Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Metab Eng ; 85: 84-93, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047895

ABSTRACT

Subcellular compartmentalization is a crucial evolution characteristic of eukaryotic cells, providing inherent advantages for the construction of artificial biological systems to efficiently produce natural products. The establishment of an artificial protein transport system represents a pivotal initial step towards developing efficient artificial biological systems. Peroxisome has been demonstrated as a suitable subcellular compartment for the biosynthesis of terpenes in yeast. In this study, an artificial protein transporter ScPEX5* was firstly constructed by fusing the N-terminal sequence of PEX5 from S. cerevisiae and the C-terminal sequence of PEX5. Subsequently, an artificial protein transport system including the artificial signaling peptide YQSYY and its enhancing upstream 9 amino acid (9AA) residues along with ScPEX5* was demonstrated to exhibit orthogonality to the internal transport system of peroxisomes in S. cerevisiae. Furthermore, a library of 9AA residues was constructed and selected using high throughput pigment screening system to obtain an optimized signaling peptide (oPTS1*). Finally, the ScPEX5*-oPTS1* system was employed to construct yeast cell factories capable of producing the sesquiterpene α-humulene, resulting in an impressive α-humulene titer of 17.33 g/L and a productivity of 0.22 g/L/h achieved through fed-batch fermentation in a 5 L bioreactor. This research presents a valuable tool for the construction of artificial peroxisome cell factories and effective strategies for synthesizing other natural products in yeast.


Subject(s)
Peroxisomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Sesquiterpenes , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Peroxisomes/metabolism , Peroxisomes/genetics , Sesquiterpenes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Metabolic Engineering , Peroxisome-Targeting Signal 1 Receptor/metabolism , Peroxisome-Targeting Signal 1 Receptor/genetics , Protein Transport
2.
Nucleic Acids Res ; 52(14): 8628-8642, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38994565

ABSTRACT

Precise gene regulation and programmable RNA editing are vital RNA-level regulatory mechanisms. Gene repression tools grounded in small non-coding RNAs, microRNAs, and CRISPR-dCas proteins, along with RNA editing tools anchored in Adenosine Deaminases acting on RNA (ADARs), have found extensive application in molecular biology and cellular engineering. Here, we introduced a novel approach wherein we developed an EcCas6e mediated crRNA-mRNA annealing system for gene repression in Escherichia coli and RNA editing in Saccharomyces cerevisiae. We found that EcCas6e possesses inherent RNA annealing ability attributed to a secondary positively charged cleft, enhancing crRNA-mRNA hybridization and stability. Based on this, we demonstrated that EcCas6e, along with its cognate crRNA repeat containing a complementary region to the ribosome binding site of a target mRNA, effectively represses gene expression up to 25-fold. Furthermore, we demonstrated that multiple crRNAs can be easily assembled and can simultaneously target up to 13 genes. Lastly, the EcCas6e-crRNA system was developed as an RNA editing tool by fusing it with the ADAR2 deaminase domain. The EcCas6e-crRNA mediated gene repression and RNA editing tools hold broad applications for research and biotechnology.


Subject(s)
Escherichia coli , RNA Editing , RNA, Antisense , RNA, Messenger , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , CRISPR-Cas Systems , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics
3.
Appl Microbiol Biotechnol ; 108(1): 373, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878095

ABSTRACT

The lincoamide antibiotic lincomycin, derived from Streptomyces lincolnensis, is widely used for the treatment of infections caused by gram-positive bacteria. As a common global regulatory factor of GntR family, DasR usually exists as a regulatory factor that negatively regulates antibiotic synthesis in Streptomyces. However, the regulatory effect of DasR on lincomycin biosynthesis in S. lincolnensis has not been thoroughly investigated. The present study demonstrates that DasR functions as a positive regulator of lincomycin biosynthesis in S. lincolnensis, and its overexpression strain OdasR exhibits a remarkable 7.97-fold increase in lincomycin production compared to the wild-type strain. The effects of DasR overexpression could be attenuated by the addition of GlcNAc in the medium in S. lincolnensis. Combined with transcriptome sequencing and RT-qPCR results, it was found that most structural genes in GlcNAc metabolism and central carbon metabolism were up-regulated, but the lincomycin biosynthetic gene cluster (lmb) were down-regulated after dasR knock-out. However, DasR binding were detected with the DasR responsive elements (dre) of genes involved in GlcNAc metabolism pathway through electrophoretic mobility shift assay, while they were not observed in the lmb. These findings will provide novel insights for the genetic manipulation of S. lincolnensis to enhance lincomycin production. KEY POINTS: • DasR is a positive regulator that promotes lincomycin synthesis and does not affect spore production • DasR promotes lincomycin production through indirect regulation • DasR correlates with nutrient perception in S. lincolnensis.


Subject(s)
Anti-Bacterial Agents , Gene Expression Regulation, Bacterial , Lincomycin , Streptomyces , Lincomycin/pharmacology , Lincomycin/biosynthesis , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Multigene Family , Acetylglucosamine/metabolism , Biosynthetic Pathways/genetics , Gene Expression Profiling
4.
Microb Cell Fact ; 23(1): 103, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584273

ABSTRACT

BACKGROUND: The macrolide antibiotic avermectin, a natural product derived from Streptomyces avermitilis, finds extensive applications in agriculture, animal husbandry and medicine. The mtrA (sav_5063) gene functions as a transcriptional regulator belonging to the OmpR family. As a pleiotropic regulator, mtrA not only influences the growth, development, and morphological differentiation of strains but also modulates genes associated with primary metabolism. However, the regulatory role of MtrA in avermectin biosynthesis remains to be elucidated. RESULTS: In this study, we demonstrated that MtrA, a novel OmpR-family transcriptional regulator in S. avermitilis, exerts global regulator effects by negatively regulating avermectin biosynthesis and cell growth while positively controlling morphological differentiation. The deletion of the mtrA gene resulted in an increase in avermectin production, accompanied by a reduction in biomass and a delay in the formation of aerial hyphae and spores. The Electrophoretic Mobility Shift Assay (EMSA) revealed that MtrA exhibited binding affinity towards the upstream region of aveR, the intergenic region between aveA1 and aveA2 genes, as well as the upstream region of aveBVIII in vitro. These findings suggest that MtrA exerts a negative regulatory effect on avermectin biosynthesis by modulating the expression of avermectin biosynthesis cluster genes. Transcriptome sequencing and fluorescence quantitative PCR analysis showed that mtrA deletion increased the transcript levels of the cluster genes aveR, aveA1, aveA2, aveC, aveE, aveA4 and orf-1, which explains the observed increase in avermectin production in the knockout strain. Furthermore, our findings demonstrate that MtrA positively regulates the cell division and differentiation genes bldM and ssgC, while exerting a negative regulatory effect on bldD, thereby modulating the primary metabolic processes associated with cell division, differentiation and growth in S. avermitilis, consequently impacting avermectin biosynthesis. CONCLUSIONS: In this study, we investigated the negative regulatory effect of the global regulator MtrA on avermectin biosynthesis and its effects on morphological differentiation and cell growth, and elucidated its transcriptional regulatory mechanism. Our findings indicate that MtrA plays crucial roles not only in the biosynthesis of avermectin but also in coordinating intricate physiological processes in S. avermitilis. These findings provide insights into the synthesis of avermectin and shed light on the primary and secondary metabolism of S. avermitilis mediated by OmpR-family regulators.


Subject(s)
Ivermectin , Ivermectin/analogs & derivatives , Streptomyces , Ivermectin/metabolism , Streptomyces/metabolism , Macrolides/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism
5.
Biotechnol J ; 19(2): e2300383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403397

ABSTRACT

Synthetic biology-based engineering of Saccharomyces cerevisiae to produce terpenoid natural products is an effective strategy for their industrial application. Previously, we observed that glycerol addition was beneficial for ginsenoside compound K (CK) production in a S. cerevisiae when it was fermented using the YPD medium. Here, we reconstructed the CK synthesis and glycerol catabolic pathway in a high-yield protopanaxadiol (PPD) S. cerevisiae strain. Remarkably, our engineered strain exhibited the ability to utilize glycerol as the sole carbon source, resulting in a significantly enhanced production of 433.1 ± 8.3 mg L-1 of CK, which was 2.4 times higher compared to that obtained in glucose medium. Transcriptomic analysis revealed that the transcript levels of several key genes involved in the mevalonate (MVA) pathway and the uridine diphosphate glucose (UDPG) synthesis pathway were up-regulated in response to glycerol. The addition of glycerol enhanced CK titers by augmenting the flux of the terpene synthesis pathway and facilitating the production of glycosyl donors. These results suggest that glycerol is a promising carbon source in S. cerevisiae, especially for the production of triterpenoid saponins.


Subject(s)
Ginsenosides , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Glycerol/metabolism , Transcriptome/genetics , Metabolic Engineering , Fermentation , Saccharomyces cerevisiae Proteins/metabolism , Carbon/metabolism
6.
Opt Lett ; 48(22): 5992-5995, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966771

ABSTRACT

A numerical calculating model is proposed for characterizing the BER performance of the detector working among the 2-D asymmetric distorted spot on the effects of atmospheric turbulence under weak turbulent conditions. Based on the isotropy of the beam wander effect, we introduce a beam wander vector to describe the behavior of the detector drifting among the receiving plane. Furthermore, using the cake-cutting method, the overall PDF of the light intensity is approximated by the average PDF of light intensity intercepted by the detector drifting in all different directions. The results demonstrate that the model obtains the overall PDF of the light intensity received by the detector and analyzes the BER performance of the communication system efficiently. Being an extension of the traditional 1-D calculation, our proposed model has important implications for designing the space uplink optical communication system.

7.
Biotechnol Bioeng ; 120(12): 3622-3637, 2023 12.
Article in English | MEDLINE | ID: mdl-37691180

ABSTRACT

S-adenosyl- l-methionine (SAM) is a high-value compound widely used in the treatment of various diseases. SAM can be produced through fermentation, but further enhancing the microbial production of SAM requires novel high-throughput screening methods for rapid detection and screening of mutant libraries. In this work, an SAM-OFF riboswitch capable of responding to the SAM concentration was obtained and a high-throughput platform for screening SAM overproducers was established. SAM synthase was engineered by semirational design and directed evolution, which resulted in the SAM2S203F,W164R,T251S,Y285F,S365R mutant with almost twice higher catalytic activity than the parental enzyme. The best mutant was then introduced into Saccharomyces cerevisiae BY4741, and the resulting strain BSM8 produced a sevenfold higher SAM titer in shake-flask fermentation, reaching 1.25 g L-1 . This work provides a reference for designing biosensors to dynamically detect metabolite concentrations for high-throughput screening and the construction of effective microbial cell factories.


Subject(s)
Riboswitch , S-Adenosylmethionine , S-Adenosylmethionine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , High-Throughput Screening Assays , Riboswitch/genetics , Fermentation
8.
Bioengineering (Basel) ; 10(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37237630

ABSTRACT

In this article, we report a method for preparing an immobilized bacterial agent of petroleum-degrading bacteria Gordonia alkanivorans W33 by combining high-density fermentation and bacterial immobilization technology and testing its bioremediation effect on petroleum-contaminated soil. After determining the optimal combination of MgCl2, CaCl2 concentration, and culture time in the fermentation conditions by conducting a response surface analysis, the cell concentration reached 7.48 × 109 CFU/mL by 5 L fed-batch fermentation. The W33-vermiculite-powder-immobilized bacterial agent mixed with sophorolipids and rhamnolipids in a weight ratio of 9:10 was used for the bioremediation of petroleum-contaminated soil. After 45 days of microbial degradation, 56.3% of the petroleum in the soil with 20,000 mg/kg petroleum content was degraded, and the average degradation rate reached 250.2 mg/kg/d.

9.
Front Microbiol ; 14: 1080743, 2023.
Article in English | MEDLINE | ID: mdl-36778878

ABSTRACT

As an important source of new drug molecules, secondary metabolites (SMs) produced by microorganisms possess important biological activities, such as antibacterial, anti-inflammatory, and hypoglycemic effects. However, the true potential of microbial synthesis of SMs has not been fully elucidated as the SM gene clusters remain silent under laboratory culture conditions. Herein, we evaluated the inhibitory effect of Staphylococcus aureus by co-culture of Eurotium amstelodami and three Bacillus species, including Bacillus licheniformis, Bacillus subtilis, and Bacillus amyloliquefaciens. In addition, a non-target approach based on ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) was used to detect differences in extracellular and intracellular metabolites. Notably, the co-culture of E. amstelodami and Bacillus spices significantly improved the inhibitory effect against S. aureus, with the combination of E. amstelodami and B. licheniformis showing best performance. Metabolomics data further revealed that the abundant SMs, such as Nummularine B, Lucidenic acid E2, Elatoside G, Aspergillic acid, 4-Hydroxycyclohexylcarboxylic acid, Copaene, and Pipecolic acid were significantly enhanced in co-culture. Intracellularly, the differential metabolites were involved in the metabolism of amino acids, nucleic acids, and glycerophospholipid. Overall, this work demonstrates that the co-culture strategy is beneficial for inducing biosynthesis of active metabolites in E. amstelodami and B. licheniformis.

10.
Front Microbiol ; 13: 1022200, 2022.
Article in English | MEDLINE | ID: mdl-36504795

ABSTRACT

Microbial fermentation is a useful method for improving the biological activity of Chinese herbal medicine. Herein, we revealed the effects of solid-state fermentation by Lactiplantibacillus plantarum, Bacillus licheniformis, Saccharomyces cerevisiae, Eurotium cristatum and multiple strains on total flavonoid content, total phenol content, as well as antioxidants, α-amylase inhibitory activities and α-glucosidase inhibitory activities in white ginseng (WG). Metabolite differences between non-fermented and fermented WG by different probiotics were comprehensively investigated using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS). Results showed that the total flavonoid content, ferric reducing antioxidant power, scavenging activities of DPPH radical and ABTS radical, α-amylase inhibitory activities and α-glucosidase inhibitory activities of WG were considerably enhanced after processing by solid-state fermentation in all strains. The total phenol content was increased by E. cristatum and B. licheniformis fermentation, but decreased by L. plantarum, S. cerevisiae and multi-strain fermentation. Additionally, E. cristatum exhibited stronger biotransformation activity on WG compared to other strains. Significant differential metabolites were mainly annotated as prenol lipids, carboxylic acids and derivatives, flavonoids, polyphenols, coumarins and derivatives. Correlation analysis further showed that changes of these metabolites were closely related to antioxidant and hypoglycemic effects. Our results confirmed that fermentation of WG by different probiotics has distinct effects on biological activities and metabolite composition, and indicating fermentation as an important novel strategy to promote components and bioactivities of WG.

11.
Food Funct ; 13(23): 12051-12066, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36342232

ABSTRACT

Resveratrol (RES) has many beneficial effects on the human body, but it is always unstable, resulting in low oral bioavailability, especially in the gastrointestinal tract. In this study, we developed an oral intestine-specific released hydrogel carrier for targeted RES release in the intestinal tract, which was composed of alginate (ALG) with a specific ratio of α-L-guluronic (G blocks) and ß-D-mannuronic (M blocks) and low methoxyl pectin (LMP). The encapsulation efficiency and loading capacity of RES was 92.04 ± 0.32% and 6.41 ± 0.022 mg g-1 samples, respectively. Positioning release kinetics were investigated in vivo and in vitro. Also, this hydrogel carrier provides good protection for RES against the stomach. 94.71% of RES could be transported to the intestines in two hours after oral administration and released mainly in the small intestine and colon. Thus, the hydrogel carrier is conducive to RES, which is absorbed through the intestinal barrier rather than the stomach after oral administration. Moreover, the hydrogel carrier could load other health factors with expected encapsulation efficiencies, such as curcumin (93.52%), ascorbic acid (90.33%), ginsenoside Rg3 (81.54%), and EGCG (92.27%). These also implied that the hydrogel carrier holds general applicability in disease management.


Subject(s)
Alginates , Pectins , Humans , Hydrogels , Resveratrol , Intestines , Drug Carriers
12.
Microorganisms ; 10(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36144309

ABSTRACT

Putative methyltransferases are thought to be involved in the regulation of secondary metabolites in filamentous fungi. Here, we report the effects of overexpression of a predicted LaeA-like methyltransferase gene llm1 on the synthesis of secondary metabolites in Aspergillus cristatus. Our results revealed that overexpression of the gene llm1 in A. cristatus significantly hindered the production of conidia and enhanced sexual development, and reduced oxidative tolerance to hydrogen peroxide. Compared with the wild-type, the metabolic profile of the overexpression transformant was distinct, and the contents of multiple secondary metabolites were markedly increased, mainly including terpenoids and flavonoids, such as (S)-olEuropeic acid, gibberellin A62, gibberellin A95, ovalitenone, PD 98059, and 1-isomangostin. A total of 600 significantly differentially expressed genes (DEGs) were identified utilizing transcriptome sequencing, and the DEGs were predominantly enriched in transmembrane transport and secondary metabolism-related biological processes. In summary, the strategy of overexpressing global secondary metabolite regulators successfully activated the expression of secondary metabolite gene clusters, and the numerous secondary metabolites were greatly strengthened in A. cristatus. This study provides new insights into the in-depth exploitation and utilization of novel secondary metabolites of A. cristatus.

13.
J Agric Food Chem ; 70(32): 9888-9897, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35925879

ABSTRACT

Owing to its unique fragrance, 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) is widely used as a food flavoring agent and has high demand. Enone oxidoreductase is a vital enzyme involved in HEMF production. In this study, an enone oxidoreductase from Naumovozyma dairenensis CBS 421 (NDEO) was used for HEMF production for the first time. The mutant NDEOT183W,K290W was obtained through semirational protein engineering, which increased the HEMF yield by 75.2%. Finally, the engineered strain BM4 produced the highest HEMF yield, 194.42 mg L-1 in 132 h. Our study revealed that HEMF production can be improved in Saccharomyces cerevisiae and that this is an efficient method to improve the activity of enone oxidoreductase, which is important for the industrial synthesis of furanone.


Subject(s)
Furans , Oxidoreductases , Saccharomyces cerevisiae , Saccharomycetales , Fungal Proteins/genetics , Fungal Proteins/metabolism , Furans/metabolism , Genome, Fungal , Oxidoreductases/genetics , Oxidoreductases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomycetales/enzymology
14.
FEMS Microbiol Lett ; 369(1)2022 08 16.
Article in English | MEDLINE | ID: mdl-35896500

ABSTRACT

Taraxerol is an oleanane-type pentacyclic triterpenoid compound distributed in many plant species that has good effects on the treatment of inflammation and tumors. However, the taraxerol content in medicinal plants is low, and chemical extraction requires considerable energy and time, so taraxerol production is a problem. It is a promising strategy to produce taraxerol by applying recombinant microorganisms. In this study, a Saccharomyces cerevisiae strain WKde2 was constructed to produce taraxerol with a titer of 1.85 mg·l-1, and the taraxerol titer was further increased to 12.51 mg·l-1 through multiple metabolic engineering strategies. The endoplasmic reticulum (ER) size regulatory factor INO2, which was reported to increase squalene and cytochrome P450-mediated 2,3-oxidosqualene production, was overexpressed in this study, and the resultant strain WTK11 showed a taraxerol titer of 17.35 mg·l-1. Eventually, the highest reported titer of 59.55 mg·l-1 taraxerol was achieved in a 5 l bioreactor. These results will serve as a general strategy for the production of other triterpenoids in yeast.


Subject(s)
Saccharomyces cerevisiae Proteins , Triterpenes , Metabolic Engineering/methods , Oleanolic Acid/analogs & derivatives , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Triterpenes/metabolism
15.
Front Bioeng Biotechnol ; 10: 916605, 2022.
Article in English | MEDLINE | ID: mdl-35721856

ABSTRACT

Carnosic acid (CA), a phenolic tricyclic diterpene, has many biological effects, including anti-inflammatory, anticancer, antiobesity, and antidiabetic activities. In this study, an efficient biosynthetic pathway was constructed to produce CA in Saccharomyces cerevisiae. First, the CA precursor miltiradiene was synthesized, after which the CA production strain was constructed by integrating the genes encoding cytochrome P450 enzymes (P450s) and cytochrome P450 reductase (CPR) SmCPR. The CA titer was further increased by the coexpression of CYP76AH1 and SmCPR ∼t28SpCytb5 fusion proteins and the overexpression of different catalases to detoxify the hydrogen peroxide (H2O2). Finally, engineering of the endoplasmic reticulum and cofactor supply increased the CA titer to 24.65 mg/L in shake flasks and 75.18 mg/L in 5 L fed-batch fermentation. This study demonstrates that the ability of engineered yeast cells to synthesize CA can be improved through metabolic engineering and synthetic biology strategies, providing a theoretical basis for microbial synthesis of other diterpenoids.

16.
Biotechnol Lett ; 44(7): 857-865, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35643816

ABSTRACT

OBJECTIVE: To produce valerenic acid (VA) in Saccharomyces cerevisiae by engineering a heterologous synthetic pathway. RESULT: Valerena-4,7(11)-diene synthase (VDS) derived from Valeriana officinalis (valerian) was expressed in S. cerevisiae to generate valerena-4,7(11)-diene as the precursor of VA. By overexpressing the key genes of the mevalonate pathway ERG8, ERG12 and ERG19, and integrating 4 copies of MBP (maltose-binding protein)-VDS-ERG20 gene expression caskets into the genome, the production of valerena-4,7(11)-diene was improved to 75 mg/L. On this basis, the cytochrome P450 monooxygenase LsGAO2 derived from Lactuca sativa was expressed to oxidize valerena-4,7(11)-diene to produce VA, and the most effective VA production strain was used for fermentation. The yield of VA reached 2.8 mg/L in the flask and 6.8 mg/L in a 5-L bioreactor fed glucose. CONCLUSIONS: An S. cerevisiae strain was constructed and optimized to produce VA, but the valerena-4,7(11)-diene oxidation by LsGAO2 is still the rate-limiting step for VA synthesis that needs to be further optimized in future studies.


Subject(s)
Indenes , Sesquiterpenes , Valerian , Fermentation , Indenes/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sesquiterpenes/metabolism , Valerian/genetics , Valerian/metabolism
17.
Appl Microbiol Biotechnol ; 106(5-6): 1933-1944, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35235006

ABSTRACT

Forskolin, one of the primary active metabolites of labdane-type diterpenoids, exhibits significant medicinal value, such as anticancer, antiasthmatic, and antihypertensive activities. In this study, we constructed a Saccharomyces cerevisiae cell factory that efficiently produced forskolin. First, a chassis strain that can accumulate 145.8 mg/L 13R-manoyl oxide (13R-MO), the critical precursor of forskolin, was constructed. Then, forskolin was produced by integrating CfCYP76AH15, CfCYP76AH11, CfCYP76AH16, ATR1, and CfACT1-8 into the 13R-MO chassis with a titer of 76.25 µg/L. We confirmed that cytochrome P450 enzymes (P450s) are the rate-limiting step by detecting intermediate metabolite accumulation. Forskolin production reached 759.42 µg/L by optimizing the adaptations between CfCYP76AHs, t66CfCPR, and t30AaCYB5. Moreover, multiple metabolic engineering strategies, including regulation of the target genes' copy numbers, amplification of the endoplasmic reticulum (ER) area, and cofactor metabolism enhancement, were implemented to enhance the metabolic flow to forskolin from 13R-MO, resulting in a final forskolin yield of 21.47 mg/L in shake flasks and 79.33 mg/L in a 5 L bioreactor. These promising results provide guidance for the synthesis of other natural terpenoids in S. cerevisiae, especially for those containing multiple P450s in their synthetic pathways. KEY POINTS: • The forskolin biosynthesis pathway was optimized from the perspective of system metabolism for the first time in S. cerevisiae. • The adaptation and optimization of CYP76AHs, t66CfCPR, and t30AaCYB5 promote forskolin accumulation, which can provide a reference for diterpenoids containing complex pathways, especially multiple P450s pathways. • The forskolin titer of 79.33 mg/L is the highest production currently reported and was achieved by fed-batch fermentation in a 5 L bioreactor.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Biosynthetic Pathways , Colforsin , Fermentation , Metabolic Engineering/methods , Saccharomyces cerevisiae/metabolism
18.
J Cell Mol Med ; 25(18): 8748-8763, 2021 09.
Article in English | MEDLINE | ID: mdl-34374193

ABSTRACT

Glioma is the most common malignancy of the nervous system with high rates of recurrence and mortality, even after surgery. The 5-year survival rate is only about 5%. NEK8 is involved in multiple biological processes in a variety of cancers; however, its role in glioma is still not clear. In the current study, we evaluated the prognostic value of NEK8, as well as its role in the pathogenesis of glioma. Using a bioinformatics approach and RNA-seq data from public databases, we found that NEK8 expression is elevated in glioma tissues; we further verified this result by RT-PCR, Western blotting and immunochemistry using clinical samples. Functional enrichment analyses of genes with correlated expression indicated that elevated NEK8 expression is associated with increased immune cell infiltration in glioma and may affect the tumour microenvironment via the regulation of DNA damage/repair. Survival analyses revealed that high levels of NEK8 are associated with a poorer prognosis; higher WHO grade, IDH status, 1p/19q codeletion, age and NEK8 were identified as an independent prognostic factor. These findings support the crucial role of NEK8 in the progression of glioma via effects on immune cell infiltration and suggest that it is a new prognostic biomarker.


Subject(s)
Biomarkers, Tumor/metabolism , Computational Biology/methods , Glioma , NIMA-Related Kinases/metabolism , Glioma/immunology , Glioma/metabolism , Glioma/therapy , Humans , Leukemic Infiltration/pathology , Prognosis , Survival Rate , Tumor Microenvironment
19.
Environ Sci Pollut Res Int ; 28(34): 46877-46893, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34254241

ABSTRACT

With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.


Subject(s)
Petroleum Pollution , Petroleum , Soil Pollutants , Bacteria/genetics , Biodegradation, Environmental , Hydrocarbons , Petroleum Pollution/analysis , Soil Microbiology , Soil Pollutants/analysis
20.
Appl Biochem Biotechnol ; 193(10): 3202-3213, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34097255

ABSTRACT

Soyasapogenol B is an oleanane-type pentacyclic triterpene that has various applications in food and healthcare and has a higher biological activity than soyasaponin. Saccharomyces cerevisiae is a potential platform for terpenoid production with mature genetic tools for metabolic pathway manipulation. In this study, we developed a biosynthesis method to produce soyasapogenol B. First, we expressed ß-amyrin synthase derived from Glycyrrhiza glabra in S. cerevisiae to generate ß-amyrin, as the precursor of soyasapogenol B. Several different types of promoters were then used to regulate the expression of key genes in the mevalonate pathway (MVA), and this subsequently increased the yield of ß-amyrin to 17.6 mg/L, 25-fold more than that produced in the original strain L01 (0.68 mg/L). Then, using the ß-amyrin-producing strain, we expressed soyasapogenol B synthases from Medicago truncatula (CYP93E2 and CYP72A61V2) and from G. glabra (CYP93E3 and CYP72A566). Soyasapogenol B yields were then optimized by using soyasapogenol B synthases and cytochrome P450 reductase from G. glabra. The most effective soyasapogenol B production strain was used for fermentation, and the yield of soyasapogenol B reached 2.9 mg/L in flask and 8.36 mg/L in a 5-L bioreactor with fed glucose and ethanol. This study demonstrated the heterologous synthesis of soyasapogenol B in S. cerevisiae using the combined expression of CYP93E3 and CYP72A566 in the synthesis pathway, which significantly increased the production of soyasapogenol B and provides a reference method for the biosynthesis of other triterpenes.


Subject(s)
Saccharomyces cerevisiae , Fermentation , Oleanolic Acid/analogs & derivatives , Saponins
SELECTION OF CITATIONS
SEARCH DETAIL