Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
IEEE Trans Cybern ; PP2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38478449

ABSTRACT

This article investigates the leader-following synchronization problem of multiagent systems (MASs) under hybrid cyber attacks, which refers to deception attacks and multichannel independent denial-of-service (DoS) attacks in communication channels. In order to achieve the secure control of MASs under hybrid cyber attacks, a novel impulsive control method based on topology switching is proposed, and a new algorithm for determining impulsive instants is designed. In addition, the cooperative-competitive relationship between agents is also considered, which is more in line with reality. Sufficient conditions for ensuring secure control of MASs and a parametric upper bound on the error vector norm between the agents and the leader are obtained. Finally, the numerical simulation verified the effectiveness of the proposed algorithm.

2.
Zhongguo Zhong Yao Za Zhi ; 49(1): 216-223, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403354

ABSTRACT

This study aims to investigate the effect of Buyang Huanwu Decoction on blood flow recovery and arteriogenesis after hindlimb ischemia in mice via the platelet-derived growth factor(PDGF) signaling pathway. Forty C57BL/6 mice were randomized into model(clean water, 10 mL·kg~(-1)·d~(-1)), beraprost sodium(positive control, 18 µg·kg~(-1)·d~(-1)), and low-, medium-, and high-dose(10, 20, and 40 g·kg~(-1)·d~(-1), respectively) Buyang Huanwu Decoction groups(n=8). The hindlimb ischemia model was established by femoral artery ligation. The mice were administrated with corresponding agents by gavage daily for 14 days after ligation. For laser Doppler perfusion imaging, the mice were anesthetized and measured under a Periscan PSI imager. The density of capillary and arterio-le in the ischemic gastrocnemius was measured using immunofluorescence staining of the frozen tissue sections. Western blot was employed to determine the expression of PDGF subunit B(PDGFB), phosphorylated mitogen extracellular kinase(p-MEK), MEK, phosphorylated extracellular signal-regulated kinase(p-ERK), and ERK. Real-time PCR was employed to determine the mRNA level of PDGFB. The Buyang Huanwu Decoction-containing serum was used to treat the vascular smooth muscle cells(VSMCs) in hypoxia at doses of 10% and 20%. The proliferation and migration of VSMCs was assessed in vitro. The results showed that compared with the model group, beraprost sodium and Buyang Huanwu Decoction enhanced the blood flow recovery, increased the capillary and arteriole density, and up-regulated the protein levels of PDGFB, p-MEK, p-ERK, and mRNA levels of PDGFB, with the medium-dose Buyang Huanwu Decoction demonstrating the most significant effect. The 10% Buyang Huanwu Decoction-containing serum enhanced the proliferation and migration of VSMCs. Our findings demonstrate that Buyang Huanwu Decoction up-regulates PDGFB transcription and activates PDGF signaling pathway to promote arteriogenesis and blood flow recovery in ischemic gastrocnemius.


Subject(s)
Drugs, Chinese Herbal , Rats , Mice , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-sis , Mice, Inbred C57BL , Drugs, Chinese Herbal/therapeutic use , Signal Transduction , Ischemia/drug therapy , Hindlimb/metabolism , RNA, Messenger/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
3.
Chemistry ; 30(10): e202303157, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38019179

ABSTRACT

Lithium-sulfur batteries demonstrate enormous energy density are promising forms of energy storage. Unfortunately, the slow redox kinetics and polysulfides shuttle effect are some of the factors that prevent the its development. To address these issues, the hybrid membrane with combination of nickel diselenide nanosheets modified carbon nanotubes (NSN@CNTs) and utilized Li2 S6 catholyte for lithium sulfur battery. The conductive CNTs facilitates fast electronic/ionic transport, while the polarity of NSN as a strong affinity to lithium polysulfides, effectively anchoring them, facilitating the redox conversion of polysulfide species, and effectively diminishing reaction barriers. The cell with NSN@CNTs delivers the first discharge capacity of 1123.8 mAh g-1 and maintains 786.5 mAh g-1 after 300 cycles (0.2 C) at the sulfur loading 5.4 mg. Its rate capability is commendable, enabling it to sustain a capacity of 559.8 mAh g-1 even at a high discharge rate of 2 C. In addition, its initial discharge capacity can remain 8.33 mAh even at 10.8 mg for duration of 100 cycles. This research indicates the potential application of NSN@CNTs hybrid materials in lithium-sulfur batteries.

4.
J Pathol ; 261(1): 105-119, 2023 09.
Article in English | MEDLINE | ID: mdl-37550813

ABSTRACT

Granulomatous slack skin (GSS) is an extremely rare subtype of cutaneous T-cell lymphoma accompanied by an abundant number of macrophages and is clinically characterized by the development of pendulous skin folds. However, the characteristics of these macrophages in GSS remain unclear. Here, we conducted a spatial transcriptomic study on one frozen GSS sample and drew transcriptomic maps of GSS for the first time. Gene expression analysis revealed the enrichment of three clusters with macrophage transcripts, each exhibiting distinct characteristics suggesting that their primary composition consists of different subpopulations of macrophages. The CD163+ /CD206+ cluster showed a tumor-associated macrophage (TAM) M2-like phenotype and highly expressed ZFP36, CCL2, TNFAIP6, and KLF2, which are known to be involved in T-cell interaction and tumor progression. The APOC1+ /APOE+ cluster presented a non-M1 or -M2 phenotype and may be related to lipid metabolism. The CD11c+ /LYZ+ cluster exhibited an M1-like phenotype. Notably, these cells strongly expressed MMP9, MMP12, CHI3L1, CHIT1, COL1A1, TIMP1, and SPP1, which are responsible for extracellular matrix (ECM) degradation and tissue remodeling. This may partially explain the symptoms of cutaneous relaxation in GSS. Further immunohistochemistry on four GSS cases demonstrated that CD11c predominantly marked granulomas and multinucleated giant cells, whereas CD163 was mainly expressed on scattered macrophages, appearing as a mutually exclusive pattern. The expression pattern of MMP9 overlapped with that of CD11c, implying that CD11c+ macrophages may be a source of MMP9. Our data shed light on the characteristics of macrophages in the GSS microenvironment and provide a theoretical basis for the application of MMP9 inhibitors to prevent cutaneous relaxation of GSS. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , Matrix Metalloproteinase 9 , Skin Neoplasms/genetics , Tumor Microenvironment , Transcriptome , Lymphoma, T-Cell, Cutaneous/complications , Lymphoma, T-Cell, Cutaneous/diagnosis , Lymphoma, T-Cell, Cutaneous/pathology , Macrophages/pathology , Gene Expression Profiling
5.
Chem Commun (Camb) ; 59(58): 8985-8988, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37395358

ABSTRACT

Amorphous BiOx, prepared on the surface of NASICON electrolyte by the photochemical metal-organic deposition method, can substantially improve the interfacial properties at the anode side. The Na symmetric cell delivers a critical current density of 1.2 mA cm-2 and cycles stably at 0.5 mA cm-2 for 1000 h at 30 °C.

6.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511521

ABSTRACT

Renal fibrosis is an inevitable process in the progression of chronic kidney disease (CKD). Angiogenesis plays an important role in this process. Vascular endothelial cells are involved in renal fibrosis by phenotypic transformation and secretion of extracellular matrix. Aldosterone stimulates mineralocorticoid receptor (MR) activation and induces inflammation, which is important for angiogenesis. Clinically, MR blockers (MRBs) have a protective effect on damaged kidneys, which may be associated with inhibition of angiogenesis. In this study, we used aldosterone-infused mice and found that aldosterone induced angiogenesis and that endothelial-mesenchymal transition (EndMT) in neovascular endothelial cells was involved in renal fibrosis. Notably, aldosterone induced inflammation and stimulated macrophages to secrete vascular endothelial growth factor (VEGF) A to regulate angiogenesis by activating MR, whereas EndMT occurred in response to transforming growth factor-ß1 (TGF-ß1) induction and participated in renal fibrosis. These effects were antagonized by the MRB esaxerenone. These findings suggest that reducing angiogenesis may be an effective strategy for treating renal fibrosis.


Subject(s)
Kidney Diseases , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Aldosterone/pharmacology , Aldosterone/metabolism , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Signal Transduction , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Fibrosis , Inflammation/metabolism , Epithelial-Mesenchymal Transition
7.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298975

ABSTRACT

CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the capture and utilization processes is a feasible option. Here, the recent progress in the integration of CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse water-gas shift reaction, or dry methane reforming, is discussed in detail. The integration of capture and conversion over dual functional materials is also discussed. This review is aimed to encourage more efforts devoted to the integration of CO2 capture and utilization, and thus contribute to carbon neutrality around the world.


Subject(s)
Carbon Dioxide , Global Warming , Methane , Carbon , Hydrogenation
8.
Nat Med ; 29(6): 1424-1436, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37280275

ABSTRACT

Gemcitabine plus cisplatin (GP) chemotherapy is the standard of care for nasopharyngeal carcinoma (NPC). However, the mechanisms underpinning its clinical activity are unclear. Here, using single-cell RNA sequencing and T cell and B cell receptor sequencing of matched, treatment-naive and post-GP chemotherapy NPC samples (n = 15 pairs), we show that GP chemotherapy activated an innate-like B cell (ILB)-dominant antitumor immune response. DNA fragments induced by chemotherapy activated the STING type-I-interferon-dependent pathway to increase major histocompatibility complex class I expression in cancer cells, and simultaneously induced ILB via Toll-like receptor 9 signaling. ILB further expanded follicular helper and helper type 1 T cells via the ICOSL-ICOS axis and subsequently enhanced cytotoxic T cells in tertiary lymphoid organ-like structures after chemotherapy that were deficient for germinal centers. ILB frequency was positively associated with overall and disease-free survival in a phase 3 trial of patients with NPC receiving GP chemotherapy ( NCT01872962 , n = 139). It also served as a predictor for favorable outcomes in patients with NPC treated with GP and immunotherapy combined treatment (n = 380). Collectively, our study provides a high-resolution map of the tumor immune microenvironment after GP chemotherapy and uncovers a role for B cell-centered antitumor immunity. We also identify and validate ILB as a potential biomarker for GP-based treatment in NPC, which could improve patient management.


Subject(s)
Cisplatin , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Cisplatin/therapeutic use , Gemcitabine , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/etiology , Nasopharyngeal Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Deoxycytidine/therapeutic use , Tumor Microenvironment
9.
Angew Chem Int Ed Engl ; 62(34): e202307352, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37319123

ABSTRACT

The C-C bond formation between C1 molecules plays an important role in chemistry as manifested by the Fischer-Tropsch (FT) process. Serving as models for the FT process, we report here the reactions between a neutral AlI complex (Me NacNac)Al (1, Me NacNac=HC[(CMe)(NDipp)]2 , Dipp=2,6-diisopropylphenyl) and various isocyanides. The step-by-step coupling mechanism was studied in detail by low-temperature NMR monitoring, isotopic labeling, as well as quantum chemical calculations. Three different products were isolated in reaction of 1 with the sterically encumbered 2,6-bis(benzhydryl)-4-Me-phenyl isocyanide (BhpNC). These products substantiate carbene intermediates. The reaction between 1 and adamantyl isocyanide (AdNC) generated a trimerization product, and a corresponding carbene intermediate could be trapped in the form of a molybdenum(0) complex. Tri-, tetra-, and even pentamerization products were isolated with the sterically less congested phenyl and p-methoxyphenyl isocyanides (PhNC and PMPNC) with concurrent construction of quinoline or indole heterocycles. Overall, this study provides evidence for carbene intermediates in FT-type chemistry of aluminium(I) and isocyanides.

10.
Nat Metab ; 5(5): 842-860, 2023 05.
Article in English | MEDLINE | ID: mdl-37188818

ABSTRACT

Different organs undergo distinct transcriptional, epigenetic and physiological alterations that guarantee their functional maturation after birth. However, the roles of epitranscriptomic machineries in these processes have remained elusive. Here we demonstrate that expression of RNA methyltransferase enzymes Mettl3 and Mettl14 gradually declines during postnatal liver development in male mice. Liver-specific Mettl3 deficiency causes hepatocyte hypertrophy, liver injury and growth retardation. Transcriptomic and N6-methyl-adenosine (m6A) profiling identify the neutral sphingomyelinase, Smpd3, as a target of Mettl3. Decreased decay of Smpd3 transcripts due to Mettl3 deficiency results in sphingolipid metabolism rewiring, characterized by toxic ceramide accumulation and leading to mitochondrial damage and elevated endoplasmic reticulum stress. Pharmacological Smpd3 inhibition, Smpd3 knockdown or Sgms1 overexpression that counteracts Smpd3 can ameliorate the abnormality of Mettl3-deficent liver. Our findings demonstrate that Mettl3-N6-methyl-adenosine fine-tunes sphingolipid metabolism, highlighting the pivotal role of an epitranscriptomic machinery in coordination of organ growth and the timing of functional maturation during postnatal liver development.


Subject(s)
Liver , Methyltransferases , Mice , Male , Animals , Methyltransferases/genetics , Methyltransferases/metabolism , Liver/metabolism , Hepatocytes/metabolism , Ceramides , Endoplasmic Reticulum Stress , Adenosine/metabolism , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism
11.
Placenta ; 137: 31-37, 2023 06.
Article in English | MEDLINE | ID: mdl-37054628

ABSTRACT

INTRODUCTION: Preeclampsia (PE) is an elusive life-threatening complication of pregnancy, and maternal endothelial dysfunction induced by components from the impaired placenta is a key hallmark of PE. Placenta-derived exosomes in maternal circulation have been correlated with risk of PE, however, the role of exosomes in PE remains to be determined. We hypothesized that placenta-released exosomes link the placental abnormalities with maternal endothelial dysfunction in PE. METHODS: Circulating exosomes were collected from plasma samples of preeclamptic patients and normal pregnancies. Endothelial barrier function was examined by transendothelial electrical resistance (TEER) and cell permeability to FITC-dextran assays in human umbilical vein endothelial cells (HUVECs). miR-125b and VE-cadherin gene expression in exosomes and endothelial cells were assessed by qPCR and Western, and the possible post-transcriptional regulation of miR-125b on VE-cadherin was detected by luciferase assay. RESULTS: We isolated placenta-derived exosomes in the maternal circulation and found that placenta-derived exosomes from preeclamptic patients (PE-exo) leads to endothelial barrier dysfunction. We then identified decreased expression of VE-cadherin in endothelial cells contribute to the breakdown of the endothelial barrier. Further investigations revealed increased exosomal miR-125b in PE-exo directly inhibited VE-cadherin in HUVECs, thereby mediating the adverse effect of PE-exo on endothelial barrier function. DISCUSSION: Placental exosomes link impaired placentation and endothelial dysfunction, thus providing new insight into the pathophysiology of preeclampsia. Exosomal miRNAs derived from placenta contribute to the endothelial dysfunction in PE and could be a promising therapeutic target for PE.


Subject(s)
Exosomes , MicroRNAs , Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/metabolism , Placenta/metabolism , MicroRNAs/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Gene Expression Regulation , Exosomes/metabolism
12.
J Transl Med ; 20(1): 563, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36474268

ABSTRACT

BACKGROUND: Little is known on the tumor microenvironment (TME) response after neoadjuvant chemotherapy (NACT) in gastric cancer on the molecular level. METHODS: Here, we profiled 33,589 cell transcriptomes in 14 samples from 11 gastric cancer patients (4 pre-treatment samples, 4 post-treatment samples and 3 pre-post pairs) using single-cell RNA sequencing (scRNA-seq) to generate the cell atlas. The ligand-receptor-based intercellular communication networks of the single cells were also characterized before and after NACT. RESULTS: Compered to pre-treatment samples, CD4+ T cells (P = 0.018) and CD8+ T cells (P = 0.010) of post-treatment samples were significantly decreased, while endothelial cells and fibroblasts were increased (P = 0.034 and P = 0.005, respectively). No significant difference observed with respect to CD4+ Tregs cells, cycling T cells, B cells, plasma cells, macrophages, monocytes, dendritic cells, and mast cells (P > 0.05). In the unsupervised nonnegative matrix factorization (NMF) analysis, we revealed that there were three transcriptional programs (NMF1, NMF2 and NMF3) shared among these samples. Compared to pre-treatment samples, signature score of NMF1 was significantly downregulated after treatment (P = 0.009), while the NMF2 signature was significantly upregulated after treatment (P = 0.013). The downregulated NMF1 and upregulated NMF2 signatures were both associated with improved overall survival outcomes based on The Cancer Genome Atlas (TCGA) database. Additionally, proangiogenic pathways were activated in tumor and endothelial cells after treatment, indicating that NACT triggers vascular remodeling by cancer cells together with stromal cells. CONCLUSIONS: In conclusion, our study provided transcriptional profiles of TME between pre-treatment and post-treatment for in-depth understanding on the mechanisms of NACT in gastric cancer and empowering the development of potential optimized therapy procedures and novel drugs.


Subject(s)
Stomach Neoplasms , Tumor Microenvironment , Humans , Neoadjuvant Therapy , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Endothelial Cells
13.
Adv Sci (Weinh) ; 9(35): e2204697, 2022 12.
Article in English | MEDLINE | ID: mdl-36310151

ABSTRACT

Hepatic ischemia-reperfusion (IR) injury remains a common issue lacking effective strategy and validated pharmacological targets. Here, using an unbiased metabolomics screen, this study finds that following murine hepatic IR, liver 3-hydroxyanthranilic acid (3-HAA) and quinolinic acid (QA) decline while kynurenine and kynurenic acid (KYNA) increase. Kynurenine aminotransferases 2, functioning at the key branching point of the kynurenine pathway (KP), is markedly upregulated in hepatocytes during ischemia, shifting the kynurenine metabolic route from 3-HAA and QA to KYNA synthesis. Defects in QA synthesis impair de novo nicotinamide adenine dinucleotide (NAD) biosynthesis, rendering the hepatocytes relying on the salvage pathway for maintenance of NAD and cellular antioxidant defense. Blocking the salvage pathway following IR by the nicotinamide phosphoribosyltransferase inhibitor FK866 exacerbates liver oxidative damage and enhanced IR susceptibility, which can be rescued by the lipid peroxidation inhibitor Liproxstatin-1. Notably, nicotinamide mononucleotide administration once following IR effectively boosts NAD and attenuated IR-induced oxidative stress, inflammation, and cell death in the murine model. Collectively, the findings reveal that metabolic rewiring of the KP partitions it away from NAD synthesis in hepatic IR pathophysiology, and provide proof of concept that NAD augmentation is a promising therapeutic measure for IR-induced liver injury.


Subject(s)
Kynurenine , Reperfusion Injury , Mice , Animals , Kynurenine/metabolism , NAD/metabolism , Liver/metabolism , Reperfusion Injury/metabolism , Homeostasis
14.
Exp Ther Med ; 24(4): 623, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36160894

ABSTRACT

Chronic kidney disease (CKD) involves progressive and irreversible loss of renal function, often causing complications and comorbidities and impairing the function of various organs. In particular, lung injury is observed not only in advanced CKD but also in early-stage CKD. The present study investigated the potential involvement of mineralocorticoid receptors (MRs) and lymphatic vessels in lung injury using a 180-day unilateral ureteral obstruction (UUO) model for CKD. Changes in lung associated with lymphangiogenesis and inflammatory were analyzed in UUO rats. The pathology of the lung tissue was observed by hematoxylin and eosin and Masson's staining. Detection of the expression of lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), Podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3) and VEGF C to investigate lymphangiogenesis. The mRNA and protein expression levels of IL-1ß, monocyte chemotactic protein 1, tumor necrosis factor-α, nuclear factor κB, phosphorylated serum and glucocorticoid-induced protein kinase-1 and MR were evaluated using western blot, reverse transcription-quantitative PCR, immunohistochemical staining and immunofluorescence staining. In the present study, long-term UUO caused kidney damage, which also led to lung inflammation, accompanied by lymphangiogenesis. However, treatment with eplerenone, an MR blocker, significantly reduced the severity of lung injury and lymphangiogenesis. Therefore, lymphangiogenesis contributed to lung fibrosis in UUO rats due to activation of MRs. In addition, transdifferentiation of lymphatic epithelial cells into myofibroblasts may also be involved in lung fibrosis. Collectively, these findings provided a potential mechanism for lung fibrosis in CKD and suggested that the use of eplerenone decreased kidney damage and lung fibrosis.

15.
Am J Surg Pathol ; 46(11): 1533-1544, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36006771

ABSTRACT

De novo CD5 + diffuse large B-cell lymphoma (DLBCL) has poor survival in the era of immunochemotherapy. Accurate gene-based typing and prognostic stratification can enhance the development of effective individualized treatments. Therefore, we conducted a multicenter retrospective study to evaluate the clinicopathologic characteristics, genomic profiles, and prognostic parameters of 61 patients with CD5 + DLBCL and 60 patients with CD5 - DLBCL, with the goal of facilitating accurate prognostic stratification and potential individualized treatment strategies. Compared with patients with CD5 - DLBCL, older age, advanced stage, higher incidence of central nervous system involvement, and MYC/BCL-2 and p53 overexpression were more prevalent in CD5 + DLBCL. Most patients with CD5 + DLBCL had lymph nodes with non-germinal center B-cell-like or activated B-cell-like subtype according to immunohistochemistry or Lymph2Cx assay. Next-generation sequencing showed that the proportion of MCD subtype (based on the co-occurrence of MYD88 and CD79B mutations) in the CD5 + DLBCL cohort was higher than that in the CD5 - DLBCL cohort (54.2% vs. 13.0%, P =0.005). Compared with the CD5 - cohort, CD5 + DLBCL patients showed poor 5-year overall survival (70.9% vs. 39.0%, P <0.001). Kaplan-Meier survival analysis indicated that cell of origin, MYC/BCL-2, p53, and BCL-6 expression did not have a prognostic impact on patients with CD5 + DLBCL. Multivariate analysis showed that age above 76 years, advanced stage, higher incidence of central nervous system involvement, and hypoalbuminemia were independent factors for poor prognosis in CD5 + DLBCL patients. In summary, CD5 + DLBCL displays poor prognosis, distinctive clinicopathologic characteristics and predominant genetic features of activated B-cell-like and MCD subtypes with worse survival outcome.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Myeloid Differentiation Factor 88 , Aged , CD5 Antigens/genetics , Genomics , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Prognosis , Proto-Oncogene Proteins c-bcl-2/genetics , Retrospective Studies , Tumor Suppressor Protein p53
16.
J Am Chem Soc ; 144(34): 15793-15802, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35973127

ABSTRACT

Two borane-functionalized bidentate phosphine ligands that vary in tether length have been prepared to examine cooperative metal-substrate interactions. Ni(0) complexes react with aryl azides at low temperatures to form structurally unusual κ2-(N,N)-N3Ar adducts. Warming these adducts affords products of N2 extrusion and in one case, a Ni-imido compound that is capped by the appended borane. Reactions with 1-azidoadamantane (AdN3) provide a distinct outcome, where a proposed nickel imido intermediate activates the sp2 C-H bonds of arenes, even in the presence of benzylic C-H sites. Combined experimental and computational mechanistic studies demonstrate that the unique reactivity is a consequence of Lewis-acid-induced polarization of the Ni-NR bond, potentially providing a synthetic strategy for chemoselective reaction engineering.


Subject(s)
Boranes , Lewis Acids , Azides/chemistry , Ligands , Nickel/chemistry
17.
ACS Appl Mater Interfaces ; 14(15): 17369-17377, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35389634

ABSTRACT

Nonaqueous redox flow batteries (NARFBs) have promise for large-scale energy storage with high energy density. Developing advanced active materials is of paramount importance to achieve high stability and energy density. Herein, we adopt the molecular engineering strategy by coupling tetraalkylammonium and an ethylene glycol ether side chain to design anthraquinone-based ionic active species. By adjusting the length of the ethylene glycol ether chain, an ionic active species 2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)amino)-N-(2-(2-methoxyethoxy)ethyl)-(N,N-dimethylethan-1-aminium)-bis(trifluoromethylsulfonyl)imide (AQEG2TFSI) with high solubility and stability is obtained. Paired with a FcNTFSI cathode, the full battery provides an impressive cycling performance with discharge capacity retentions of 99.96% and 99.74% per cycle over 100 cycles with 0.1 and 0.4 M AQEG2TFSI, respectively.

18.
Exp Gerontol ; 163: 111780, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35346763

ABSTRACT

Obstructive sleep apnea syndrome (OSAS) is a disorder characterized by recurrent arousal from sleep and chronic intermittent hypoxia (CIH). OSAS-associated chronic kidney disease is mainly caused by CIH-induced tissue damage. Therefore, an OSAS model was established by CIH exposure in a hypoxic chamber for five weeks. In our study, macrophage infiltration and macrophage-myofibroblast transition (MMT) were observed in the kidneys of CIH rats and appeared to contribute to the development of renal fibrosis. However, the underlying mechanisms are not well defined. We also found that upon binding to the mineralocorticoid receptor (MR), aldosterone stimulated MMT and consequently led to renal fibrosis under hypoxic conditions. Additionally, an in vitro study of RAW264.7 macrophages demonstrated that MR activation may contribute to MMT, which resulted in a predominant M1 phenotype under hypoxic conditions. These effects were reversed by the MR blocker eplerenone. These results provide preliminary evidence that MR activation might be involved in the transdifferentiation of macrophages into myofibroblasts in the CIH model. The attenuation of renal injury demonstrates a protective role of MR blockade in CIH-induced renal disease.


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Sleep Apnea, Obstructive , Animals , Disease Models, Animal , Female , Fibrosis , Humans , Hypoxia/complications , Kidney , Male , Rats , Receptors, Mineralocorticoid , Renal Insufficiency, Chronic/complications , Sleep Apnea, Obstructive/complications
19.
IEEE Trans Cybern ; 52(8): 8286-8299, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33531309

ABSTRACT

The capacitated arc routing problem (CARP) has attracted much attention for its many practical applications. The large-scale multidepot CARP (LSMDCARP) is an important CARP variant, which is very challenging due to its vast search space. To solve LSMDCARP, we propose an iterative improvement heuristic, called route clustering and search heuristic (RoCaSH). In each iteration, it first (re)decomposes the original LSMDCARP into a set of smaller single-depot CARP subproblems using route cutting off and clustering techniques. Then, it solves each subproblem using the effective Ulusoy's split operator and local search. On one hand, the route clustering helps the search for each subproblem by focusing more on the promising areas. On the other hand, the subproblem solving provides better routes for the subsequent route cutting off and clustering, leading to better problem decomposition. The proposed RoCaSH was compared with the state-of-the-art MDCARP algorithms on a range of MDCARP instances, including different problem sizes. The experimental results showed that RoCaSH significantly outperformed the state-of-the-art algorithms, especially for the large-scale instances. It managed to achieve much better solutions within a much shorter computational time.

SELECTION OF CITATIONS
SEARCH DETAIL
...