Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611391

ABSTRACT

In this study, we used fresh Oudemansiella raphanipes as raw materials and pre-treated through hot air drying (HD), infrared radiation drying (ID), and vacuum freeze drying (VD) to investigate the effects of different drying methods on the rehydration rate, appearance quality, microstructure, and volatile flavor components of the dried products, as well as to determine the physicochemical properties and bioactivities of the polysaccharides in the dried O. raphanipes. The results showed that the VD O. raphanipes had the highest rehydration rate and the least shrinkage in appearance, and it better maintained the original color of the gills, but their aroma was not as strong as that of the HD samples. The scanning electron microscopy results indicate that VD maintains a good porous structure in the tissue, while HD and ID exhibit varying degrees of shrinkage and collapse. Seventy-five common volatile substances were detected in the three dried samples, mainly alkanes, alcohols, and esters. The polysaccharides (PS-H, PS-I, and PS-V) extracted from the dried samples of these three species of O. raphanipes had similar infrared spectral features, indicating that their structures are basically consistent. The highest yield was obtained for PS-V, and the polysaccharide content and glucuronic acid content of PS-I were higher than those of the remaining two polysaccharides. In addition, PS-V also showed better antioxidant activity and inhibitory activity against α-glucosidase as well as α-amylase. In conclusion, among the above three drying methods, the quality of O. raphanipes obtained by vacuum freeze drying is the best, and this experiment provides a theoretical basis for the selection of drying methods for O. raphanipes.

2.
Int J Biol Macromol ; 259(Pt 2): 129234, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216007

ABSTRACT

This study comparatively evaluated the effects of the commonly used six extraction methods (acidic, alkaline, enzymatic, ultrasonic, high-pressure, and microwave) on the physico-chemical properties, processing characteristics, and biological activities of polysaccharides from Clitocybe squamulosa (CSFPs). The results show that polysaccharides extracted using an enzyme-assisted extraction method has a relatively high extraction yield (4.46 ± 1.62 %) and carbohydrate content (70.79 ± 6.25 %) compared with others. Furthermore, CSFPs were all composed of glucose, galactose, mannose, xylose, and glucosamine hydrochloride. Only ultrasonic-assisted extraction of polysaccharides (CSFP-U) has a triple helix chain conformation. Scanning electron microscopy (SEM) revealed significant differences in the microstructure of polysaccharides prepared using different methods. Besides that, the polysaccharides prepared by alkali extraction (CSFP-B) and high-pressure assisted extraction (CSFP-H) have good water (2.86 ± 0.29 g/g and 3.15 ± 0.29 g/g) and oil (8.13 ± 0.32 g/g and 7.97 ± 0.04 g/g) holding properties. The rheological behavior demonstrated that CSFPs solutions were typical non-Newtonian fluid. Apart from this, the antioxidant capacity (clearing DPPH (IC50 = 0.29) and ABTS free radicals (IC50 = 0.19), total reduction ability (IC50 = 3.02)) of polysaccharides prepared by the microwave-assisted extraction (CSFP-M) method was significantly higher than that of other extraction methods. By contrast, the polysaccharide prepared by acid extraction (CSFP-A) has the optimum binding capacity (bile acid salt (71.30 ± 6.78 %) and cholesterol (57.07 ± 3.26 mg/g)). The antibacterial activity of CSFPs was positively correlated with their concentration. Thus, the research results can provide a theoretical basis for the development and utilization of polysaccharides from C. squamulosa.


Subject(s)
Agaricales , Antioxidants , Ultrasonics , Antioxidants/pharmacology , Antioxidants/chemistry , Water/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry
3.
Plants (Basel) ; 11(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501246

ABSTRACT

Walnut (Juglans regia) is an important woody oil-bearing plant with high nutritional value. For better understanding of the underlying molecular mechanisms of its oil accumulation in the Qinghai Plateau, in this study we monitored walnut fruit development, and 15 cDNA libraries were constructed from walnut seed kernels collected at 72, 79, 93, 118 and 135 days after flowering (DAF). The candidate genes were identified using sequencing and expression analysis. The results showed that the oil content in the kernels increased dramatically in late July and reached the maximum value of 69% in mature seed. More than 90% of the oils were unsaturated fatty acids (UFAs) and linoleic acid (18:2) was the predominant UFA accumulated in mature seed. Differentially expressed genes (DEGs) in 15 KEGG pathways of lipid metabolism were detected. We identified 119 DEGs related to FA de novo biosynthesis (38 DEGs), FA elongation and desaturation (39 DEGs), triacylglycerol (TAG) assembly (24 DEGs), oil bodies (12 DEGs), and transcription factors (TFs, 6 DEGs). The abundantly expressed oleosins, caleosins and steroleosins may be important for timely energy reserve in oil bodies. Weighted gene coexpression network analysis (WGCNA) showed that AP2/ERF and bHLH were the key TFs, and were co-expressed with ACC1, α-CT, BCCP, MAT, KASII, LACS, FATA, and PDCT. Our transcriptome data will enrich public databases and provide new insights into functional genes related to the seed kernel lipid metabolism and oil accumulation in J. regia.

4.
Biochem Genet ; 56(6): 575-585, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29876687

ABSTRACT

Chinese wolfberry (Lycium spp.) is an important edible and medicinal plant, with a long cultivation history. The genetic relationships among wild Lycium species and landraces have been unclear for a number of reasons, which has hindered the breeding of modern Chinese wolfberry cultivars. In this study, we collected 19 accessions of Chinese wolfberry germplasm, and constructed the genetic relationship based on RAD-seq markers. We obtained 30.32 Gb of clean data, with the average value of each sample being 1.596 Gb. The average mapping rate was 85.7%, and the average coverage depth was 6.76 X. The phylogeny results distinguished all accessions clearly. All the studied landraces shared their most recent common ancestor with L. barbarum, which indicated that L. barbarum may be involved in cultivation of these landraces. The relationship of some landraces, namely the 'Ningqi' series, 'Qingqi-1' and 'Mengqi-1,' has been supported by the phylogeny results, while the triploid wolfberry was shown to be based on a hybrid between 'Ningqi-1' and a tetraploid wolfberry. This study uncovered the genetic background of Chinese wolfberry, and developed the foundation for species classification, accession identification and protection, and the production of hybrid cultivars of wolfberry.


Subject(s)
Chromosomes, Plant/genetics , Genes, Plant , Genetic Markers , High-Throughput Nucleotide Sequencing/methods , Lycium/genetics , Restriction Mapping/methods , Lycium/growth & development , Phylogeny
5.
Sci Rep ; 5: 9076, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25766834

ABSTRACT

Willows (Salix) and poplars (Populus) are dioecious plants in Salicaceae family. Sex chromosome in poplar genome was consistently reported to be associated with chromosome XIX. In contrast to poplar, this study revealed that chromosome XV was sex chromosome in willow. Previous studies revealed that both ZZ/ZW and XX/XY sex-determining systems could be present in some species of Populus. In this study, sex of S. suchowensis was found to be determined by the ZW system in which the female was the heterogametic gender. Gene syntenic and collinear comparisons revealed macrosynteny between sex chromosomes and the corresponding autosomes between these two lineages. By contrast, no syntenic segments were found to be shared between poplar's and willow's sex chromosomes. Syntenic analysis also revealed substantial chromosome rearrangements between willow's alternate sex chromatids. Since willow and poplar originate from a common ancestor, we proposed that evolution of autosomes into sex chromosomes in these two lineages occurred after their divergence. Results of this study indicate that sex chromosomes in Salicaceae are still at the early stage of evolutionary divergence. Additionally, this study provided valuable information for better understanding the genetics and evolution of sex chromosome in dioecious plants.


Subject(s)
Chromosomes, Plant , Populus/genetics , Salix/genetics , Sex Chromosomes , Flowers , Genetic Loci , Genome, Plant , Phylogeny , Physical Chromosome Mapping , Populus/classification , Salix/classification
6.
J Interferon Cytokine Res ; 35(3): 157-67, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25347351

ABSTRACT

Melanoma differentiation-associated gene-7 (mda-7)/interleukin-24 (IL-24) induces caspase-3 cleavage and subsequent activation via the intrinsic or extrinsic pathway to result in cancer cell-selective apoptosis, but whether mda-7/IL-24 may directly regulate caspase-3 through the post-translational modification remains unknown. Here, we reported that tumor-selective replicating adenovirus ZD55-IL-24 led to caspase-3 denitrosylation and subsequent activation, indicating that caspase-3 denitrosylation played a crucial role in ZD55-IL-24-induced cancer cell apoptosis. To confirm the relationship between caspase-3 denitrosylation and its activation in response to ZD55-IL-24, we treated carcinoma cells with the different nitric oxide (NO) regulators to modulate caspase-3 denitrosylation level, then observed the corresponding caspase-3 cleavage. We found that NO inhibitor 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO) promoted caspase-3 denitrosylation and caspase-3 cleavage, thereby exacerbating ZD55-IL-24-induced cancer cell apoptosis, whereas NO donor sodium nitroprusside (SNP) showed the opposite effect. Moreover, caspase-3 denitrosylation facilitated its downstream target poly ADP-ribose polymerase (PARP) degradation that further increased the apoptotic susceptibility. Although caspase-3 activation controlled by denitrosylation modification has emerged as an important regulator of programmed cell death, the detailed molecular mechanism by which caspase-3 exerts its denitrosylation modification in response to ZD55-IL-24 still needs to be elucidated. Thus, our results demonstrated that ZD55-IL-24 increased Fas expression to enhance thioredoxin reductase 2 (TrxR2), which was responsible for caspase-3 denitrosylation. Collectively, these findings elucidate that ZD55-IL-24 induces caspase-3 denitrosylation through Fas-mediated TrxR2 enhancement, thereby facilitating caspase-3 cleavage and the downstream caspase signaling pathway activation, which provides a novel insight into ZD55-IL-24-induced cancer-specific apoptosis by post-translational modification of the apoptotic executor caspase-3.


Subject(s)
Caspase 3/metabolism , Interleukins/metabolism , Adenoviridae/genetics , Apoptosis , Cloning, Molecular , Gene Transfer Techniques , HeLa Cells , Humans , Interleukins/genetics , Organ Specificity , Protein Processing, Post-Translational/genetics , Signal Transduction/genetics , Thioredoxin Reductase 2/metabolism , Transgenes/genetics , fas Receptor/metabolism
7.
PLoS One ; 9(6): e101106, 2014.
Article in English | MEDLINE | ID: mdl-24977711

ABSTRACT

Gene introgression and hybrid barriers have long been a major focus of studies of geographically overlapping species. Two pine species, Pinus massoniana and P. hwangshanensis, are frequently observed growing adjacent to each other, where they overlap in a narrow hybrid zone. As a consequence, these species constitute an ideal system for studying genetic introgression and reproductive barriers between naturally hybridizing, adjacently distributed species. In this study, we sampled 270 pine trees along an elevation gradient in Anhui Province, China and analyzed these samples using EST-SSR markers. The molecular data revealed that direct gene flow between the two species was fairly low, and that the majority of gene introgression was intermediated by backcrossing. On the basis of empirical observation, the on-site distribution of pines was divided into a P. massoniana zone, a hybrid zone, and a P. hwangshanensis zone. STRUCTURE analysis revealed the existence of a distinct species boundary between the two pine species. The genetic boundary of the hybrid zone, on the other hand, was indistinct owing to intensive backcrossing with parental species. Compared with P. massoniana, P. hwangshanensis was found to backcross with the hybrids more intensively, consistent with the observation that morphological and anatomical characteristics of trees in the contact zone were biased towards P. hwangshanensis. The introgression ability of amplified alleles varied across species, with some being completely blocked from interspecific introgression. Our study has provided a living example to help explain the persistence of adjacently distributed species coexisting with their interfertile hybrids.


Subject(s)
Geography , Pinus/genetics , Altitude , Bayes Theorem , China , DNA Primers/metabolism , Expressed Sequence Tags , Gene Frequency/genetics , Gene Pool , Genetic Markers , Genetic Variation , Microsatellite Repeats/genetics , Species Specificity
8.
Biochem Genet ; 45(1-2): 33-50, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17226079

ABSTRACT

Swertia przewalskii Pissjauk. (Gentianaceae) is a critically endangered and endemic plant of the Qinghai-Tibet Plateau in China. RAPD and ISSR analyses were carried out on a total of 63 individuals to assess the extent of genetic variation in the remaining three populations. Percentage of polymorphic bands was 94% (156 bands) for RAPD and 96% (222 bands) for ISSR. A pairwise distance measure calculated from the RAPD and ISSR data was used as input for analysis of molecular variance (AMOVA). AMOVA indicated that a high proportion of the total genetic variation (52% for RAPD and 56% for ISSR) was found among populations; pairwise Phi (ST) comparisons showed that the three populations examined were significantly different (p < 0.001). Significant genetic differentiation was found based on different measures (AMOVA and Hickory theta(B)) in S. przewalskii (0.52 on RAPD and 0.56 on ISSR; 0.46 on RAPD and 0.45 on ISSR). The differentiation of the populations corresponded to low average gene flow (0.28 based on RAPD and 0.31 based on ISSR), whereas genetic distance-based clustering and coalescent-based assignment analyses revealed significant genetic isolation among populations. Our results indicate that genetic diversity is independent of population size. We conclude that although sexual reproduction and gene flow between populations of S. przewalskii are very limited, they have preserved high levels of genetic diversity. The main factors responsible for the high level of difference among populations are the isolation and recent fragmentation under human disturbance.


Subject(s)
Genetic Variation , Swertia/genetics , China , Conservation of Natural Resources , DNA, Plant/analysis , Microsatellite Repeats , Phylogeny , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...