Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 565
Filter
1.
Nano Lett ; 24(28): 8732-8740, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958407

ABSTRACT

Piwi-interacting RNAs (piRNAs) are small noncoding RNAs that repress transposable elements to maintain genome integrity. The canonical catalytic hairpin assembly (CHA) circuit relies on random collisions of free-diffused reactant probes, which substantially slow down reaction efficiency and kinetics. Herein, we demonstrate the construction of a spatial-confined self-stacking catalytic circuit for rapid and sensitive imaging of piRNA in living cells based on intramolecular and intermolecular hybridization-accelerated CHA. We rationally design a 3WJ probe that not only accelerates the reaction kinetics by increasing the local concentration of reactant probes but also eliminates background signal leakage caused by cross-entanglement of preassembled probes. This strategy achieves high sensitivity and good specificity with shortened assay time. It can quantify intracellular piRNA expression at a single-cell level, discriminate piRNA expression in tissues of breast cancer patients and healthy persons, and in situ image piRNA in living cells, offering a new approach for early diagnosis and postoperative monitoring.


Subject(s)
RNA, Small Interfering , Humans , RNA, Small Interfering/genetics , Catalysis , Nucleic Acid Hybridization , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Kinetics , Piwi-Interacting RNA
2.
Mol Biol Rep ; 51(1): 808, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002003

ABSTRACT

BACKGROUND: Endothelial cells (ECs) can confer neuroprotection by secreting molecules. This study aimed to investigate whether DNA methylation contributes to the neuroprotective gene expression induced by hypoxia preconditioning (HPC) in ECs and to clarify that the secretion of molecules from HPC ECs may be one of the molecular mechanisms of neuroprotection. METHODS: Human microvascular endothelial cell-1 (HMEC-1) was cultured under normal conditions (C), hypoxia(H), and hypoxia preconditioning (HPC), followed by the isolation of culture medium (CM). SY5Y cell incubated with the isolated CM from HMEC-1 was exposed to oxygen-glucose deprivation (OGD). The DNA methyltransferases (DNMTs), global methylation level, miR-126 and its promotor DNA methylation level in HMEC-1 were measured. The cell viability and cell injury in SY5Y were detected. RESULTS: HPC decreased DNMTs level and global methylation level as well as increased miR-126 expression in HMEC-1. CM from HPC treated HMEC-1 also relieved SY5Y cell damage, while CM from HMEC-1 which over-expression of miR-126 can reduce injury in SY5Y under OGD condition. CONCLUSIONS: These findings indicate EC may secrete molecules, such as miR-126, to execute neuroprotection induced by HPC through regulating the expression of DNMTs.


Subject(s)
Cell Hypoxia , DNA Methylation , Endothelial Cells , MicroRNAs , Neurons , MicroRNAs/genetics , MicroRNAs/metabolism , DNA Methylation/genetics , Humans , Endothelial Cells/metabolism , Cell Hypoxia/genetics , Neurons/metabolism , Up-Regulation/genetics , Cell Survival/genetics , Glucose/metabolism , Cell Line , Oxygen/metabolism , Promoter Regions, Genetic/genetics
3.
Nanoscale ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011606

ABSTRACT

It is critical to design bifunctional passivation molecules to simultaneously passivate the charge transport layer and perovskite layer at the charge transport layer/perovskite interface in perovskite solar cells (PSCs). In this study, we investigate the effect of para-substituted benzoic acid with different Hammett constants (σ) on the photovoltaic performance of PSCs. Two passivation molecules 4-aminomethylbenzoic acid (4-AMBA) and 4-sulfamoylbenzoic acid (4-SABA) are used to passivate the SnO2 surface with carboxylic acid and the perovskite with para-substituent electron-donating -CH2NH2 (σ = ca. -0.02) and electron-withdrawing -SO2NH2 (σ = ca. +0.60). Compared with non-passivated PSC, the passivation improves the power conversion efficiency (PCE) mainly due to the increased open-circuit voltage (VOC) and fill factor (FF), where the -SO2NH2 substituent is better in improving the photovoltaic performance than the -CH2NH2 one. The trap density is more reduced and the charge extraction ability is more improved by 4-SABA than by 4-AMBA, which indicates that the weak electron-withdrawing nature of a para-substituent such as -SO2NH2 is better for the passivation of the bottom perovskite than a weak electron-donating -CH2NH2 substituent. Consequently, the passivation with 4-SABA enhances the PCE from 22.27% to 23.64%, along with improved long-term stability. This work highlights for the first time the role of the Hammett constant in the surface passivation of PSCs.

4.
Anal Chem ; 96(28): 11603-11610, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953495

ABSTRACT

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Fluorescent Dyes , RNA, Long Noncoding , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , RNA, Long Noncoding/analysis , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Humans , Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Limit of Detection , Fluorescence
5.
BMC Psychol ; 12(1): 399, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026265

ABSTRACT

BACKGROUND: Generalized anxiety (GA) is showing a high prevalence among adolescents nowadays; investigations on influencing factors and potential mechanisms are important to inform intervention development. The present two-wave study investigated the ways in which family functioning predicted GA six months later among adolescents, by considering the mediating role of self-identity and cognitive flexibility. METHODS: Adolescents were recruited from 27 randomly selected classes in two secondary schools in Chongqing and Fujian Province, China. Survey questionnaires assessing family functioning, self-identity, cognitive flexibility and GA were obtained from 1223 adolescents (Mage = 13.14, SD = 1.35) at two time points of the 6-month interval. RESULTS: The association between family functioning (T1) and GA (T2) was significant (r= -0.152, p < 0.01). Self-identity and cognitive flexibility sequentially mediated the relationship between family functioning (T1) and GA (T2) (with the indirect effect = -0.005, 95% CI = -0.007~ -0.002) after controlling for age, gender, and GA at baseline. Cognitive flexibility also showed a significant and direct mediating effect (with the indirect effect = -0.008, 95% CI = -0.012 ~ -0.005). CONCLUSION: Findings indicated that family functioning can be a protective factor of GA, and self-identity and cognitive flexibility act as a crucial role in the association between family functioning and GA. Future studies should adopt more time points and long-term follow-up assessments using more robust approaches to improve the reliability of the study findings. Findings may offer some implications that building a harmonious, open and warm family and guiding adolescents to develop self-identity as well as more flexible cognitive style could be helpful to prevent and cope with anxious emotion.


Subject(s)
Self Concept , Humans , Adolescent , Female , Male , Longitudinal Studies , China/epidemiology , Cognition , Anxiety/psychology , Anxiety/epidemiology , Family Relations/psychology , Surveys and Questionnaires , Anxiety Disorders/psychology , Anxiety Disorders/epidemiology , Executive Function , Family/psychology
6.
Front Immunol ; 15: 1414954, 2024.
Article in English | MEDLINE | ID: mdl-38933281

ABSTRACT

Objectives: To investigate the prediction of pathologic complete response (pCR) in patients with non-small cell lung cancer (NSCLC) undergoing neoadjuvant immunochemotherapy (NAIC) using quantification of intratumoral heterogeneity from pre-treatment CT image. Methods: This retrospective study included 178 patients with NSCLC who underwent NAIC at 4 different centers. The training set comprised 108 patients from center A, while the external validation set consisted of 70 patients from center B, center C, and center D. The traditional radiomics model was contrasted using radiomics features. The radiomics features of each pixel within the tumor region of interest (ROI) were extracted. The optimal division of tumor subregions was determined using the K-means unsupervised clustering method. The internal tumor heterogeneity habitat model was developed using the habitats features from each tumor sub-region. The LR algorithm was employed in this study to construct a machine learning prediction model. The diagnostic performance of the model was evaluated using criteria such as area under the receiver operating characteristic curve (AUC), accuracy, specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV). Results: In the training cohort, the traditional radiomics model achieved an AUC of 0.778 [95% confidence interval (CI): 0.688-0.868], while the tumor internal heterogeneity habitat model achieved an AUC of 0.861 (95% CI: 0.789-0.932). The tumor internal heterogeneity habitat model exhibits a higher AUC value. It demonstrates an accuracy of 0.815, surpassing the accuracy of 0.685 achieved by traditional radiomics models. In the external validation cohort, the AUC values of the two models were 0.723 (CI: 0.591-0.855) and 0.781 (95% CI: 0.673-0.889), respectively. The habitat model continues to exhibit higher AUC values. In terms of accuracy evaluation, the tumor heterogeneity habitat model outperforms the traditional radiomics model, achieving a score of 0.743 compared to 0.686. Conclusion: The quantitative analysis of intratumoral heterogeneity using CT to predict pCR in NSCLC patients undergoing NAIC holds the potential to inform clinical decision-making for resectable NSCLC patients, prevent overtreatment, and enable personalized and precise cancer management.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoadjuvant Therapy , Tomography, X-Ray Computed , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Female , Neoadjuvant Therapy/methods , Middle Aged , Retrospective Studies , Aged , Tomography, X-Ray Computed/methods , Treatment Outcome , Machine Learning , Immunotherapy/methods , Adult , Pathologic Complete Response
7.
Int J Pharm ; 660: 124317, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38851410

ABSTRACT

Human immunodeficiency virus (HIV) continues to pose a serious threat to global health. Oral preexposure prophylaxis (PrEP), considered highly effective for HIV prevention, is the utilisation of antiretroviral (ARV) drugs before HIV exposure in high-risk uninfected individuals. However, ARV drugs are associated with poor patient compliance and pill fatigue due to their daily oral dosing. Therefore, an alternative strategy for drug delivery is required. In this work, two dissolving microneedle patches (MNs) containing either bictegravir (BIC) or tenofovir alafenamide (TAF) solid drug nanoparticles (SDNs) were developed for systemic delivery of a novel ARV regimen for potential HIV prevention. According to ex vivo skin deposition studies, approximately 11% and 50% of BIC and TAF was delivered using dissolving MNs, respectively. Pharmacokinetic studies in Sprague Dawley rats demonstrated that BIC MNs achieved a long-acting release profile, maintaining the relative plasma concentration above the 95% inhibitory concentration (IC95) for 3 weeks. For TAF MNs, a rapid release of drug and metabolism of TAF into TFV were obtained from the plasma samples. This work has shown that the proposed transdermal drug delivery platform could be potentially used as an alternative method to systemically deliver ARV drugs for HIV PrEP.


Subject(s)
Administration, Cutaneous , Alanine , Anti-HIV Agents , HIV Infections , Needles , Pre-Exposure Prophylaxis , Rats, Sprague-Dawley , Tenofovir , Animals , Tenofovir/administration & dosage , Tenofovir/pharmacokinetics , Tenofovir/analogs & derivatives , Alanine/pharmacokinetics , Alanine/administration & dosage , Alanine/chemistry , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Pre-Exposure Prophylaxis/methods , HIV Infections/prevention & control , Male , Adenine/administration & dosage , Adenine/pharmacokinetics , Adenine/analogs & derivatives , Adenine/chemistry , Rats , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Drug Liberation , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/chemistry , Pyridones/administration & dosage , Pyridones/pharmacokinetics , Drug Delivery Systems , Piperazines/pharmacokinetics , Piperazines/administration & dosage , Piperazines/chemistry , Cyclopropanes/administration & dosage , Cyclopropanes/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Amides/administration & dosage , Amides/pharmacokinetics , Amides/chemistry
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167262, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815768

ABSTRACT

Cryoablation is a therapeutic modality for lung adenocarcinoma that destroys target tumors using lethal levels of cold, resulting in the release of large amounts of specific antigens that activate immune responses. However, tumor immune checkpoint escape mechanisms prevent these released self-antigens from inducing effective anti-tumor immune responses. To overcome this challenge, we propose the use of immune checkpoint inhibitors to relieve T cell inhibition by immune checkpoints and enhance the anti-tumor immune response mediated by cryoablation. We used bilateral tumor-bearing mouse models and a specific cryoablation instrument to study the efficacy of cryoablation combined with PD-1 inhibitors in Lewis lung adenocarcinoma model mice. We found that cryoablation combined with PD-1 inhibitors significantly inhibited the growth of mouse lung adenocarcinoma, prolonged mouse survival, and enhanced the anti-tumor immune response. Moreover, this combined regimen could synergistically promote the activation and proliferation of T cells via the PI3K/AKT/mTOR pathway. The present study provides a strong theoretical basis for the clinical combination of cryoablation and PD-1 inhibitors.

9.
Mol Pharm ; 21(6): 2813-2827, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38752564

ABSTRACT

Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.


Subject(s)
Administration, Cutaneous , Calcitriol , Drug Delivery Systems , Needles , Psoriasis , Rats, Sprague-Dawley , Psoriasis/drug therapy , Animals , Calcitriol/analogs & derivatives , Calcitriol/administration & dosage , Rats , Drug Delivery Systems/methods , Skin Absorption/drug effects , Skin/metabolism , Skin/drug effects , Skin/pathology , Particle Size , Male , Nanoparticles/chemistry , Imiquimod/administration & dosage , Suspensions , Dermatologic Agents/administration & dosage , Dermatologic Agents/pharmacokinetics , Transdermal Patch
10.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690966

ABSTRACT

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Subject(s)
Breast Neoplasms , Fluorescence Resonance Energy Transfer , Quantum Dots , RNA , Telomerase , Humans , Telomerase/metabolism , Telomerase/analysis , Quantum Dots/chemistry , RNA/metabolism , RNA/analysis , Female , Carbocyanines/chemistry , Biosensing Techniques/methods
11.
High Alt Med Biol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808452

ABSTRACT

Wang L, Fu G, Han R, Fan P, Yang J, Gong K, Zhao Z, Zhang C, Sun K, Shao GMALAT1 and NEAT1 Are Neuroprotective during Hypoxic Preconditioning in the Mouse Hippocampus Possibly by Regulation of NR2B High Alt Med Biol. 00:000-000, 2024. Background: The regulation of noncoding ribonucleic acid (ncRNA) has been shown to be involved in cellular and molecular responses to hypoxic preconditioning (HPC), a situation created by the induction of sublethal hypoxia in the brain. The ncRNAs metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) are abundantly expressed in the brain, where they regulate the expression of various genes in nerve cells. However, the exact roles of MALAT1 and NEAT1 in HPC are not fully understood. Methods: A mouse model of acute repeated hypoxia was used as a model of HPC, and MALAT1 and NEAT1 levels in the hippocampus were measured using real-time polymerase chain reaction (PCR). The mRNA and protein levels of N-methyl-d-aspartate receptor subunit 2 B (NR2B) in the mouse hippocampus were measured using real-time PCR and western blotting, respectively. HT22 cells knocked-down for MALAT1 and NEAT1 were used for in vitro testing. Expression of NR2B, which is involved in nerve cell injury under ischemic and hypoxic conditions, was also evaluated. The levels of spectrin and cleaved caspase-3 in MALAT1 and NEAT1 knockdown HT22 cells under oxygen glucose deprivation/reperfusion (OGD/R) were determined by western blotting. Results: HPC increased the expression of MALAT1 and NEAT1 and decreased the expression of NR2B mRNA in the mouse hippocampus (p < 0.05). Knockdown of MALAT1 and NEAT1 increased both NR2B mRNA and protein levels nearly twofold and caused damage under OGD/R conditions in HT22 cells (p < 0.05). Conclusion: MALAT1 and NEAT1 exert neuroprotective effects by influencing the expression of NR2B.

12.
Nano Lett ; 24(21): 6312-6319, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752550

ABSTRACT

We present a dimensional regulating charge transfer strategy to achieve an enhanced electrochemiluminescence (ECL) by constructing a one-dimensional pyrene-based covalent organic framework (1D-COF). The dual-chain-like edge architecture in 1D-COF facilitates the stabilization of aromatic backbones, the enhancement of electronic conjugations, and the decrease of energy loss. The 1D-COF generates enhanced anodic (92.5-fold) and cathodic (3.2-fold) signals with tripropylamine (TPrA) and K2S2O8 as the anodic and cathodic coreactants, respectively, compared with 2D-COF. The anodic and cathodic ECL efficiencies of 1D-COF are 2.08- and 3.08-fold higher than those of 2D-COF, respectively. According to density functional theory (DFT), the rotational barrier energy (ΔE) of 1D-COF enhances sharply with the increase of dihedral angle, suggesting that the architecture in 1D-COF restrains the intramolecular spin of aromatic chains, which facilitates the decrease of nonradiative transitions and the enhancement of ECL. Furthermore, 1D-COF can be used to construct an ECL biosensor for sensitive detection of dopamine.

13.
Cell Commun Signal ; 22(1): 227, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610001

ABSTRACT

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck. Vasculogenic mimicry (VM) is crucial for tumor growth and metastasis and refers to the formation of fluid channels by invasive tumor cells rather than endothelial cells. However, the regulatory mechanisms underlying VM during the malignant progression of LSCC remain largely unknown. METHODS: Gene expression and clinical data for LSCC were obtained from the TCGA and Gene GEO (GSE27020) databases. A risk prediction model associated with VM was established using LASSO and Cox regression analyses. Based on their risk scores, patients with LSCC were categorized into high- and low-risk groups. The disparities in immune infiltration, tumor mutational burden (TMB), and functional enrichment between these two groups were examined. The core genes in LSCC were identified using the machine learning (SVM-RFE) and WGCNA algorithms. Subsequently, the involvement of bone morphogenetic protein 2 (BMP2) in VM and metastasis was investigated both in vitro and in vivo. To elucidate the downstream signaling pathways regulated by BMP2, western blotting was performed. Additionally, ChIP experiments were employed to identify the key transcription factors responsible for modulating the expression of BMP2. RESULTS: We established a new precise prognostic model for LSCC related to VM based on three genes: BMP2, EPO, and AGPS. The ROC curves from both TCGA and GSE27020 validation cohorts demonstrated precision survival prediction capabilities, with the nomogram showing some net clinical benefit. Multiple algorithm analyses indicated BMP2 as a potential core gene. Further experiments suggested that BMP2 promotes VM and metastasis in LSCC. The malignant progression of LSCC is promoted by BMP2 via the activation of the PI3K-AKT signaling pathway, with the high expression of BMP2 in LSCC resulting from its transcriptional activation by runt-related transcription factor 1 (RUNX1). CONCLUSION: BMP2 predicts poor prognosis in LSCC, promotes LSCC VM and metastasis through the PI3K-AKT signaling pathway, and is transcriptionally regulated by RUNX1. BMP2 may be a novel, precise, diagnostic, and therapeutic biomarker of LSCC.


Subject(s)
Bone Morphogenetic Protein 2 , Head and Neck Neoplasms , Humans , Core Binding Factor Alpha 2 Subunit , Endothelial Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Squamous Cell Carcinoma of Head and Neck/genetics , Signal Transduction
15.
Small ; : e2310289, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597769

ABSTRACT

The high exciton binding energy (Eb) and sluggish surface reaction kinetics have severely limited the photocatalytic hydrogen production activity of carbon nitride (CN). Herein, a hybrid system consisting of nitrogen defects and Pt single atoms is constructed through a facile self-assembly and photodeposition strategy. Due to the acceleration of exciton dissociation and regulation of local electron density of Pt single atoms along with the introduction of nitrogen defects, the optimized Pt-MCT-3 exhibits a hydrogen production rate of 172.0 µmol h-1 (λ ≥ 420 nm), ≈41 times higher than pristine CN. The apparent quantum yield for the hydrogen production is determined to be 27.1% at 420 nm. The experimental characterizations and theoretical calculations demonstrate that the nitrogen defects act as the electron traps for the exciton dissociation, resulting in a decrease of Eb from 86.92 to 43.20 meV. Simultaneously, the stronger interaction between neighboring nitrogen defects and Pt single atoms directionally drives free electrons to aggregate around Pt single atoms, and tailors the d-band electrons of Pt, forming a moderate binding strength between Pt atoms and H* intermediates.

16.
Talanta ; 274: 126030, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574540

ABSTRACT

Aberrant long noncoding RNA (lncRNA) expression is linked to varied pathological processes and malignant tumors, and lncRNA can serve as potential disease biomarkers. Herein, we demonstrate the autonomous enzymatic synthesis of functional nucleic acids for sensitive measurement of lncRNA in human lung tissues on the basis of multiple primer generation-mediated rolling circle amplification (mPG-RCA). This assay involves two padlock probes that act as both a detection probe for recognizing target lncRNA and a domain for producing complementary DNAzyme. Two padlock probes can hybridize with target lncRNA at different sites, followed by ligation to form a circular template with the aid of RNA ligase. The circular template can initiate mPG-RCA to generate abundant Mg2+-dependent DNAzymes that can specifically cleave signal probes to induce the recovery of Cy3 fluorescence. The inherent characteristics of ligase-based ligation reaction and DNAzymes endow this assay with excellent specificity, and the introduction of multiple padlock probes endows this assay with high sensitivity. This strategy can rapidly and sensitively measure lncRNA with a wide linear range of 1 fM - 1 nM and a detection limit of 678 aM within 1.5 h, and it shows distinct advantages of simplicity and immobilization-free without the need of precise temperature control and tedious procedures of nanomaterial preparation. Moreover, it enables accurate measurement of lncRNA level in normal cells and malignant tumor cells as well as differentiation of lncRNA expressions in tissues of non-small cell lung cancer (NSCLC) patients and normal individuals, with promising applications in biomedical studies and disease diagnosis.


Subject(s)
DNA, Catalytic , Lung , Nucleic Acid Amplification Techniques , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Lung/metabolism , Nucleic Acid Amplification Techniques/methods , Limit of Detection
17.
Mol Biotechnol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656728

ABSTRACT

Acute respiratory distress syndrome (ARDS), a progressive status of acute lung injury (ALI), is primarily caused by an immune-mediated inflammatory disorder, which can be an acute pulmonary complication of rheumatoid arthritis (RA). As a chronic inflammatory disease regulated by the immune system, RA is closely associated with the occurrence and progression of respiratory diseases. However, it remains elusive whether there are shared genes between the molecular mechanisms underlying RA and ARDS. The objective of this study is to identify potential shared genes for further clinical drug discovery through integrated analysis of bulk RNA sequencing datasets obtained from the Gene Expression Omnibus database, employing differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA). The hub genes were identified through the intersection of common DEGs and WGCNA-derived genes. The Random Forest (RF) and least absolute shrinkage and selection operator (LASSO) algorithms were subsequently employed to identify key shared target genes associated with two diseases. Additionally, RA immune infiltration analysis and COVID-19 single-cell transcriptome analysis revealed the correlation between these key genes and immune cells. A total of 59 shared genes were identified from the intersection of DEGs and gene clusters obtained through WGCNA, which analyzed the integrated gene matrix of ALI/ARDS and RA. The RF and LASSO algorithms were employed to screen for target genes specific to ALI/ARDS and RA, respectively. The final set of overlapping genes (FCMR, ADAM28, HK3, GRB10, UBE2J1, HPSE, DDX24, BATF, and CST7) all exhibited a strong predictive effect with an area under the curve (AUC) value greater than 0.8. Then, the immune infiltration analysis revealed a strong correlation between UBE2J1 and plasma cells in RA. Furthermore, scRNA-seq analysis demonstrated differential expression of these nine target genes primarily in T cells and NK cells, with CST7 showing a significant positive correlation specifically with NK cells. Beyond that, transcriptome sequencing was conducted on lung tissue collected from ALI mice, confirming the substantial differential expression of FCMR, HK3, UBE2J1, and BATF. This study provides unprecedented evidence linking the pathophysiological mechanisms of ALI/ARDS and RA to immune regulation, which offers novel understanding for future clinical treatment and experimental research.

18.
Bioorg Chem ; 147: 107384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643568

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that is highly susceptible to metastasis, recurrence and resistance, and few therapeutic targets have been identified and proven effective. Herein, we demonstrated for the first time that Rap1b can positively regulate ESCC cell stemness, as well as designed and synthesized a novel class of Pt(IV) complexes that can effectively inhibit Raplb. In vitro biological studies showed that complex-1 exhibited stronger cytotoxicity than cisplatin and oxaliplatin against a variety of ESCC cells, and effectively reversed cisplatin-induced resistance of TE6 cells by increasing cellular accumulation of platinum and inhibiting cancer cell stemness. Significantly, complex-1 also exhibited strong ability to reversal cisplatin-induced cancer cell resistance and inhibit tumor growth in TE6/cDDP xenograft mice models, with a tumor growth inhibition rate of 73.3 % at 13 mg/kg and did not show significant systemic toxicity. Overall, Rap1b is a promising target to be developed as an effective treatment for ESCC. Complex-1, as the first Pt(IV) complex that can strongly inhibit Rap1b, is also worthy of further in-depth study.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Cisplatin/pharmacology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Animals , Drug Resistance, Neoplasm/drug effects , Mice , Cell Proliferation/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Ligands , Mice, Nude , rap GTP-Binding Proteins/metabolism , rap GTP-Binding Proteins/antagonists & inhibitors , Mice, Inbred BALB C , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
19.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622406

ABSTRACT

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


Subject(s)
DNA Methylation , Hippocampus , Mice , Animals , DNA Methylation/genetics , Bromodeoxyuridine/metabolism , Hippocampus/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Receptors, Notch/metabolism , RNA, Messenger/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...