Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Biology (Basel) ; 13(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39194558

ABSTRACT

Chronic stress has become a major problem that endangers people's physical and mental health. Studies have shown that chronic stress impairs female reproduction. However, the related mechanism is not fully understood. P2X7 receptor (P2X7R) is involved in a variety of pathological changes induced by chronic stress. Whether P2X7R is involved in the effect of chronic stress on female reproduction has not been studied. In this study, we established a chronic restraint stress mouse model and chronic cold stress mouse model. We found that the number of corpora lutea was significantly reduced in the two chronic stress models. The number of corpora lutea indirectly reflects the ovulation, suggesting that chronic stress influences ovulation. P2X7R expression was significantly increased in ovaries of the two chronic stress models. A superovulation experiment showed that P2X7R inhibitor A-438079 HCL partially rescued the ovulation rate of the two chronic stress models. Further studies showed that activation of P2X7R signaling inhibited the cumulus expansion and promoted the expression of NPPC in granulosa cells, one key negative factor of cumulus expansion. Moreover, sirius red staining showed that the ovarian fibrosis was increased in the two chronic stress models. For the fibrosis-related factors, TGF-ß1 was increased and MMP2 was decreased. In vitro studies also showed that activation of P2X7R signaling upregulated the expression of TGF-ß1 and downregulated the expression of MMP2 in granulosa cells. In conclusion, P2X7R expression was increased in the ovaries of the chronic restraint-stress and chronic cold-stress mouse models. Activation of P2X7R signaling promoted NPPC expression and cumulus expansion disorder, which contributed to the abnormal ovulation of the chronic stress model. Activation of P2X7R signaling is also associated with the ovarian fibrosis changes in the chronic stress model.

2.
Reprod Sci ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192066

ABSTRACT

Granulosa cells (GCs) are important drives of the reproductive process, not only the supporting cells for nutrition, but also cells with endocrine functions. Their differentiation and development parallel the entire menstruation period and even during pregnancy, making it tightly linked to the fate of the follicle. To elucidate the underlying mechanism is of great significance for related researches. The life course of GCs is briefly divided into five stages, from epithelial cells to pre-granulosa cells, GCs, mural and cumulus cells, lutein cells, and eventually disappear. A wide variety of genes and transcription factors participate in the regulation of different stages, and more importantly, various hormones secreted by the pituitary gland and GCs themselves play a leading role. These endogenous and exogenous signalling molecules interact to form a cross-linked communication network, promoting the development of GCs. Together with oocytes, theca cells and other functional cells in the ovary, GCs drive one of the most vital biological processes in women.

3.
Huan Jing Ke Xue ; 45(6): 3595-3604, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897779

ABSTRACT

This study aimed to investigate the impact of different nitrogen forms on soil physicochemical properties and microbial community structure in perennial alpine cultivated grasslands, in order to provide scientific basis for developing nitrogen addition strategies for perennial alpine cultivated grasslands. In June 2022, a 4-year-old Qinghai grassland mixed with Poa pratensis Qinghai and Festuca sinensis Qinghai was established at the Bakatai Farm in Gonghe County, Hainan Tibetan Autonomous Prefecture, Qinghai Province. The study was conducted without fertilization as a control (CK), and three different forms of nitrogen treatments were set up, namely, U:urea (amide nitrogen), A:ammonium sulfate (ammonium nitrogen), and N:calcium nitrate (nitrate nitrogen); the nitrogen application rate for each treatment was 67.5 kg·(hm2·a)-1, and the composition and diversity of soil nutrients and microbial communities under different treatments were analyzed. The results showed that the input of exogenous ammonium nitrogen significantly increased NH4+-N content, AP content, and EC; amide nitrogen input significantly increased SOC content and TN content; and nitrate nitrogen input significantly increased NO3--N content, AN content, and TC content. Exogenous nitrogen input changed the structure of soil bacterial and fungal communities, as well as the relative abundance of dominant phyla and genera, but it did not significantly affect the alpha diversity of bacterial and fungal communities. Principal coordinate analysis (PCoA) showed that different forms of nitrogen addition had a significant impact on the Beta diversity of bacterial communities, whereas the impact on fungal communities was not significant. Redundancy analysis (RDA) indicated that nitrogen addition mainly changed the composition and structure of microbial communities through soil ammonium nitrogen. Overall, ammonium nitrogen fertilizer should be given priority in the soil remediation process of perennial cultivated grasslands in the Qinghai Tibet Plateau.


Subject(s)
Fertilizers , Grassland , Microbiota , Nitrogen , Soil Microbiology , Soil , Soil/chemistry , China , Poaceae/growth & development
4.
World J Psychiatry ; 14(5): 653-660, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38808093

ABSTRACT

BACKGROUND: Depression is a common and serious psychological condition, which seriously affects individual well-being and functional ability. Traditional treatment methods include drug therapy and psychological counseling; however, these methods have different degrees of side effects and limitations. In recent years, nonconvulsive electrotherapy (NET) has attracted increasing attention as a noninvasive treatment method. However, the clinical efficacy and potential mechanism of NET on depression are still unclear. We hypothesized that NET has a positive clinical effect in the treatment of depression, and may have a regulatory effect on serum inflammatory factors during treatment. AIM: To assess the effects of NET on depression and analyze changes in serum inflammatory factors. METHODS: This retrospective study enrolled 140 patients undergoing treatment for depression between May 2017 and June 2022, the observation group that received a combination of mindfulness-based stress reduction (MBSR) and NET treatment (n = 70) and the control group that only received MBSR therapy (n = 70). The clinical effectiveness of the treatment was evaluated by assessing various factors, including the Hamilton Depression Scale (HAMD)-17, self-rating idea of suicide scale (SSIOS), Pittsburgh Sleep Quality Index (PSQI), and levels of serum inflammatory factors before and after 8 wk of treatment. The quality of life scores between the two groups were compared. Comparisons were made using t and χ2 tests. RESULTS: After 8 wk of treatment, the observation group exhibited a 91.43% overall effectiveness rate which was higher than that of the control group which was 74.29% (64 vs 52, χ2 = 7.241; P < 0.05). The HAMD, SSIOS, and PSQI scores showed a significant decrease in both groups. Moreover, the observation group had lower scores than the control group (10.37 ± 2.04 vs 14.02 ± 2.16, t = 10.280; 1.67 ±0.28 vs 0.87 ± 0.12, t = 21.970; 5.29 ± 1.33 vs 7.94 ± 1.35, t = 11.700; P both < 0.001). Additionally, there was a notable decrease in the IL-2, IL-1ß, and IL-6 in both groups after treatment. Furthermore, the observation group exhibited superior serum inflammatory factors compared to the control group (70.12 ± 10.32 vs 102.24 ± 20.21, t = 11.840; 19.35 ± 2.46 vs 22.27 ± 2.13, t = 7.508; 32.25 ± 4.6 vs 39.42 ± 4.23, t = 9.565; P both < 0.001). Moreover, the observation group exhibited significantly improved quality of life scores compared to the control group (Social function: 19.25 ± 2.76 vs 16.23 ± 2.34; Emotions: 18.54 ± 2.83 vs 12.28 ± 2.16; Environment: 18.49 ± 2.48 vs 16.56 ± 3.44; Physical health: 19.53 ± 2.39 vs 16.62 ± 3.46; P both < 0.001) after treatment. CONCLUSION: MBSR combined with NET effectively alleviates depression, lowers inflammation (IL-2, IL-1ß, and IL-6), reduces suicidal thoughts, enhances sleep, and improves the quality of life of individuals with depression.

5.
Environ Res ; 251(Pt 1): 118572, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38437902

ABSTRACT

The presence of nanoplastics posed a potential threat to coastal saline-alkaline wetlands where nitrogen (N) fertilizer is being implemented as an important ecological restoration measure. Notwithstanding, the effects of N inputs on plant community in polypropylene-nanoplastics (PP-NPs) coexistence environments are largely unknown. To address this, we investigated the effects of PP-NPs addition alone or combined N supply on community aboveground biomass, morphological traits, diversity, composition, niche differentiation, interspecific interactions, and assembly. Our results showed that the PP-NPs addition alone reduced community aboveground biomass and morphological traits. However, the addition of high concentration (0.5%) PP-NPs alone favored community α-diversity and reduced community stability, which could be weakened through combined N supply. Overall, the effect of PP-NPs addition alone on plant community composition was greater than that of combined N supply. We also demonstrated PP-NPs addition alone and combined N supply reduced the niche breadth of the plant community and affected the niche overlap of dominant species. In the assembly of plant communities, stochastic processes played a dominant role. We conclude that N fertilization can amend the terrestrial nanoplastics pollution, thus mitigating the effects of PP-NPs on the plant community.


Subject(s)
Nitrogen , Plants , Wetlands , Plants/drug effects , Fertilizers/analysis , Biomass , Polypropylenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Biodiversity
6.
J Environ Manage ; 351: 119850, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141346

ABSTRACT

Alpine meadows constitute one of the major ecosystems on the Qinghai-Tibetan Plateau, with livestock grazing exerting a considerable impact on their biodiversity. However, the degree to which plant diversity influences community stability under different grazing intensities remains unclear in this region. This study conducted controlled grazing experiments across four levels of grazing intensity (no-, low-, medium-, and high-grazing) based on herbage utilization rate to assess the influence of grazing intensities on plant community structure and diversity-stability relationships. We discovered that high-grazing reduced plant diversity and attenuated the temporal stability and resistance of above-ground biomass. No- and low-grazing could alleviate plant biomass loss, with community resistance being optimal under low-grazing. The direct effects of livestock grazing on temporal stability were found to be negligible. Plant characteristics and diversity accounted for a substantial proportion of livestock grazing effects on community resistance (R2 = 0.46), as revealed by piecewise structural equation model analysis. The presence of plant diversity enhances the resistance of alpine meadows against disturbance and accelerates the recovery after grazing. Our results suggest that low-grazing intensity may represent a judicious option for preserving species diversity and community stability on the Qinghai-Tibetan Plateau.


Subject(s)
Ecosystem , Livestock , Animals , Grassland , Biodiversity , Biomass , Plants
7.
Article in English | MEDLINE | ID: mdl-37971463

ABSTRACT

Background: Although the level of medical care has been improved in recent years, the probability of patients contracting pathogens has increased greatly, with a rising incidence of invasive fungal infections. Deep-seated fungi have become common pathogens of nosocomial infections. Objective: This study aims to systematically assess the effectiveness, mortality, survival rate, and adverse reactions (ARs) of high-dose (HD) liposomal amphotericin B (L-AMB) for human diseases. Methods: Ten articles (1661 patients) of randomized controlled trials (RCTs; whether randomized, single-blind, or double-blind) from January 1, 1960, to December 31, 2020, of HD-L-AMB treatment of diseases were retrieved from the PubMed, Embase, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials databases. The primary outcome measure was the overall therapeutic effect, and the secondary outcome measures were mortality, ≥10-week survival, and ARs. Data were meta-analyzed using RevMan 5.3. Results: Ten RCTs involving 1661 patients were included. HD-L-AMB did not show a significant therapeutic advantage in anti-infection treatment. In addition, HD-L-AMB treatment of invasive Aspergillus infection led to high mortality and low survival (≥10 weeks, OR = 0.57, 95%CI 0.34-0.94, P = .03). According to subgroup analysis, the incidence of ARs and the incidence of renal dysfunction associated with invasive fungal infection treatment were higher with HD-L-AMB than with regular-dose L-AMB. Conclusion: HD-L-AMB had no obvious advantage for the treatment of diseases and was accompanied by increased mortality, reduced long-term survival, and increased ARs (including renal insufficiency). Therefore, the use of HD-L-AMB to control infections is recommended with caution only when the preferred treatment is contraindicated.

8.
Front Microbiol ; 14: 1257521, 2023.
Article in English | MEDLINE | ID: mdl-37744903

ABSTRACT

Grazing by local livestock is the traditional human practice in Qinghai-Tibetan Plateau grassland, and moderate intensity grazing can maintain high productivity and diversity of alpine grassland. Grazing ecosystems are often nitrogen-limited, but N2-fixing communities in response to yak grazing and Tibetan sheep grazing in Qinghai-Tibetan Plateau grassland have remained underexplored. In this study, we applied quantitative PCR quantitation and MiSeq sequencing of nifH under yak grazing and Tibetan grazing through a manipulated grazing experiment on an alpine grassland. The results showed that the grazing treatments significantly increased the soil ammonium nitrogen (AN) and total phosphorus (TP), but reduced the diazotrophs abundance. Compared with no grazing treatment, the composition of diazotrophs could be maximally maintained when the ratio of yak and Tibetan sheep were 1:2. The foraging strategies of grazing livestock reduced the legumes biomass, and thus reduced the diazotrophs abundance. Data analysis suggested that the direct key factors in regulating diazotrophs are AN and TP, and the changes of these two soil chemical properties were affected by the dung and urine of herbivore assemblages. Overall, these results indicated that the mixed grazing with a ratio of yak to Tibetan sheep as 1:2 can stabilize the soil diazotrophsic community, suggesting that MG12 are more reasonable grazing regimes in this region.

9.
Biomedicines ; 11(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37509566

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-ß1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-ß1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-ß1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.

10.
Microbiol Spectr ; 11(4): e0031123, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37260406

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) in foods has been associated with severe infections in humans and animals worldwide. In the present study, the molecular characteristics of livestock-associated MRSA (LA-MRSA) and human-associated MRSA (hMRSA) isolates obtained in China, as well as MRSA isolates obtained from raw milk in 2018, were investigated. In total, 343 (20.38%; 343/1,683) S. aureus isolates were obtained from 1,683 raw milk samples from 100 dairy farms in 11 provinces across China. Among these, 49 (2.91%; 49/1,683) were mecA-positive MRSA. All LA-MRSA isolates were resistant to penicillin and highly resistant to erythromycin, sulfisoxazole, and clindamycin. Bioinformatic analysis the 49 genomes of LA-MRSA and 71 previously published hMRSA genomes isolated from Chinese individuals in 2018 indicated that blaZ, erm, ant(6)-Ia, aph(3')-III, tet(K), cat, and aph(2″)-Ia were more prevalent in MRSA from raw milk (P < 0.05) compared to hMRSA. Additionally, hMRSA isolates were more significantly associated with ST5 (P < 0.01) compared to LA-MRSA; in contrast, ST338 was more prevalent among LA-MRSA isolates (P < 0.01). Likewise, the SCCmec type II was only detected in hMRSA isolates, whereas SCCmec type V and IV were more prevalent among LA-MRSA (P < 0.01). Furthermore, core-genome phylogenetic analysis showed the endemic characteristics of LA-MRSA in local provinces, as well as the close evolutionary relationships between MRSA from cattle and humans. Finally, homology analysis of mecA and blaZ genetic contexts revealed a high possibility of horizontal transmission of MRSA resistance genes among raw milk-associated and hMRSA strains, which increases the risk for public health. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is considered a public health concern as it is resistant to multiple antibiotics, thus being in zoonotic transmission of antibiotic resistance genes. MRSA causes serious public health issues and leads to hard-to-treat infections in humans and animals; therefore, it was meaningful to determine the prevalence of MRSA in raw milk samples and investigate phenotype and genotype of antimicrobial resistance and molecular characteristics in livestock-associated MRSA (LA-MRSA) and human-associated MRSA (hMRSA) in China, which could provide a theoretical basis for preventing and controlling the spread of MRSA between livestock and humans.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Animals , Cattle , Staphylococcus aureus/genetics , Milk , Phylogeny , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary
11.
Article in English | MEDLINE | ID: mdl-37106514

ABSTRACT

INTRODUCTION: Studies have indicated that the conservative Notch pathway contributes to steroid hormone synthesis in the ovaries; however, its role in hormone synthesis of the testis remains unclear. We have previously reported Notch 1, 2, and 3 to be expressed in murine Leydig cells and that inhibition of Notch signaling caused G0/G1 arrest in TM3 Leydig cells. METHOD: In this study, we have further explored the effect of different Notch signal pathways on key steroidogenic enzymes in murine Leydig cells. TM3 cells were treated with Notch signaling pathway inhibitor MK-0752, and different Notch receptors were also overexpressed in TM3 cells. RESULT: We evaluated the expression of key enzymes of steroid synthesis, including p450 cholesterol side-chain cleavage enzyme (P450Scc), 3ß-hydroxysteroid dehydrogenase (3ß-HSD) and steroidogenic acute regulatory protein (StAR), and key transcriptional factors for steroid synthesis, including steroidogenic factor 1 (SF1), GATA-binding protein 4 (GATA4) and GATA6. CONCLUSION: We found the level of P450Scc, 3ß-HSD, StAR and SF1 to be decreased after treatment with MK-0752, while overexpression of Notch1 up-regulated the expression of 3ß-HSD, P450Scc, StAR and SF1. MK-0752 and overexpression of different Notch members had no influence on the expression of GATA4 and GATA6. In conclusion, Notch1 signaling may contribute to the steroid synthesis in Leydig cells through regulating SF1 and downstream steroidogenic enzymes (3ß-HSD, StAR and P450Scc).

12.
Front Plant Sci ; 14: 1117372, 2023.
Article in English | MEDLINE | ID: mdl-36938013

ABSTRACT

Three different herbivore grazing assemblages, namely, yak grazing (YG), Tibetan sheep grazing (SG) and yak and Tibetan sheep co-grazing (MG), are practiced in alpine meadows on the Qinghai-Tibetan Plateau (QTP), but the effects of the different herbivore assemblages on soil microbes are relatively unknown. The microbial community plays an important role in the functional stability of alpine grassland ecosystems. Therefore, it is important to understand how the microbial community structure of grassland ecosystems changes under different herbivore grazing assemblages to ensure their sustainable development. To fill this gap, a field study was carried out to investigate the effects of YG, SG, and MG on plant communities, soil physico-chemical properties and microbial communities under moderate grazing intensity in alpine meadows. Grazing increased the ß-diversity of the bacteria community and decreased the ß-diversity of the fungal community. The herbivore assemblage affected the microbial community diversity, but not the plant community diversity. Total phosphorus, soil bulk density, root biomass, and plant α-diversity were correlated with both the bacterial and fungal community composition, available phosphorus and soil moisture were correlated only with the bacterial community composition, while available potassium and above-ground net primary production (ANPP) were correlated only with the fungal community composition. Soil available nitrogen, soil available phosphorus and soil bulk density were highest in SG, while ANPP was highest in MG. It was concluded that MG can improve ANPP and stabilize the soil microbial community, suggesting that MG is an effective method for sustainable use and conservation of alpine meadows on the QTP.

13.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901862

ABSTRACT

Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.


Subject(s)
Primary Ovarian Insufficiency , Female , Humans , Infant, Newborn , Amenorrhea/genetics , Chromosome Aberrations , Mutation , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/pathology
14.
Environ Toxicol ; 38(6): 1292-1304, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36880193

ABSTRACT

Swietenia macrophylla King, belongs to the Meliaceae family, is a valuable medicinal plant and its fruits have been processed commercially to a variety of health foods. The seeds have long been known for their ethnomedicinal significance against these diseases. Swietenine (Swi) was isolated from S. macrophylla and could ameliorate inflammation and oxidative stress. In this study, HepG2 cells induced by H2 O2 were used to construct oxidative stress model in vitro. The aim of this study was to investigate the protective effect of Swi on H2 O2 induced oxidative injury in HepG2 cells and its molecular mechanism, and to explore the effect of Swi on liver injury in db/db mice and its possible mechanism. The results showed that Swi significantly inhibited HepG2 cells viability and reduced oxidative damage in a dose-dependent manner as evidenced by a range of biochemical analysis and immunoblotting study. Moreover, it induced the protein and mRNA expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of AKT in HepG2 cells. LY294002, a PI3K/AKT inhibitor, significantly suppressed the Nrf2 nuclear translocation and HO-1 expression in H2 O2 induced HepG2 cells treated with Swi. In addition, RNA interference with Nrf2 significantly reduced the expression level of Nrf2 and HO-1 in the nucleus. Swi has a significant protective effect on cell damage in H2 O2 induced HepG2 cells by increasing the antioxidant capacity which is achieved through the AKT/Nrf2/HO-1 pathway. Additionally, in vivo, Swi could protect the liver of type 2 diabetic mice by improving lipid deposition in liver tissue and inhibiting oxidative stress. These findings indicated that Swi can be a promising dietary agent to improve type 2 diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Apoptosis , Oxidative Stress , Signal Transduction , Liver/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
15.
Environ Res ; 222: 115333, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36706900

ABSTRACT

The knowledge of ecological stoichiometry and stoichiometric homeostasis could contribute to exploring the balance of chemical elements in ecological recovery. However, it is largely unknown how the carbon (C), nitrogen (N), phosphorus (P), and stoichiometric characteristics in the plant-soil-microbe continuum system respond to the spontaneous secondary succession of degraded alpine grasslands. Therefore, we investigated the spontaneous secondary successional recovery of grasslands disturbed by zokor (Myospalax fontanierii) on the Qinghai-Tibetan Plateau, China, via a strategy of substituting space for time. Based on plant richness, biomass, and coverage, plant importance value was employed to assess the recovery degree of zokor-made mounds (ZMMs, large and bare patch areas constructed by zokors). Multiple statistical methods, including stoichiometric homeostatic model, network, and redundancy analysis, were conducted to decipher the stoichiometric patterns. The results indicated that plant C, C:N, and C:P increased with the recovery of ZMMs, contrary to the decrease of plant N and P. In addition, soil C, N, C:N, C:P, and N:P increased with the recovery degree, and the soil became relatively more N rich by increasing organic N under the revegetation of legumes. Meanwhile, soil microbial biomass C, N, and P increased with the recovery of ZMMs, but microbial biomass C:N:P ratios were highly constrained. Soil accessible inorganic nitrogen played an important role in driving plant and microbial nutrient and stoichiometry. Our results demonstrated that the different responses of C, N, and P contents in plant-soil-microbe lead to shifts in C:N:P stoichiometric ratio. Nevertheless, plants and soil microbes exhibited strong stoichiometric homeostasis. Collectively, our study provides new insight into biogeochemical responses to the successional recovery of degraded alpine grassland on the Qinghai-Tibetan Plateau from a stoichiometric perspective.


Subject(s)
Grassland , Soil , Tibet , Soil/chemistry , Plants , Biomass , Nitrogen/analysis , Carbon/analysis , Ecosystem
16.
Reprod Sci ; 30(2): 350-360, 2023 02.
Article in English | MEDLINE | ID: mdl-35384637

ABSTRACT

New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.


Subject(s)
Estrogens , Ovary , Female , Humans , Ovary/metabolism , Estrogens/metabolism , Signal Transduction , Aromatase/metabolism
17.
Microorganisms ; 10(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36557604

ABSTRACT

Methicillin-resistant staphylococcus aureus (MRSA) is a major pathogen responsible for human hospital and community-onset diseases and severe invasive livestock infections. Rapid detection of MRSA is essential to control the spread of MRSA. Conventional identification methods and antibacterial susceptibility tests of MRSA are time-consuming. The commonly used qPCR assay also has the disadvantages of being complicated and expensive, restricting its application in resource-limited clinical laboratories. Here, a real-time fluorescent recombinase-assisted amplification (RAA) assay targeting the most conserved regions within the mecA gene of MRSA was developed and evaluated to detect MRSA. The detection limit of this assay was determined to be 10 copies/reaction of positive plasmids. The established RAA assay showed high specificity for MRSA detection without cross-reactivities with other clinically relevant bacteria. The diagnostic performance of real-time RAA was evaluated using 67 clinical S. aureus isolates from dairy farms, which were detected in parallel using the TaqMan probe qPCR assay. The results showed that 56 and 54 samples tested positive for MRSA by RAA and qPCR, respectively. The overall agreement between both assays was 97.01% (65/67), with a kappa value of 0.9517 (p < 0.001). Further linear regression analysis demonstrated that the detection results between the two assays were significantly correlated (R2 = 0.9012, p < 0.0001), indicating that this RAA assay possesses similar detection performance to the qPCR assay. In conclusion, our newly established RAA assay is a time-saving and convenient diagnostic tool suitable for MRSA detection and screening.

18.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362069

ABSTRACT

Fibrosis is a pathological process in which parenchymal cells are necrotic and excess extracellular matrix (ECM) is accumulated due to dysregulation of tissue injury repair. Thymosin ß4 (Tß4) is a 43 amino acid multifunctional polypeptide that is involved in wound healing. Prolyl oligopeptidase (POP) is the main enzyme that hydrolyzes Tß4 to produce its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) which is found to play a role in the regulation of fibrosis. Accumulating evidence suggests that the Tß4-POP-Ac-SDKP axis widely exists in various tissues and organs including the liver, kidney, heart, and lung, and participates in the process of fibrogenesis. Herein, we aim to elucidate the role of Tß4-POP-Ac-SDKP axis in hepatic fibrosis, renal fibrosis, cardiac fibrosis, and pulmonary fibrosis, as well as the underlying mechanisms. Based on this, we attempted to provide novel therapeutic strategies for the regulation of tissue damage repair and anti-fibrosis therapy. The Tß4-POP-Ac-SDKP axis exerts protective effects against organ fibrosis. It is promising that appropriate dosing regimens that rely on this axis could serve as a new therapeutic strategy for alleviating organ fibrosis in the early and late stages.


Subject(s)
Fibrosis , Oligopeptides , Prolyl Oligopeptidases , Humans , Fibrosis/etiology , Fibrosis/metabolism , Oligopeptides/metabolism , Prolyl Oligopeptidases/metabolism , Thymosin/metabolism
19.
Environ Toxicol ; 37(11): 2780-2792, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36214338

ABSTRACT

Oxidative stress is an important factor that causes pancreatic ß-cell dysfunction leading to the development and aggravation of diabetes. Swietenine (Stn) and swietenolide (Std) were isolated from the fruits of Swietenia macrophylla King and had the potential effects on treatment and prevention of diabetes. The aim of this study is to investigate the effects of Stn and Std on insulin secretion and apoptosis in H2 O2 induced insulinoma cell line (INS-1) cells. In the present study, INS-1 cells were treated with 300 µM H2 O2 for 4 h to establish the oxidative damage model. Cell apoptosis, insulin secretion, reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels, and Caspase-3 enzyme activity were measured via corresponding methods. Finally, pancreatic duodenal home box factor-1 (PDX-1), B cell lymphoma-2 (Bcl-2), and Bax protein expression were detected by western blot. Experimental results showed that Stn and Std could significantly improve the INS-1 cell viability, increase the secretion of insulin and reduce the ROS level in H2 O2 induced INS-1 cells. Furthermore, the SOD and GSH levels increased, and the MDA levels decreased compared with the model group after Stn and Std treatment. In addition, after treated with Stn and Std, cell apoptosis was improved, and the activity of Caspase 3 was also significantly inhibited. Meanwhile, Western blot results showed that Stn and Std could up-regulate the expression of PDX-1 protein, and affect the cell apoptosis pathway by up-regulating the expression of Bcl-2 protein and down-regulating the expression of Bax protein. In conclusion, Stn and Std can signifcantly improve the insulin secretion function, protect oxidative stress injury, and reduce apoptosis in H2 O2 induced INS-1 cells, which provides a research basis for Stn and Std to be new drug candidates for the treatment and prevention of diabetes.


Subject(s)
Diabetes Mellitus , Meliaceae , Sexually Transmitted Diseases , Apoptosis , Caspase 3/metabolism , Glutathione/metabolism , Insulin/metabolism , Insulin Secretion , Limonins , Malondialdehyde/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/metabolism
20.
Environ Toxicol ; 37(12): 2977-2989, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36066211

ABSTRACT

Swietenine (Swi), isolated from Swietenia macrophylla King ameliorates inflammation and oxidative stress, and diabetic nephropathy has a close connection with them. So the effects of Swi on diabetic nephropathy and its mechanism of action was explored. We divided human mesangial cells into five groups and determined the expression of NF-κB and NLRP3 inflammasomes in each group. The levels of inflammatory factors IL-1ß and IL-18 were also measured. To explore the relationship between NF-κB and NLRP3, we added PDTC, a specific NF-κB inhibitor, and LPS, and divided the experimental groups into seven groups. We measured the expressions of NF-κB and NLRP3, and then added MCC950, a specific inhibitor of NLRP3 and LPS, the expression of NLRP3, Caspase-1, and IL-1ß and IL-18 were measured. Animals divided into four groups and administered over 8 weeks. Protein excretion, creatinine, urea nitrogen, and uric acid were measured. Swi down regulated the expression of NF-κB, NLRP3, and Caspase-1. It reduced the levels of IL-1ß and IL-18. PDTC decreased the expression of NF-κB and NLRP3. Compared with the HG + PDTC group, the expression of NF-κB and NLRP3 in the HG + Swi + PDTC group decreased significantly. After adding lipopolysaccharide, the expression of NF-κB and NLRP3 increased, but this situation was reversed after adding Swi. After adding LPS, the expression of NLRP3 and Caspase-1 increased, and the levels of IL-1ß and IL-18 also increased, but this situation was reversed after the addition of Swi. Swi significantly improved the renal function of mice with diabetic nephropathy and inhibited the activation of NF-κB and the NLRP3 inflammasome and reduced inflammation by regulating the NF-κB/NLRP3/Caspase-1 signaling pathway, thereby improving diabetic nephropathy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Mice , Humans , Caspase 1/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Interleukin-18 , Lipopolysaccharides/pharmacology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Signal Transduction , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL