Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
J Genet Genomics ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310944

ABSTRACT

Epigenetics-mediated breeding (Epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.

3.
Front Cell Infect Microbiol ; 13: 1220877, 2023.
Article in English | MEDLINE | ID: mdl-37465757

ABSTRACT

Hypertension is an increasingly pressing public health concern across the globe. It can be triggered by a variety of factors such as age and diet, as well as the stress of modern life. The traditional treatment of hypertension includes calcium ion blockers, angiotensin II receptor inhibitors and ß-receptor blockers, but these drugs have at least some side effects. Recent studies have revealed that intestinal flora plays a vital role in maintaining and promoting human health. This is due to the type and amount of probiotics present in the flora. Probiotics can reduce hypertension symptoms through four mechanisms: regulating vascular oxidative stress, producing short-chain fatty acids, restoring endothelial cell function, and reducing inflammation. It has been reported that certain functional foods, using probiotics as their raw material, can modify the composition of intestinal flora, thus regulating hypertension symptoms. Consequently, utilizing the probiotic function of probiotics in conjunction with the properties of functional foods to treat hypertension is a novel, side-effect-free treatment method. This study seeks to summarize the various factors that contribute to hypertension, the mechanism of probiotics in mitigating hypertension, and the fermented functional foods with probiotic strains, in order to provide a basis for the development of functional foods which utilize probiotics as their raw material and may have the potential to reduce hypertension.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Probiotics , Humans , Probiotics/therapeutic use , Hypertension/prevention & control , Diet
4.
Adv Sci (Weinh) ; : e2204885, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36382558

ABSTRACT

Methylating RNA post-transcriptionally is emerging as a significant mechanism of gene regulation in eukaryotes. The crosstalk between RNA methylation and histone modification is critical for chromatin state and gene expression in mammals. However, it is not well understood mechanistically in plants. Here, the authors report a genome-wide correlation between RNA 5-cytosine methylation (m5 C) and histone 3 lysine27 trimethylation (H3K27me3) in Arabidopsis. The plant-specific Polycomb group (PcG) protein EMBRYONIC FLOWER1 (EMF1) plays dual roles as activators or repressors. Transcriptome-wide RNA m5 C profiling revealed that m5 C peaks are mostly enriched in chromatin regions that lacked H3K27me3 in both wild type and emf1 mutants. EMF1 repressed the expression of m5 C methyltransferase tRNA specific methyltransferase 4B (TRM4B) through H3K4me3, independent of PcG-mediated H3K27me3 mechanism. The 5-Cytosine methylation on targets is increased in emf1 mutants, thereby decreased the mRNA transcripts of photosynthesis and chloroplast genes. In addition, impairing EMF1 activity reduced H3K27me3 levels of PcG targets, such as starch genes, which are de-repressed in emf1 mutants. Both EMF1-mediated promotion and repression of gene activities via m5 C and H3K27me3 are required for normal vegetative growth. Collectively, t study reveals a previously undescribed epigenetic mechanism of RNA m5 C modifications and histone modifications to regulate gene expression in eukaryotes.

5.
Front Microbiol ; 13: 876466, 2022.
Article in English | MEDLINE | ID: mdl-35898911

ABSTRACT

Fungal cellulases usually contain a family 1 carbohydrate-binding module (CBM1), and its role was considered to recognize the substrate specifically. This study testified that the CBM1s derived from cellobiohydrolase I of Trichoderma reesei, Penicillium oxalicum, and Penicillium funiculosum could be used as an effective accessory protein in cellulase cocktails to enhance the saccharification of lignocellulose, and its enhancement effect was significantly superior to some reported accessory proteins, such as bovine serum albumin (BSA). The promoting effects of the CBM1s were related to not only the CBM1 sources and protein dosages, but also the substrate characteristics and solid consistency during enzymatic hydrolysis. The adsorption capacity of the CBM1s, the adsorption kinetic of TrCBM from T. reesei and cellobiohydrolase, endoglucanase, and ß-glucosidase from P. oxalicum, and the effect of adding TrCBM on enzyme activities of free cellulases in the hydrolysis system were investigated, and the binding conformations and affinities of CBM1s to cellulose and lignin were predicted by molecular docking. It was speculated that the higher affinity of the CBM1s to lignin than cellulases could potentially enable the CBM1s to displace cellulase adsorbed on lignin or to preferentially adsorb onto lignin to avoid ineffective adsorption of cellulase onto lignin, which enhanced cellulase system efficiency during enzymatic hydrolysis of lignocellulose.

6.
Bioresour Technol ; 343: 126130, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34655777

ABSTRACT

Herein, acidic concentrated lithium bromide-water system was efficiently carried out to synthesize levulinic acid (LA) from raw lignocellulose by two-step treatment. Saccharification was processed in 1st step, and 80.96 wt% glucose and 85.60 wt% xylose were yielded based on their theoretical yield from poplar at 110 °C for 20 min. The hydrolysate after solid residual lignin (SRL) separation was converted into LA and furfural by thermal treatment (130 °C) in the 2nd step, where 67.0 wt% LA and 48.0 wt% furfural were yielded. The SRL in 1st step, with high hydrophobicity and uniform dispersity, was used to prepare lignin nanoparticles (LNPs), which showed tailored size (100-200 nm diameters) and morphology in solid or hollow structure with single hole. Additionally, the residue in 2nd step was suggested as biochar. So far, this study offered a simple pathway for utilization of raw lignocellulose in water system, resulting in high yields of LA and LNPs.


Subject(s)
Lignin , Water , Bromides , Levulinic Acids , Lithium Compounds
7.
Biomed Res Int ; 2020: 9497215, 2020.
Article in English | MEDLINE | ID: mdl-32076622

ABSTRACT

High-yield pulps (HYPs), such as CTMP (chemi-thermo-mechanical pulp), are attractive due to their low cost and high wood utilization. However, their drawback of rapid brightness reversion (yellowing) limits wide use of the HYPs. In this study, a fungus, Fusarium concolor X4, was applied to treat poplar CTMP for exploring the effects of biotreatment on brightness and light-induced yellowing of the pulp. The results indicated that the biotreatment with Fusarium concolor X4 could improve the brightness of poplar CTMP and inhibit light-induced yellowing of the pulp. The yellowing inhibition mechanism was explored by the analysis of enzyme production regularity during biotreatment, changes in chemical components, and the UV-Vis absorption spectra and FTIR-ATR spectra of pulps before and after biotreatment.


Subject(s)
Fusarium/radiation effects , Light , Wood/microbiology , Cellulose , Fusarium/pathogenicity , Lignin , Ultraviolet Rays , Xylosidases
8.
Sci Rep ; 7(1): 3321, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607421

ABSTRACT

Cellulase (mainly endoglucanase, EG) has been used in pulp modification for improving paper quality through environmentally friendly process. But low activity in alkaline pH and high filter paper activity (FPA) were still obstacles for extending the cellulase application in papermaking industry. In the study, an alkali-tolerant EG gene of Bacillus subtilis Y106 was homologous over-expressed for obtaining suitable enzyme used in pulp modification. The engineering strain could produce the crude enzyme with more alkali-tolerant EG and little PFA. Potential of the crude enzyme in modification of different pulps were investigated. It was found that the enzyme could be used for improving drainage and strength properties of pulps from softwood, hardwood and non-wood materials, especially non-wood pulp such as wheat straw pulp. The underlying mechanisms of pulp modification and different effects on various types of pulps by the EG treatment were also discussed by studying the change in fibers characteristics and fiber bonding.


Subject(s)
Alkalies/pharmacology , Bacillus subtilis/enzymology , Cellulase/metabolism , Paper , Biomass , Crystallization , Genetic Engineering , Hydrogen-Ion Concentration , Recombinant Proteins/biosynthesis , Temperature
9.
Sci Rep ; 6: 38374, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27917912

ABSTRACT

Xylanase is commonly applied in pulp and paper industries to ease cost-related and environmental pressures. The effect of xylanase treatment on pulp bleaching is well-established, however, few studies were conducted on the effects of xylanase treatment in pulp yellowing, especially the mechanism of pulp yellowing inhibition by xylanase treatment. In this study, pure xylanase (EC 3.2.1.8) was applied to treat wheat straw chemical pulp (CP) and poplar chemi-thermo-mechanical pulp (CTMP) to determine their effects on pulp brightness and on light- and heat-induced yellowing. The xylanase treatment decreased the post-color number of the pulps during light- and heat-induced yellowing. However, differences were observed in the yellowing inhibition between the wheat straw CP and poplar CTMP. The changes in chemical components of pulps after the xylanase treatment, for example, lignin, hemicellulose, and HexA contents, and analysis of UV-vis absorption spectra and Fourier transform infrared-attenuated total reflectance spectrum were used to explore the pulp yellowing inhibition causes by the xylanase treatment.


Subject(s)
Endo-1,4-beta Xylanases/chemistry , Fungal Proteins/chemistry , Lignin/chemistry , Liriodendron/chemistry , Paper , Triticum/chemistry , Biomass , Color , Hot Temperature , Light , Photochemical Processes , Plant Stems/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...