaches for PDAC.


Subject(s)
Adenosine/analogs & derivatives , DNA Damage/genetics , DNA Repair/genetics , Flavonols/genetics , Homeodomain Proteins/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Pancreatic Neoplasms/genetics , RNA-Binding Proteins/genetics , Adenosine/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , Humans , Rad51 Recombinase/genetics , Recombinational DNA Repair/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Pancreatic Neoplasms
10.
Materials (Basel) ; 14(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34576438

ABSTRACT

100Cr6 steel is one of the most widely used bearing steels and a representative of first-generation bearing steel. Many engineering applications require rolling bearings to run at a high temperature. Therefore, it is necessary to improve the high temperature properties of 100Cr6 steel. In this paper, the effect of Nb on high temperature dry tribological behavior, including worn surface and friction coefficient, was analyzed by a wear test when Nb content was 0.018% and 0.040%. The results show that the microstructure is refined gradually, the hardness is improved, and wear volume decreases by 31.8% at most with the increase of Nb content. At 50 °C, the friction coefficient of 100Cr6 steel can be reduced by adding a small amount of Nb, but this effect will be weakened if the content of Nb is too high. In addition, excess Nb increases the hard precipitation of NbC, which aggravates the abrasive wear and leads to the increase in the depth of the worn surface. At 125 °C, the effect of Nb on tribological properties is weaker. With the increase of temperature, the steel substrate softens, and the oxide particles increase, which aggravates the abrasive wear and oxidation wear and makes the wear volume increase significantly.

11.
Biotechnol Lett ; 43(3): 677-690, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33385252

ABSTRACT

OBJECTIVES: Probiotics (Bacillus subtilis 04178) were entrapped in alginate-chitosan microcapsules by high-voltage electrostatic process. The encapsulation pattern was established as entrapped low density cells with culture (ELDCwc). The performance of ELDCwc cells was investigated against stress environments of simulated digestive fluids. RESULTS: After incubation in simulated gastric (pH 2.5) and intestinal fluids (4% bile salt) for 2 h, the survival rate of ELDCwc cells (18.19% and 27.54%) was significantly higher than that of the free cells (0.0000009% and 0.0005%). The reason why B. subtilis embedded in microcapsules can resist the stress environments was that the mass production of extracellular proteins and polysaccharides prompted B. subtilis to form cell aggregates. The production of extracellular proteins and polysaccharides were regulated by the concentration of c-di-GMP and the expression of ydaJKLMN operon, abbA, sinI, slrA, slrB, abrR and sinR. CONCLUSIONS: c-di-GMP is important for the production of extracellular polymer substance to enhance probiotic viability in stress environments.


Subject(s)
Alginates/pharmacology , Bacillus subtilis , Chitosan/pharmacology , Cyclic GMP/analogs & derivatives , Probiotics , Bacillus subtilis/drug effects , Bacillus subtilis/physiology , Cell Encapsulation , Cyclic GMP/pharmacology , Models, Biological , Stress, Physiological/drug effects
12.
Curr Microbiol ; 78(1): 133-143, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33104852

ABSTRACT

The resistance of bacteria to antibiotics is a major public health issue. Klebsiella pneumoniae is a type exemplification of multi-resistant enterobacteria. Its high biofilm forming capacity is a major factor in the recurrent infection of the intestinal tract. In this study, the intrinsic mechanism of secondary growth of K. pneumoniae in response to antibiotics and the inhibition effect of probiotic supernatant on biofilm formation after antibiotic treatment were investigated in a polyester nonwoven chemostat bioreactor. The experimental results showed that the c-di-GMP content in the cells increased after treatment with levofloxacin, leading to the formation of a thick biofilm due to an increase in the production of extracellular polymer substance (EPS) and type 3 fimbriae. Biofilm prevents the mass transfer of levofloxacin and protects K. pneumoniae cells from being killed by levofloxacin. Under suitable conditions, K. pneumoniae cells on the biofilm enter into the suspension for secondary growth. Moreover, the inhibition of probiotic supernatant on the biofilm formation was mainly due to the reduced expression of yfiN and mrkJ genes, and the decreased concentration of c-di-GMP in cells, as well as the less secretion of EPS. At the same time, the decrease in the concentration of c-di-GMP also reduced the expression of the mrkABCDF gene and prevented the synthesis of the type 3 fimbriae. The results would help to understand the mechanism of antibiotic resistance of pathogenic bacteria and to provide evidence to address this problem through the use of probiotics.


Subject(s)
Klebsiella pneumoniae , Probiotics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biofilms , Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism
13.
J Cancer Res Ther ; 15(4): 836-841, 2019.
Article in English | MEDLINE | ID: mdl-31436240

ABSTRACT

BACKGROUND: Apatinib has been approved for the treatment of advanced gastric adenocarcinoma and gastric-esophageal junctional adenocarcinoma, but its efficacy is unknown for other advanced solid tumors. AIMS AND OBJECTIVES: We retrospectively reviewed the use of apatinib for multiple advanced-stage non-gastric cancers. Ninety-two patients from 7 hospitals who received additional treatment except apatinib more than once were enrolled. MATERIALS AND METHODS: The primary end-point was the overall response rate (ORR), and the secondary end-points included progression-free survival (PFS), disease control rate (DCR), overall survival, and adverse reactions. We categorized all the patients into six groups according to their cancer type. RESULTS: In the lung cancer group, the ORR was 9% (95% confidence interval [CI], 3%-23%), DCR was 88% (95% CI, 74%-96%), and median PFS was 3 months (95% CI, 1.9-5.4 months). In the cervical cancer group, the ORR was 25% (95% CI, 3%-65%), DCR reached 100%, and median PFS was 3.5 months (95% CI, 0.6-9.0 months). There were different ORRs between the other cancer groups. In addition, the most common adverse effect of apatinib was palmar-plantar erythrodysesthesia syndrome (37%), followed by proteinuria (14%) and hypertension (13%). CONCLUSION: These results suggest that apatinib might be effective for not only gastric cancer but also other carcinomas including lung cancer, colorectal cancer, cervical cancer, liver cancer, breast cancer, and nasopharyngeal cancer. Thus, apatinib is a promising targeted drug for multiple types of cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/mortality , Pyridines/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Invasiveness , Neoplasms/pathology , Prognosis , Retrospective Studies , Survival Rate , Young Adult
14.
Chemosphere ; 203: 457-466, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29635157

ABSTRACT

The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ±â€¯2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ±â€¯0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal.


Subject(s)
Ammonium Compounds/chemistry , Bacteria/metabolism , Bioreactors/microbiology , Denitrification , Nitrification , Nitrogen/isolation & purification , Wastewater/chemistry , Anaerobiosis , Biofilms , Oxidation-Reduction , Sewage/microbiology
15.
Nanoscale ; 9(40): 15332-15339, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28752868

ABSTRACT

An atomically dispersed Waugh type [CoMo9O32]6- cluster is obtained, employing the most flexible structure unit Anderson type [Co(OH)6Mo6O18]3- as a precursor. The structure of the [CoMo9O32]6- cluster is identified by single crystal X-ray diffraction and also well characterized by FT-IR, ESI-MS, UV-Vis, EA, and TGA spectroscopy. Its 3D framework forms a quasi 2D material and possesses curved edge triangle shape nanopores with a diameter of 8.9 Å. The CoIV and MoVI oxidation states and the related valence band and electronic state of Co are definitely confirmed by X-ray photoelectron spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), and bond valence sum (BVS). The [CoMo9O32]6- cluster is a typical n-type inorganic semiconductor with a HOMO-LOMO gap of ca. 1.67 eV and exhibits reversible two-electron redox properties, evidenced by UPS, cyclic voltammetric (CV), and Mott-Schottky plot analyses. Furthermore, [CoMo9O32]6- can effectively generate 1O2 under laser (365 and 532 nm) and sunlight irradiation, detected using a water-soluble DAB probe. Such an n-type multielectron reservoir semiconductor anionic [CoMo9O32]6- cluster with thermal and electrochemical stability as an effective photosensitizer serves as a promising material in solar energy scavenging.

16.
ChemSusChem ; 10(9): 1976-1980, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28349650

ABSTRACT

The catalytic performance of the atomically precise gold cluster-Au38 (PET)24 (PET=2-phenylethanethiolate), immobilized on activated carbon (AC), was investigated for the aerobic oxidation of glucose to gluconic acid. The Au38 (PET)24 /AC-120 catalysts, annealed at 120 °C in air, exhibited high catalytic activity and significantly better performance than the corresponding catalysts Au38 /AC-150 and Au38 /AC-300 (treated at 150 and 300 °C to remove the protecting thiolate ligands). The high activity of the robust Au cluster was a result of the partial ligand removal, providing catalytically active sites, which were evidenced by TEM, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier-transform IR spectroscopy. Au38 (PET)24 /AC-120 also showed excellent recyclability (up to seven cycles). The turnover frequency for the Au38 (PET)24 /AC-120 catalyst was 5440 h-1 , which is higher than for the Pd/AC, Pd-Bi/AC, and Au/AC under identical reaction conditions. This new ultra-small gold nanomaterial is expected to find wide application in other catalytic oxidations.


Subject(s)
Gluconates/chemical synthesis , Glucose/chemistry , Catalysis , Charcoal/chemistry , Gold/chemistry , Nanostructures/chemistry , Oxidation-Reduction
17.
Biotechnol Lett ; 38(10): 1733-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27311308

ABSTRACT

OBJECTIVES: To improve production of lipids and carotenoids by the oleaginous yeast Rhodosporidium toruloides by screening mutant strains. RESULTS: Upon physical mutagenesis of the haploid strain R. toruloides np11 with an atmospheric and room temperature plasma method followed by chemical mutagenesis with nitrosoguanidine, a mutant strain, R. toruloides XR-2, formed dark-red colonies on a screening plate. When cultivated in nitrogen-limited media, XR-2 cells grew slower but accumulated 0.23 g lipids/g cell dry wt and 0.75 mg carotenoids/g CDW. To improve its production capacity, different amino acids and vitamins were supplemented. p-Aminobenzoic acid and tryptophan had beneficial effects on cell growth. When cultivated in nitrogen-limited media in the presence of selected vitamins, XR-2 accumulated 0.41 g lipids/g CDW and 0.69 mg carotenoids/g CDW. CONCLUSIONS: A mutant R. toruloides strain with improved production profiles for lipids and carotenoids was obtained, indicating its potential to use combined mutagenesis for a more productive phenotype.


Subject(s)
Basidiomycota/growth & development , Basidiomycota/genetics , Carotenoids/biosynthesis , Lipids/biosynthesis , Mutagenesis , 4-Aminobenzoic Acid/pharmacology , Basidiomycota/metabolism , Biomass , Culture Media/chemistry , Culture Media/pharmacology , Fermentation , Genetic Engineering , Nitrogen/pharmacology , Tryptophan/pharmacology , Vitamins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL