Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Curr Opin Plant Biol ; 81: 102616, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142253

ABSTRACT

The phenomenon of multicellular compartmentation in biosynthetic pathways has been documented for only a limited subset of specialized metabolites, despite its hypothesized significance in facilitating plant survival and adaptation to environmental stress. Transporters that shuttle metabolic intermediates between cells are hypothesized to be integral components enabling compartmentalized biosynthesis. Nevertheless, our understanding of the multicellular compartmentation of plant specialized metabolism and the associated intermediate transporters remains incomplete. The emergence of single-cell and spatial multiomics techniques holds promise for shedding light on unresolved questions in this field, such as the prevalence of multicellular compartmentation across the plant kingdom and the specific types of specialized metabolites whose biosynthetic pathways are prone to compartmentation. Advancing our understanding of the mechanisms underlying multicellular compartmentation will contribute to improving the production of specialized target metabolites through metabolic engineering or synthetic biology.

2.
Front Microbiol ; 15: 1435408, 2024.
Article in English | MEDLINE | ID: mdl-39144226

ABSTRACT

Introduction: Accumulating evidence shows that human health and disease are closely related to the microbes in the human body. Methods: In this manuscript, a new computational model based on graph attention networks and sparse autoencoders, called GCANCAE, was proposed for inferring possible microbe-disease associations. In GCANCAE, we first constructed a heterogeneous network by combining known microbe-disease relationships, disease similarity, and microbial similarity. Then, we adopted the improved GCN and the CSAE to extract neighbor relations in the adjacency matrix and novel feature representations in heterogeneous networks. After that, in order to estimate the likelihood of a potential microbe associated with a disease, we integrated these two types of representations to create unique eigenmatrices for diseases and microbes, respectively, and obtained predicted scores for potential microbe-disease associations by calculating the inner product of these two types of eigenmatrices. Results and discussion: Based on the baseline databases such as the HMDAD and the Disbiome, intensive experiments were conducted to evaluate the prediction ability of GCANCAE, and the experimental results demonstrated that GCANCAE achieved better performance than state-of-the-art competitive methods under the frameworks of both 2-fold and 5-fold CV. Furthermore, case studies of three categories of common diseases, such as asthma, irritable bowel syndrome (IBS), and type 2 diabetes (T2D), confirmed the efficiency of GCANCAE.

3.
Article in English | MEDLINE | ID: mdl-39009332

ABSTRACT

OBJECTIVES: To compare balance control and ankle proprioception between athletes with and without chronic ankle instability (CAI). A further objective was to explore the relationship between balance control performance and ankle proprioception in athletes with CAI. DESIGN: Cross-sectional study. SETTINGS: Sports Rehabilitation Laboratory. PARTICIPANTS: Eighty-eight recreational athletes (47 CAI and 41 healthy control) were recruited. INTERVENTIONS: No applicable. MAIN OUTCOME MEASURES: Balance control performance was assessed using the sway velocity of the center of the pressure during the one-leg standing tasks. Ankle proprioception, including joint position sense and force sense, were tested using absolute error (AE) associated with joint position reproduction and force reproduction tasks in 4 directions, that is, plantarflexion, dorsiflexion, inversion, and eversion. RESULTS: Athletes with CAI performed significantly worse than those without CAI in balance control tasks. In addition, CAI athletes showed significantly worse joint position sense and force sense in all 3 movement directions tested (plantarflexion, inversion, and eversion). Correlation analysis showed that the AE of the plantarflexion force sense was significantly moderately correlated with medial-lateral sway velocity in the one-leg standing with eyes open and closed conditions (r=.372-.403, P=.006-.012), and the AE of inversion force sense was significantly moderately correlated with medial-lateral sway velocity in the one-leg standing with eyes open (r=.345, P=.018) in athletes with CAI, but the joint position sense measures were not (all P>0.05). CONCLUSIONS: Athletes with CAI showed significantly impaired balance control performance and diminished ankle proprioception. Deficit in force sense was deemed as a moderate predictor of one-leg standing balance control deficits in athletes with dominant-side injury CAI, whereas ankle position sense may be a small predictor.

4.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850217

ABSTRACT

This study aimed to investigate the effects of high-definition transcranial direct current stimulation on ankle force sense and underlying cerebral hemodynamics. Sixteen healthy adults (8 males and 8 females) were recruited in the study. Each participant received either real or sham high-definition transcranial direct current stimulation interventions in a randomly assigned order on 2 visits. An isokinetic dynamometer was used to assess the force sense of the dominant ankle; while the functional near-infrared spectroscopy was employed to monitor the hemodynamics of the sensorimotor cortex. Two-way analyses of variance with repeated measures and Pearson correlation analyses were performed. The results showed that the absolute error and root mean square error of ankle force sense dropped more after real stimulation than after sham stimulation (dropped by 23.4% vs. 14.9% for absolute error, and 20.0% vs. 10.2% for root mean square error). The supplementary motor area activation significantly increased after real high-definition transcranial direct current stimulation. The decrease in interhemispheric functional connectivity within the Brodmann's areas 6 was significantly correlated with ankle force sense improvement after real high-definition transcranial direct current stimulation. In conclusion, high-definition transcranial direct current stimulation can be used as a potential intervention for improving ankle force sense. Changes in cerebral hemodynamics could be one of the explanations for the energetic effect of high-definition transcranial direct current stimulation.


Subject(s)
Ankle , Spectroscopy, Near-Infrared , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male , Young Adult , Ankle/physiology , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Motor Cortex/physiology , Transcranial Direct Current Stimulation/methods , Cross-Over Studies
7.
Front Plant Sci ; 15: 1394587, 2024.
Article in English | MEDLINE | ID: mdl-38779067

ABSTRACT

Gynostemma pentaphyllum (Thunb.) Makino is an important producer of dammarene-type triterpenoid saponins. These saponins (gypenosides) exhibit diverse pharmacological benefits such as anticancer, antidiabetic, and immunomodulatory effects, and have major potential in the pharmaceutical and health care industries. Here, we employed single-cell RNA sequencing (scRNA-seq) to profile the transcriptomes of more than 50,000 cells derived from G. pentaphyllum shoot apexes and leaves. Following cell clustering and annotation, we identified five major cell types in shoot apexes and four in leaves. Each cell type displayed substantial transcriptomic heterogeneity both within and between tissues. Examining gene expression patterns across various cell types revealed that gypenoside biosynthesis predominantly occurred in mesophyll cells, with heightened activity observed in shoot apexes compared to leaves. Furthermore, we explored the impact of transposable elements (TEs) on G. pentaphyllum transcriptomic landscapes. Our findings the highlighted the unbalanced expression of certain TE families across different cell types in shoot apexes and leaves, marking the first investigation of TE expression at the single-cell level in plants. Additionally, we observed dynamic expression of genes involved in gypenoside biosynthesis and specific TE families during epidermal and vascular cell development. The involvement of TE expression in regulating cell differentiation and gypenoside biosynthesis warrant further exploration. Overall, this study not only provides new insights into the spatiotemporal organization of gypenoside biosynthesis and TE activity in G. pentaphyllum shoot apexes and leaves but also offers valuable cellular and genetic resources for a deeper understanding of developmental and physiological processes at single-cell resolution in this species.

8.
Psychiatry Res ; 337: 115929, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718554

ABSTRACT

Multiple types of variations have been postulated to confer risk of schizophrenia and bipolar disorder, but majority of present GWAS solely focused on SNPs or small indels, and the impacts of structural variations (SVs) remain less understood. Nevertheless, accumulating evidence suggest that SVs may explain the association signals in certain GWAS hits. Here, we conducted pairwise linkage disequilibrium (LD) analyses of SNPs and SVs in populations from 1000 Genomes Project. Among the 299 psychiatric GWAS loci, 1213 SVs showed an LD of r2 > 0.1 with GWAS risk SNPs, and 66 of them were in moderate to strong LD (r2 > 0.6) with at least one GWAS risk SNP. Nine SVs were subject to further explorative analyses, including eQTL analysis in DLPFC, luciferase reporter gene assays, CRISPR/Cas9-mediated genome deletion and RT-qPCR. These assays highlighted several functional SVs showing regulatory effects on transcriptional activities, and some risk genes (e.g., BORCS7, GNL3) affected by the SVs were also annotated. Finally, mice overexpressing Borcs7 in the mPFC exhibited schizophrenia-like behaviors, such as abnormal prepulse inhibition and social dysfunction. These data suggest that SNPs association signals at GWAS loci might be driven by SVs, highlighting the necessities of considering such variants in future.


Subject(s)
Bipolar Disorder , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Schizophrenia , Schizophrenia/genetics , Bipolar Disorder/genetics , Humans , Animals , Mice , Linkage Disequilibrium , Genetic Predisposition to Disease , Male , Genomic Structural Variation/genetics , Quantitative Trait Loci , Mice, Inbred C57BL
9.
Front Bioeng Biotechnol ; 12: 1352334, 2024.
Article in English | MEDLINE | ID: mdl-38572360

ABSTRACT

Objective: This study aims to explore the effects of 12-week gait retraining (GR) on plantar flexion torque, architecture, and behavior of the medial gastrocnemius (MG) during maximal voluntary isometric contraction (MVIC). Methods: Thirty healthy male rearfoot strikers were randomly assigned to the GR group (n = 15) and the control (CON) group (n = 15). The GR group was instructed to wear minimalist shoes and run with a forefoot strike pattern for the 12-week GR (3 times per week), whereas the CON group wore their own running shoes and ran with their original foot strike pattern. Participants were required to share screenshots of running tracks each time to ensure training supervision. The architecture and behavior of MG, as well as ankle torque data, were collected before and after the intervention. The architecture of MG, including fascicle length (FL), pennation angle, and muscle thickness, was obtained by measuring muscle morphology at rest using an ultrasound device. Ankle torque data during plantar flexion MVIC were obtained using a dynamometer, from which peak torque and early rate of torque development (RTD50) were calculated. The fascicle behavior of MG was simultaneously captured using an ultrasound device to calculate fascicle shortening, fascicle rotation, and maximal fascicle shortening velocity (Vmax). Results: After 12-week GR, 1) the RTD50 increased significantly in the GR group (p = 0.038), 2) normalized FL increased significantly in the GR group (p = 0.003), and 3) Vmax increased significantly in the GR group (p = 0.018). Conclusion: Compared to running training, GR significantly enhanced the rapid strength development capacity and contraction velocity of the MG. This indicates the potential of GR as a strategy to improve muscle function and mechanical efficiency, particularly in enhancing the ability of MG to generate and transmit force as well as the rapid contraction capability. Further research is necessary to explore the effects of GR on MG behavior during running in vivo.

10.
Int J Gen Med ; 17: 387-399, 2024.
Article in English | MEDLINE | ID: mdl-38333018

ABSTRACT

Objective: This study was to investigate the mechanism of action and clinical efficacy of fire-needle therapy in improving neurological function in patients with acute cerebral infarction (identified as a wind-phlegm-blood stasis syndrome in traditional Chinese medicine). Methods: We included patients diagnosed with acute cerebral infarction (wind-phlegm-blood stasis syndrome) admitted to the Encephalopathy and Acupuncture Center of the Second Affiliated Hospital of Tianjin University of Chinese Medicine. We randomly allocated them into the treatment and control groups, with 45 cases in each group. Acupuncture treatments that focused on regulating the mind and dredging the collaterals were used in the control group, while the treatment group additionally received fire-needle therapy. Our indicators included the National Institutes of Health Stroke Scale (NIHSS) scores, the Fugl-Meyer Assessment (FMA) scale, peripheral blood tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), hypersensitivity C-reactive protein (hs-CRP), and intestinal metabolites short-chain fatty acids (SCFAs). We measured these indicators before treatment and 14 days after treatment. Results: The post-treatment NIHSS scores of the two groups were significantly reduced (P < 0.05), and the treatment group showed a more significant decline in the score when compared to the control group (P < 0.05). The treatment group showing significant improvement in the domains of reflex activity, mobility, cooperative movement, and finger movement (P < 0.05). Both groups showed a significant decrease in the IL-17 and hs-CRP levels (P < 0.05), with the treatment group demonstrating a significant declining trend when compared to the control group (P < 0.05). The levels of acetic acid, propionic acid, butyric acid, and valeric acid all increased significantly in the two groups (P < 0.05), with acetic acid and butyric acid increasing significantly in the treatment group when compared to the control group (P < 0.05). Clinical efficacy rate: 78.6% of patients in the treatment group had an excellent rate, whereas it was 30.0% in the control group, and the difference was statistically significant (P < 0.001). Conclusion: Fire-needle therapy was effective in upregulating the SCFA content in patients with acute cerebral infarction (wind-phlegm-blood stasis syndrome), inhibiting the level of the inflammatory response, and improving the recovery of neurological functions. Clinical registration number: Registration website link: https://www.chictr.org.cn. Registration date: 2022/9/27. Registration number: ChiCTR2200064122.

11.
Transl Psychiatry ; 14(1): 108, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388528

ABSTRACT

Poor sleep health is associated with a wide array of increased risk for cardiovascular, metabolic and mental health problems as well as all-cause mortality in observational studies, suggesting potential links between sleep health and lifespan. However, it has yet to be determined whether sleep health is genetically or/and causally associated with lifespan. In this study, we firstly studied the genome-wide genetic association between four sleep behaviors (short sleep duration, long sleep duration, insomnia, and sleep chronotype) and lifespan using GWAS summary statistics, and both sleep duration time and insomnia were negatively correlated with lifespan. Then, two-sample Mendelian randomization (MR) and multivariable MR analyses were applied to explore the causal effects between sleep behaviors and lifespan. We found that genetically predicted short sleep duration was causally and negatively associated with lifespan in univariable and multivariable MR analyses, and this effect was partially mediated by coronary artery disease (CAD), type 2 diabetes (T2D) and depression. In contrast, we found that insomnia had no causal effects on lifespan. Our results further confirmed the negative effects of short sleep duration on lifespan and suggested that extension of sleep may benefit the physical health of individuals with sleep loss. Further attention should be given to such public health issues.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Sleep Initiation and Maintenance Disorders , Humans , Genome-Wide Association Study , Longevity/genetics , Sleep/genetics , Sleep Initiation and Maintenance Disorders/genetics , Mendelian Randomization Analysis
12.
Front Physiol ; 14: 1263309, 2023.
Article in English | MEDLINE | ID: mdl-37841316

ABSTRACT

Transcranial direct current stimulation (tDCS) can improve motor control performance under fatigue. However, the influences of tDCS on factors contributing to motor control (e.g., cortical-muscular functional coupling, CMFC) are unclear. This double-blinded and randomized study examined the effects of high-definition tDCS (HD-tDCS) on muscular activities of dorsiflexors and plantarflexors and CMFC when performing ankle dorsi-plantarflexion under fatigue. Twenty-four male adults were randomly assigned to receive five sessions of 20-min HD-tDCS targeting primary motor cortex (M1) or sham stimulation. Three days before and 1 day after the intervention, participants completed ankle dorsi-plantarflexion under fatigue induced by prolonged running exercise. During the task, electroencephalography (EEG) of M1 (e.g., C1, Cz) and surface electromyography (sEMG) of several muscles (e.g., tibialis anterior [TA]) were recorded synchronously. The corticomuscular coherence (CMC), root mean square (RMS) of sEMG, blood lactate, and maximal voluntary isometric contraction (MVC) of ankle dorsiflexors and plantarflexors were obtained. Before stimulation, greater beta- and gamma-band CMC between M1 and TA were significantly associated with greater RMS of TA (r = 0.460-0.619, p = 0.001-0.024). The beta- and gamma-band CMC of C1-TA and Cz-TA, and RMS of TA and MVC torque of dorsiflexors were significantly higher after HD-tDCS than those at pre-intervention in the HD-tDCS group and post-intervention in the control group (p = 0.002-0.046). However, the HD-tDCS-induced changes in CMC and muscle activities were not significantly associated (r = 0.050-0.128, p = 0.693-0.878). HD-tDCS applied over M1 can enhance the muscular activities of ankle dorsiflexion under fatigue and related CMFC.

13.
Bioengineering (Basel) ; 10(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37760131

ABSTRACT

In recent years, neuro-biomechanical enhancement techniques, such as transcranial direct current stimulation (tDCS), have been widely used to improve human physical performance, including foot biomechanical characteristics. This review aims to summarize research on the effects of tDCS on foot biomechanics and its clinical applications, and further analyze the underlying ergogenic mechanisms of tDCS. This review was performed for relevant papers until July 2023 in the following databases: Web of Science, PubMed, and EBSCO. The findings demonstrated that tDCS can improve foot biomechanical characteristics in healthy adults, including proprioception, muscle strength, reaction time, and joint range of motion. Additionally, tDCS can be effectively applied in the field of foot sports medicine; in particular, it can be combined with functional training to effectively improve foot biomechanical performance in individuals with chronic ankle instability (CAI). The possible mechanism is that tDCS may excite specific task-related neurons and regulate multiple neurons within the system, ultimately affecting foot biomechanical characteristics. However, the efficacy of tDCS applied to rehabilitate common musculoskeletal injuries (e.g., CAI and plantar fasciitis) still needs to be confirmed using a larger sample size. Future research should use multimodal neuroimaging technology to explore the intrinsic ergogenic mechanism of tDCS.

14.
BMC Med ; 21(1): 254, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443018

ABSTRACT

BACKGROUND: Schizophrenia and bipolar disorder (BD) are believed to share clinical symptoms, genetic risk, etiological factors, and pathogenic mechanisms. We previously reported that single nucleotide polymorphisms spanning chromosome 3p21.1 showed significant associations with both schizophrenia and BD, and a risk SNP rs2251219 was in linkage disequilibrium with a human specific Alu polymorphism rs71052682, which showed enhancer effects on transcriptional activities using luciferase reporter assays in U251 and U87MG cells. METHODS: CRISPR/Cas9-directed genome editing, real-time quantitative PCR, and public Hi-C data were utilized to investigate the correlation between the Alu polymorphism rs71052682 and NISCH. Primary neuronal culture, immunofluorescence staining, co-immunoprecipitation, lentiviral vector production, intracranial stereotaxic injection, behavioral assessment, and drug treatment were used to examine the physiological impacts of Nischarin (encoded by NISCH). RESULTS: Deleting the Alu sequence in U251 and U87MG cells reduced mRNA expression of NISCH, the gene locates 180 kb from rs71052682, and Hi-C data in brain tissues confirmed the extensive chromatin contacts. These data suggested that the genetic risk of schizophrenia and BD predicted elevated NISCH expression, which was also consistent with the observed higher NISCH mRNA levels in the brain tissues from psychiatric patients compared with controls. We then found that overexpression of NISCH resulted in a significantly decreased density of mushroom dendritic spines with a simultaneously increased density of thin dendritic spines in primary cultured neurons. Intriguingly, elevated expression of this gene in mice also led to impaired spatial working memory in the Y-maze. Given that Nischarin is the target of anti-hypertensive agents clonidine and tizanidine, which have shown therapeutic effects in patients with schizophrenia and patients with BD in preliminary clinical trials, we demonstrated that treatment with those antihypertensive drugs could reduce NISCH mRNA expression and rescue the impaired working memory in mice. CONCLUSIONS: We identify a psychiatric risk gene NISCH at 3p21.1 GWAS locus influencing dendritic spine morphogenesis and cognitive function, and Nischarin may have potentials for future therapeutic development.


Subject(s)
Dendritic Spines , Genome-Wide Association Study , Humans , Mice , Animals , Genome-Wide Association Study/methods , Cognition , Polymorphism, Single Nucleotide/genetics , Morphogenesis , RNA, Messenger
15.
BMC Med ; 21(1): 256, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452335

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have reported single-nucleotide polymorphisms (SNPs) in the VRK serine/threonine kinase 2 gene (VRK2) showing genome-wide significant associations with major depression, but the regulation effect of the risk SNPs on VRK2 as well as their roles in the illness are yet to be elucidated. METHODS: Based on the summary statistics of major depression GWAS, we conducted population genetic analyses, epigenome bioinformatics analyses, dual luciferase reporter assays, and expression quantitative trait loci (eQTL) analyses to identify the functional SNPs regulating VRK2; we also carried out behavioral assessments, dendritic spine morphological analyses, and phosphorylated 4D-label-free quantitative proteomics analyses in mice with Vrk2 repression. RESULTS: We identified a SNP rs2678907 located in the 5' upstream of VRK2 gene exhibiting large spatial overlap with enhancer regulatory marks in human neural cells and brain tissues. Using luciferase reporter gene assays and eQTL analyses, the depression risk allele of rs2678907 decreased enhancer activities and predicted lower VRK2 mRNA expression, which is consistent with the observations of reduced VRK2 level in the patients with major depression compared with controls. Notably, Vrk2-/- mice exhibited depressive-like behaviors compared to Vrk2+/+ mice and specifically repressing Vrk2 in the ventral hippocampus using adeno-associated virus (AAV) lead to consistent and even stronger depressive-like behaviors in mice. Compared with Vrk2+/+ mice, the density of mushroom and thin spines in the ventral hippocampus was significantly altered in Vrk2-/- mice, which is in line with the phosphoproteomic analyses showing dysregulated synapse-associated proteins and pathways in Vrk2-/- mice. CONCLUSIONS: Vrk2 deficiency mice showed behavioral abnormalities that mimic human depressive phenotypes, which may serve as a useful murine model for studying the pathophysiology of depression.


Subject(s)
Genome-Wide Association Study , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Depression/genetics , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/metabolism
16.
Front Neurosci ; 17: 1186312, 2023.
Article in English | MEDLINE | ID: mdl-37425011

ABSTRACT

Background: Meningiomas are one of the most common intracranial tumors, and the current understanding of meningioma pathology is still incomplete. Inflammatory factors play an important role in the pathophysiology of meningioma, but the causal relationship between inflammatory factors and meningioma is still unclear. Method: Mendelian randomization (MR) is an effective statistical method for reducing bias based on whole genome sequencing data. It's a simple but powerful framework, that uses genetics to study aspects of human biology. Modern methods of MR make the process more robust by exploiting the many genetic variants that may exist for a given hypothesis. In this paper, MR is applied to understand the causal relationship between exposure and disease outcome. Results: This research presents a comprehensive MR study to study the association of genetic inflammatory cytokines with meningioma. Based on the results of our MR analysis, which examines 41 cytokines in the largest GWAS datasets available, we were able to draw the relatively more reliable conclusion that elevated levels of circulating TNF-ß, CXCL1, and lower levels of IL-9 were suggestive associated with a higher risk of meningioma. Moreover, Meningiomas could cause lower levels of interleukin-16 and higher levels of CXCL10 in the blood. Conclusion: These findings suggest that TNF-ß, CXCL1, and IL-9 play an important role in the development of meningiomas. Meningiomas also affect the expression of cytokines such as IL-16 and CXCL10. Further studies are needed to determine whether these biomarkers can be used to prevent or treat meningiomas.

17.
Cereb Cortex ; 33(12): 7670-7677, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36928881

ABSTRACT

This study aimed to investigate the cortical responses to the ankle force control and the mechanism underlying changes in ankle force control task induced by transcranial direct current stimulation (tDCS). Sixteen young adults were recruited, and they completed the electroencephalogram (EEG) assessment and high-definition tDCS (HD-tDCS) sessions. Root mean square (RMS) error was used to evaluate ankle force control task performance. Spectral power analysis was conducted to extract the average power spectral density (PSD) in the alpha (8-13 Hz) and beta (13-30 Hz) bands for resting state and tasking (i.e. task-PSD). The ankle force control task induced significant decreases in alpha and beta PSDs in the central, left, and right primary sensorimotor cortex (SM1) and beta PSD in the central frontal as compared with the resting state. HD-tDCS significantly decreased the RMS and beta task-PSD in the central frontal and SM1. A significant association between the percent change of RMS and the percent change of beta task-PSD in the central SM1 after HD-tDCS was observed. In conclusion, ankle force control task activated a distributed cortical network mainly including the SM1. HD-tDCS applied over SM1 could enhance ankle force control and modulate the beta-band activity of the sensorimotor cortex.


Subject(s)
Sensorimotor Cortex , Transcranial Direct Current Stimulation , Young Adult , Humans , Ankle , Sensorimotor Cortex/physiology , Electroencephalography
18.
Cereb Cortex ; 33(11): 6990-7000, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36734292

ABSTRACT

Patients with bipolar disorder (BD) and their first-degree relatives exhibit alterations in brain volume and cortical structure, whereas the underlying genetic mechanisms remain unclear. In this study, based on the published genome-wide association studies (GWAS), the extent of polygenic overlap between BD and 15 brain structural phenotypes was investigated using linkage disequilibrium score regression and MiXeR tool, and the shared genomic loci were discovered by conjunctional false discovery rate (conjFDR) and expression quantitative trait loci (eQTL) analyses. MiXeR estimated the overall measure of polygenic overlap between BD and brain structural phenotypes as 4-53% on a 0-100% scale (as quantified by the Dice coefficient). Subsequent conjFDR analyses identified 54 independent loci (71 risk single-nucleotide polymorphisms) jointly associated with BD and brain structural phenotypes with a conjFDR < 0.05, among which 33 were novel that had not been reported in the previous BD GWAS. Follow-up eQTL analyses in respective brain regions both confirmed well-known risk genes (e.g. CACNA1C, NEK4, GNL3, MAPK3) and discovered novel risk genes (e.g. LIMK2 and CAMK2N2). This study indicates a substantial shared genetic basis between BD and brain structural phenotypes, and provides novel insights into the developmental origin of BD and related biological mechanisms.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Brain/diagnostic imaging , Phenotype , Polymorphism, Single Nucleotide/genetics , Genetic Loci , Nuclear Proteins/genetics , GTP-Binding Proteins/genetics
19.
Schizophr Bull ; 49(4): 914-922, 2023 07 04.
Article in English | MEDLINE | ID: mdl-36805283

ABSTRACT

BACKGROUND: Schizophrenia is a complex and heterogeneous disorder involving multiple regions and types of cells in the brain. Despite rapid progress made by genome-wide association studies (GWAS) of schizophrenia, the mechanisms of the illness underlying the GWAS significant loci remain less clear. STUDY DESIGN: We investigated schizophrenia risk genes using summary-data-based Mendelian randomization based on single-cell sequencing data, and explored the types of brain cells involved in schizophrenia through the expression weighted cell-type enrichment analysis. RESULTS: We identified 54 schizophrenia risk genes (two-thirds of these genes were not identified using sequencing data of bulk tissues) using single-cell RNA-sequencing data. Further cell type enrichment analysis showed that schizophrenia risk genes were highly expressed in excitatory neurons and caudal ganglionic eminence interneurons, suggesting putative roles of these cells in the pathogenesis of schizophrenia. We also found that these risk genes identified using single-cell sequencing results could form a large protein-protein interaction network with genes affected by disease-causing rare variants. CONCLUSIONS: Through integrative analyses using expression data at single-cell levels, we identified 54 risk genes associated with schizophrenia. Notably, many of these genes were only identified using single-cell RNA-sequencing data, and their altered expression levels in particular types of cells, rather than in the bulk tissues, were related to the increased risk of schizophrenia. Our results provide novel insight into the biological mechanisms of schizophrenia, and future single-cell studies are necessary to further facilitate the understanding of the disorder.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Genome-Wide Association Study/methods , Brain , RNA , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL