Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Eur J Clin Nutr ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164426

ABSTRACT

BACKGROUND: Previous studies using a single obesity indicator cannot fully assess the association between body shape and mortality. We aimed to investigate the association between complementary anthropometric measures and all-cause mortality risk. METHODS: We combined National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2016 with mortality data up to December 31, 2019. After excluding individuals with cancer at baseline, 13,728 participants were included. Cox regression models and restricted cubic spline (RCS) analyses were used to explore the association between general obesity, central obesity, and peripheral fat indicators and all-cause mortality risk. RESULTS: A total of 743 deaths occurred over a median follow-up of 5.83 years. In multivariable-adjusted Cox models, each 10-cm increase in waist circumference (WC), each 0.1-unit increase in waist-to-height ratio (WHtR), and each 0.01-unit increase in A Body Shape Index (ABSI) were associated with 20% (HR = 1.20; 95% CI: 1.02-1.41), 119% (2.19; 1.70-2.83), and 5% (1.05; 1.03-1.08) increased all-cause mortality risk, respectively. Conversely, each 1-cm increment in mid-arm circumference (MAC) was associated with 13% (HR = 0.87; 95% CI: 0.83-0.92) decreased mortality risk. Compared with normal group (body mass index (BMI): 18.5- <25.0), underweight (HR = 1.97; 95% CI: 1.12-3.45) and grade 3 obesity (1.37; 1.04-1.81) were at higher mortality risk. However, after further adjustment for WC, the effect of grade 3 obesity disappeared, and the RCS analyses for BMI changed from a J-shaped (P < 0.05 for non-linearity test) to a negative association (P < 0.01). CONCLUSIONS: Underweight, grade 3 obesity, and central obesity were associated with an increased mortality risk, while peripheral fat was inversely associated with mortality.

2.
Circ Cardiovasc Imaging ; 17(8): e016117, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39163378

ABSTRACT

BACKGROUND: Coronary computed tomography angiography provides valuable information for evaluating the difficulty of chronic total occlusion (CTO) percutaneous coronary intervention. This study aimed to investigate the value of CTO plaque characteristics derived from radiomics analysis for predicting the difficulty of percutaneous coronary intervention. METHODS: Patients with CTO were retrospectively enrolled from a hospital as training and internal test sets and from the other 2 territory hospitals as external test sets. Radiomics characteristics were extracted from the CTO segment on coronary computed tomography angiography. Radiomics and combined models were developed to predict successful guidewire crossing within 30 minutes (guidewire success) of CTO percutaneous coronary intervention. Subgroup analysis was conducted to investigate the influence of potential risk factors on the radiomics model performance. RESULTS: A total of 551 patients (median, 60; interquartile range, 52.00-66.00 years, 460 men) with 565 CTO lesions were finally enrolled. In the training, internal test, and external test sets, 203 of 357, 85 of 149, and 38 of 59 CTO lesions achieved guidewire success, respectively. Six radiomics features were selected for constructing the radiomics model. In the external test set, the area under the receiver operating characteristic curve of the radiomics model was significantly higher than prior prediction models (P<0.05 for all) with the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of 0.86, 74.58%, 81.58%, and 61.90%, respectively. The performance of the radiomics model was dependent on calcification, CTO location, adjacent branch(es), and operator caseload. CONCLUSIONS: CTO characteristics revealed by radiomics analysis can be used as effective imaging biomarkers for predicting guidewire success. However, the performance of the radiomics model depends on anatomic and operator factors.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Occlusion , Percutaneous Coronary Intervention , Plaque, Atherosclerotic , Predictive Value of Tests , Humans , Male , Female , Coronary Occlusion/diagnostic imaging , Coronary Occlusion/surgery , Coronary Occlusion/therapy , Middle Aged , Retrospective Studies , Percutaneous Coronary Intervention/methods , Aged , Coronary Angiography/methods , Chronic Disease , Time Factors , Treatment Outcome , Coronary Vessels/diagnostic imaging , Radiomics
3.
J Clin Periodontol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952070

ABSTRACT

AIM: To investigate the associations between oral health and depression, anxiety and their comorbidity in the UK Biobank cohort. MATERIALS AND METHODS: Oral health problems were self-reported at baseline. Symptoms of depression and anxiety were assessed using the Mental Health Questionnaire (PHQ-4) in a cross-sectional study. In the cohort study, diagnoses of depression and anxiety disorders were based on hospital records. Logistic regression and Cox regression models were used to analyse the association between oral health and depression/anxiety. RESULTS: A total of 305,188 participants were included in the cross-sectional study, and multivariate analysis showed that periodontal disease was associated with depression and/or anxiety (odds ratio [OR]: 1.79, 95% confidence interval [CI]: 1.73-1.86). In the prospective cohort study involving 264,706 participants, periodontal disease was significantly associated with an increased risk of depression and/or anxiety (hazard ratio [HR]: 1.14, 95% CI: 1.10-1.19), depression (HR: 1.19, 95% CI: 1.13-1.25) and anxiety (HR: 1.13, 95% CI: 1.07-1.19). Periodontal disease was also significantly associated with comorbid depression and anxiety (HR: 1.27, 95% CI: 1.16-1.38). Multiple mediation analysis using baseline inflammatory factors showed that white blood cell count and C-reactive protein explained 3.07% and 3.15% of the association between periodontal disease and depression and anxiety, respectively. However, the results of longitudinal multiple mediation analysis of inflammatory factors at first follow-up (N = 10,673) were not significant. CONCLUSIONS: Periodontal disease was found to be consistently associated with an increased risk of depression, anxiety and their comorbidity.

4.
World J Surg Oncol ; 22(1): 194, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054543

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) fusions are rare but potentially actionable oncogenic drivers across multiple solid tumors. However, the distribution and molecular characteristics of EGFR fusions in Chinese patients with solid malignancies have not been explored. METHODS: Panel-based next-generation sequencing (NGS) data of 35,023 patients with various types of solid tumors was collected and analyzed from the Simcere Diagnostics (Nanjing, China) database. A 9563-patient cohort was derived from The Cancer Genome Atlas (TCGA) to explore the relationship between EGFR fusion status and overall survival (OS). RESULTS: In this study, prevalence of functional EGFR fusions was 0.303% (106/35,023) in total across solid tumors, which occur more commonly in gastroesophageal junction cancer (1/61, 1.613%), followed by medulloblastoma (1/66, 1.515%) and glioma (33/2409, 1.370%). Analysis showed a prevalence for fusion partners in different tumor types. The top 3 co-mutant genes with EGFR fusion were TP53 (mutation frequency, MF: 65%), BRCA2 (MF: 43%), and ALK (MF: 41%). Furthermore, patients in the EGFR fusion group had a significantly shorter OS than those in the non-EGFR fusion group (p < 0.0001) in the TCGA cohort, suggesting that EGFR fusion might be a high-risk factor for poor prognosis. CONCLUSIONS: Our study is the first retrospective analysis of EGFR fusions in a large-scale solid tumor population, which may provide a reference for future EGFR-TKI clinical trials with EGFR fusions.


Subject(s)
ErbB Receptors , High-Throughput Nucleotide Sequencing , Neoplasms , Oncogene Proteins, Fusion , Humans , ErbB Receptors/genetics , Male , Female , Oncogene Proteins, Fusion/genetics , Prognosis , Survival Rate , Middle Aged , Neoplasms/genetics , Neoplasms/pathology , Adult , High-Throughput Nucleotide Sequencing/methods , China/epidemiology , Biomarkers, Tumor/genetics , Follow-Up Studies , BRCA2 Protein/genetics , Tumor Suppressor Protein p53/genetics , Anaplastic Lymphoma Kinase/genetics , Aged , Young Adult , Mutation , Adolescent , Retrospective Studies , East Asian People
5.
BMC Psychiatry ; 24(1): 419, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834943

ABSTRACT

BACKGROUND: Few studies have simultaneously focused on the associations of vegetable and fruit intake, physical activity, school bullying, and Internet addiction (IA) with depressive symptoms. This study aimed to explore the direct and indirect effects of the above factors on depressive symptoms in adolescents by constructing a structural equation model (SEM). METHODS: This study was conducted in Qingdao from September to November 2021. A total of 6195 secondary school students aged 10-19 years were included in the analysis. Information on all variables was assessed using a self-administered questionnaire. An SEM was constructed with depressive symptoms as the endogenous latent variable, IA as the mediating variable, and vegetable and fruit intake, physical activity, and school bullying as the exogenous latent variables. The standardized path coefficients (ß) were the direct effects between the latent variables, and the indirect effects were obtained by the product of direct effects between relevant latent variables. RESULTS: The median value with the interquartile range of depressive symptom scores was 7 (3,12). Vegetable and fruit intake (ß=-0.100, P<0.001) and physical activity (ß=-0.140, P<0.001) were directly negatively related to depressive symptoms. While school bullying (ß=0.138, P<0.001) and IA (ß=0.452, P<0.001) were directly positively related to depressive symptoms. IA had the greatest impact on depressive symptoms. Vegetable and fruit intake, physical activity, and school bullying could not only directly affect depressive symptoms, but also indirectly affect depressive symptoms through the mediating effect of IA, the indirect effects and 95% confidence intervals (CIs) were -0.028 (-0.051, -0.007), -0.114 (-0.148, -0.089) and 0.095 (0.060, 0.157), respectively. The results of the multi-group analysis showed that the SEM we constructed still fit in boy and girl groups. CONCLUSIONS: The results indicated that vegetable and fruit intake, physical activity, school bullying, and IA had a significant direct impact on depressive symptoms, among which IA had the greatest impact. In addition, both vegetable and fruit intake, school bullying, and physical activity indirectly affected depressive symptoms through the mediating effect of IA. The impact of IA on depressive symptoms should be given extra attention by schools and parents. This study provides a scientific and effective basis for the prevention and control of adolescent depressive symptoms.


Subject(s)
Bullying , Depression , Exercise , Fruit , Internet Addiction Disorder , Students , Vegetables , Humans , Adolescent , Male , Bullying/psychology , Bullying/statistics & numerical data , Female , Depression/psychology , Depression/epidemiology , Exercise/psychology , Child , Students/psychology , Students/statistics & numerical data , Internet Addiction Disorder/psychology , Internet Addiction Disorder/epidemiology , Schools , Young Adult , China/epidemiology
6.
PLoS One ; 19(6): e0304770, 2024.
Article in English | MEDLINE | ID: mdl-38829888

ABSTRACT

Age-related hearing loss is a complex disease caused by a combination of genetic and environmental factors, and a study have conducted animal experiments to explore the association between BCL11B heterozygosity and age-related hearing loss. The present study used established genetic models to examine the association between BCL11B gene polymorphisms and age-related hearing loss. A total of 410 older adults from two communities in Qingdao, China, participated in this study. The case group comprised individuals aged ≥ 60 years with age-related hearing loss, and the control group comprised individuals without age-related hearing loss from the same communities. The groups were matched 1:1 for age and sex. The individual characteristics of the participants were analyzed descriptively using the Mann-Whitney U test and the chi-square test. To explore the association between BCL11B gene polymorphisms and age-related hearing loss, conditional logistic regression was performed to construct genetic models for two single-nucleotide-polymorphisms (SNPs) of BCL11B, and haplotype analysis was conducted to construct their haplotype domains. Two SNP sites of the BCL11B gene, four genetic models of rs1152781 (additive, dominant, recessive, and codominant), and five genetic models of rs1152783 (additive, dominant, recessive, codominant, and over dominant) were significantly associated with age-related hearing loss in the models both unadjusted and adjusted for all covariates (P < 0.05). Additionally, a linkage disequilibrium between rs1152781 and rs1152783 was revealed through haplotype analysis. Our study revealed that BCL11B gene polymorphisms were significantly associated with age-related hearing loss.


Subject(s)
Haplotypes , Polymorphism, Single Nucleotide , Repressor Proteins , Tumor Suppressor Proteins , Humans , Male , Female , Aged , China/epidemiology , Case-Control Studies , Middle Aged , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Hearing Loss/genetics , Hearing Loss/epidemiology , Genetic Predisposition to Disease , Aged, 80 and over , Presbycusis/genetics , Presbycusis/epidemiology , Linkage Disequilibrium
7.
Stem Cells ; 42(8): 752-762, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38829368

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) possess the potential to differentiate into cartilage cells. Long noncoding RNA (lncRNAs) urothelial carcinoma associated 1 (UCA1) has been confirmed to improve the chondrogenic differentiation of marrow mesenchymal stem cells (MSCs). Herein, we further investigated the effects and underlying mechanisms of these processes. The expression of UCA1 was positively associated with chondrogenic differentiation and the knockdown of UCA1 has been shown to attenuate the expression of chondrogenic markers. RNA pull-down assay and RNA immunoprecipitation showed that UCA1 could directly bind to PARP1 protein. UCA1 could improve PARP1 protein via facilitating USP9X-mediated PARP1 deubiquitination. Then these processes stimulated the NF-κB signaling pathway. In addition, PARP1 was declined in UCA1 knockdown cells, and silencing of PARP1 could diminish the increasing effects of UCA1 on the chondrogenic differentiation from MSCs and signaling pathway activation. Collectively, these outcomes suggest that UCA1 could act as a mediator of PARP1 protein ubiquitination and develop the chondrogenic differentiation of MSCs.


Subject(s)
Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , Poly (ADP-Ribose) Polymerase-1 , RNA, Long Noncoding , Ubiquitination , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Cell Differentiation/genetics , Chondrogenesis/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Signal Transduction , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , NF-kappa B/metabolism
8.
Nutrients ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732531

ABSTRACT

Few studies have examined dietary protein intake and sources, in combination with longitudinal changes in brain structure markers. Our study aimed to examine the association between dietary protein intake and different sources of dietary protein, with the longitudinal rate of change in brain structural markers. A total of 2723 and 2679 participants from the UK Biobank were separately included in the analysis. The relative and absolute amounts of dietary protein intake were calculated using a 24 h dietary recall questionnaire. The longitudinal change rates of brain structural biomarkers were computed using two waves of brain imaging data. The average interval between the assessments was three years. We utilized multiple linear regression to examine the association between dietary protein and different sources and the longitudinal changes in brain structural biomarkers. Restrictive cubic splines were used to explore nonlinear relationships, and stratified and sensitivity analyses were conducted. Increasing the proportion of animal protein in dietary protein intake was associated with a slower reduction in the total hippocampus volume (THV, ß: 0.02524, p < 0.05), left hippocampus volume (LHV, ß: 0.02435, p < 0.01) and right hippocampus volume (RHV, ß: 0.02544, p < 0.05). A higher intake of animal protein relative to plant protein was linked to a lower atrophy rate in the THV (ß: 0.01249, p < 0.05) and LHV (ß: 0.01173, p < 0.05) and RHV (ß: 0.01193, p < 0.05). Individuals with a higher intake of seafood exhibited a higher longitudinal rate of change in the HV compared to those that did not consume seafood (THV, ß: 0.004514; p < 0.05; RHV, ß: 0.005527, p < 0.05). In the subgroup and sensitivity analyses, there were no significant alterations. A moderate increase in an individual's intake and the proportion of animal protein in their diet, especially from seafood, is associated with a lower atrophy rate in the hippocampus volume.


Subject(s)
Brain , Dietary Proteins , Hippocampus , Humans , Male , Female , Middle Aged , Longitudinal Studies , Dietary Proteins/administration & dosage , Aged , Magnetic Resonance Imaging , Atrophy , Animal Proteins, Dietary/administration & dosage , Diet , Adult , United Kingdom , Plant Proteins, Dietary/administration & dosage
9.
Pharmacol Res ; 204: 107215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744399

ABSTRACT

The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.


Subject(s)
Cardiovascular Diseases , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/immunology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Animals , Ubiquitin/metabolism , Ubiquitin/immunology , Signal Transduction
10.
Int J Obes (Lond) ; 48(8): 1148-1156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38773251

ABSTRACT

OBJECTIVES: Central obesity poses significant health risks because it increases susceptibility to multiple chronic diseases. Epigenetic features such as DNA methylation may be associated with specific obesity traits, which could help us understand how genetic and environmental factors interact to influence the development of obesity. This study aims to identify DNA methylation sites associated with the waist circumference (WC) in Northern Han Chinese population, and to elucidate potential causal relationships. METHODS: A total of 59 pairs of WC discordant monozygotic twins (ΔWC >0) were selected from the Qingdao Twin Registry in China. Generalized estimated equation model was employed to estimate the methylation levels of CpG sites on WC. Causal relationships between methylation and WC were assessed through the examination of family confounding factors using FAmiliaL CONfounding (ICE FALCON). Additionally, the findings of the epigenome-wide analysis were corroborated in the validation stage. RESULTS: We identified 26 CpG sites with differential methylation reached false discovery rate (FDR) < 0.05 and 22 differentially methylated regions (slk-corrected p < 0.05) strongly linked to WC. These findings provided annotations for 26 genes, with notable emphasis on MMP17, ITGA11, COL23A1, TFPI, A2ML1-AS1, MRGPRE, C2orf82, and NINJ2. ICE FALCON analysis indicated the DNA methylation of ITGA11 and TFPI had a causal effect on WC and vice versa (p < 0.05). Subsequent validation analysis successfully replicated 10 (p < 0.05) out of the 26 identified sites. CONCLUSIONS: Our research has ascertained an association between specific epigenetic variations and WC in the Northern Han Chinese population. These DNA methylation features can offer fresh insights into the epigenetic regulation of obesity and WC as well as hints to plausible biological mechanisms.


Subject(s)
DNA Methylation , Epigenome , Twins, Monozygotic , Waist Circumference , Humans , Twins, Monozygotic/genetics , Waist Circumference/genetics , Male , Female , China/epidemiology , Epigenome/genetics , DNA Methylation/genetics , Middle Aged , Genome-Wide Association Study , Adult , Epigenesis, Genetic , Asian People/genetics , Obesity, Abdominal/genetics , East Asian People
11.
Plant Commun ; 5(7): 100975, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38751121

ABSTRACT

Yield prediction is the primary goal of genomic selection (GS)-assisted crop breeding. Because yield is a complex quantitative trait, making predictions from genotypic data is challenging. Transfer learning can produce an effective model for a target task by leveraging knowledge from a different, but related, source domain and is considered a great potential method for improving yield prediction by integrating multi-trait data. However, it has not previously been applied to genotype-to-phenotype prediction owing to the lack of an efficient implementation framework. We therefore developed TrG2P, a transfer-learning-based framework. TrG2P first employs convolutional neural networks (CNN) to train models using non-yield-trait phenotypic and genotypic data, thus obtaining pre-trained models. Subsequently, the convolutional layer parameters from these pre-trained models are transferred to the yield prediction task, and the fully connected layers are retrained, thus obtaining fine-tuned models. Finally, the convolutional layer and the first fully connected layer of the fine-tuned models are fused, and the last fully connected layer is trained to enhance prediction performance. We applied TrG2P to five sets of genotypic and phenotypic data from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) and compared its model precision to that of seven other popular GS tools: ridge regression best linear unbiased prediction (rrBLUP), random forest, support vector regression, light gradient boosting machine (LightGBM), CNN, DeepGS, and deep neural network for genomic prediction (DNNGP). TrG2P improved the accuracy of yield prediction by 39.9%, 6.8%, and 1.8% in rice, maize, and wheat, respectively, compared with predictions generated by the best-performing comparison model. Our work therefore demonstrates that transfer learning is an effective strategy for improving yield prediction by integrating information from non-yield-trait data. We attribute its enhanced prediction accuracy to the valuable information available from traits associated with yield and to training dataset augmentation. The Python implementation of TrG2P is available at https://github.com/lijinlong1991/TrG2P. The web-based tool is available at http://trg2p.ebreed.cn:81.


Subject(s)
Crops, Agricultural , Neural Networks, Computer , Oryza , Zea mays , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Oryza/genetics , Oryza/growth & development , Zea mays/genetics , Zea mays/growth & development , Triticum/genetics , Triticum/growth & development , Phenotype , Plant Breeding/methods , Genotype , Machine Learning
12.
Sci Rep ; 14(1): 10313, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705875

ABSTRACT

Sunlight is closely intertwined with daily life. It remains unclear whether there are associations between sunlight exposure and brain structural markers. General linear regression analysis was used to compare the differences in brain structural markers among different sunlight exposure time groups. Stratification analyses were performed based on sex, age, and diseases (hypertension, stroke, diabetes). Restricted cubic spline was performed to examine the dose-response relationship between natural sunlight exposure and brain structural markers, with further stratification by season. A negative association of sunlight exposure time with brain structural markers was found in the upper tertile compared to the lower tertile. Prolonged natural sunlight exposure was associated with the volumes of total brain (ß: - 0.051, P < 0.001), white matter (ß: - 0.031, P = 0.023), gray matter (ß: - 0.067, P < 0.001), and white matter hyperintensities (ß: 0.059, P < 0.001). These associations were more pronounced in males and individuals under the age of 60. The results of the restricted cubic spline analysis showed a nonlinear relationship between sunlight exposure and brain structural markers, with the direction changing around 2 h of sunlight exposure. This study demonstrates that prolonged exposure to natural sunlight is associated with brain structural markers change.


Subject(s)
Brain , Sunlight , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers , Brain/diagnostic imaging , Brain/radiation effects , Gray Matter/diagnostic imaging , Gray Matter/radiation effects , Magnetic Resonance Imaging , Seasons , UK Biobank , United Kingdom , White Matter/diagnostic imaging , White Matter/radiation effects
13.
Front Cell Dev Biol ; 12: 1378680, 2024.
Article in English | MEDLINE | ID: mdl-38633108

ABSTRACT

Background: The decline in muscle strength and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report the epigenetic relationship between genome-wide DNA methylation and handgrip strength (HGS) among Chinese monozygotic (MZ) twins. Methods: DNA methylation (DNAm) profiling was conducted in whole blood samples through Reduced Representation Bisulfite Sequencing method. Generalized estimating equation was applied to regress the DNAm of each CpG with HGS. The Genomic Regions Enrichment of Annotations Tool was used to perform enrichment analysis. Differentially methylated regions (DMRs) were detected using comb-p. Causal inference was performed using Inference about Causation through Examination of Familial Confounding method. Finally, we validated candidate CpGs in community residents. Results: We identified 25 CpGs reaching genome-wide significance level. These CpGs located in 9 genes, especially FBLN1, RXRA, and ABHD14B. Many enriched terms highlighted calcium channels, neuromuscular junctions, and skeletal muscle organ development. We identified 21 DMRs of HGS, with several DMRs within FBLN1, SLC30A8, CST3, and SOCS3. Causal inference indicated that the DNAm of 16 top CpGs within FBLN1, RXRA, ABHD14B, MFSD6, and TYW1B might influence HGS, while HGS influenced DNAm at two CpGs within FBLN1 and RXRA. In validation analysis, methylation levels of six CpGs mapped to FLBN1 and one CpG mapped to ABHD14B were negatively associated with HGS weakness in community population. Conclusion: Our study identified multiple DNAm variants potentially related to HGS, especially CpGs within FBLN1 and ABHD14B. These findings provide new clues to the epigenetic modification underlying muscle strength decline.

14.
Pediatr Nephrol ; 39(8): 2403-2412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38578470

ABSTRACT

BACKGROUND: Previously, several studies have indicated that pediatric IgA nephropathy (IgAN) might be different from adult IgAN, and treatment strategies might be also different between pediatric IgAN and adult IgAN. METHODS: We analyzed two prospective cohorts established by pediatric and adult nephrologists, respectively. A comprehensive analysis was performed investigating the difference in clinical and pathological characteristics, treatment, and prognosis between children and adults with IgAN. RESULTS: A total of 1015 children and 1911 adults with IgAN were eligible for analysis. More frequent gross hematuria (88% vs. 20%, p < 0.0001) and higher proteinuria (1.8 vs. 1.3 g/d, p < 0.0001) were seen in children compared to adults. In comparison, the estimated glomerular filtration rate (eGFR) was lower in adults (80.4 vs. 163 ml/min/1.73 m2, p < 0.0001). Hypertension was more prevalent in adult patients. Pathologically, a higher proportion of M1 was revealed (62% vs. 39%, p < 0.0001) in children than in adults. S1 (62% vs. 28%, p < 0.0001) and T1-2 (34% vs. 8%, p < 0.0001) were more frequent in adults. Adjusted by proteinuria, eGFR, and hypertension, children were more likely to be treated with glucocorticoids than adults (87% vs. 45%, p < 0.0001). After propensity score matching, in IgAN with proteinuria > 1 g/d, children treated with steroids were 1.87 (95% CI 1.16-3.02, p = 0.01) times more likely to reach complete remission of proteinuria compared with adults treated with steroids. CONCLUSIONS: Children present significantly differently from adults with IgAN in clinical and pathological manifestations and disease progression. Steroid response might be better in children.


Subject(s)
Glomerular Filtration Rate , Glomerulonephritis, IGA , Proteinuria , Humans , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/physiopathology , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/therapy , Male , Female , Child , Adult , Proteinuria/etiology , Proteinuria/diagnosis , Adolescent , Prospective Studies , Young Adult , Prognosis , Middle Aged , Age Factors , Hematuria/etiology , Hematuria/diagnosis , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/diagnosis , Kidney/pathology , Kidney/physiopathology , Disease Progression , Glucocorticoids/therapeutic use
15.
Genes (Basel) ; 15(4)2024 04 15.
Article in English | MEDLINE | ID: mdl-38674428

ABSTRACT

BACKGROUND: Women with polycystic ovary syndrome (PCOS) have increased odds of concurrent depression, indicating that the relationship between PCOS and depression is more likely to be comorbid. However, the underlying mechanism remains unclear. Here, we aimed to use bioinformatic analysis to screen for the genetic elements shared between PCOS and depression. METHODS: Differentially expressed genes (DEGs) were screened out through GEO2R using the PCOS and depression datasets in NCBI. Protein-protein interaction (PPI) network analysis and enrichment analysis were performed to identify the potential hub genes. After verification using other PCOS and depression datasets, the associations between key gene polymorphism and comorbidity were further studied using data from the UK biobank (UKB) database. RESULTS: In this study, three key genes, namely, SNAP23, VTI1A, and PRKAR1A, and their related SNARE interactions in the vesicular transport pathway were identified in the comorbidity of PCOS and depression. The rs112568544 at SNAP23, rs11077579 and rs4458066 at PRKAR1A, and rs10885349 at VTI1A might be the genetic basis of this comorbidity. CONCLUSIONS: Our study suggests that the SNAP23, PRKAR1A, and VTI1A genes can directly or indirectly participate in the imbalanced assembly of SNAREs in the pathogenesis of the comorbidity of PCOS and depression. These findings may provide new strategies in diagnosis and therapy for this comorbidity.


Subject(s)
Depression , Polycystic Ovary Syndrome , Protein Interaction Maps , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/epidemiology , Humans , Female , Depression/genetics , Depression/epidemiology , Protein Interaction Maps/genetics , Qb-SNARE Proteins/genetics , Comorbidity , Qc-SNARE Proteins/genetics , Polymorphism, Single Nucleotide , SNARE Proteins/genetics , SNARE Proteins/metabolism , Computational Biology/methods , Genetic Predisposition to Disease
16.
J Hum Genet ; 69(8): 357-363, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38649436

ABSTRACT

Handgrip strength is a crucial indicator to monitor the change of cognitive function over time, but its mechanism still needs to be further explored. We sampled 59 monozygotic twin pairs to explore the potential mediating effect of DNA methylation (DNAm) on the association between handgrip strength and cognitive function. The initial step was the implementation of an epigenome-wide association analysis (EWAS) in the study participants, with the aim of identifying DNAm variations that are associated with handgrip strength. Following that, we conducted an assessment of the mediated effect of DNAm by the use of mediation analysis. In order to do an ontology enrichment study for CpGs, the GREAT program was used. There was a significant positive association between handgrip strength and cognitive function (ß = 0.194, P < 0.001). The association between handgrip strength and DNAm of 124 CpGs was found to be statistically significant at a significance level of P < 1 × 10-4. Fifteen differentially methylated regions (DMRs) related to handgrip strength were found in genes such as SNTG2, KLB, CDH11, and PANX2. Of the 124 CpGs, 4 within KRBA1, and TRAK1 mediated the association between handgrip strength and cognitive function: each 1 kg increase in handgrip strength was associated with a potential decrease of 0.050 points in cognitive function scores, mediated by modifications in DNAm. The parallel mediating effect of these 4 CpGs was -0.081. The presence of DNAm variation associated with handgrip strength may play a mediated role in the association between handgrip strength and cognitive function.


Subject(s)
Cognition , CpG Islands , DNA Methylation , Hand Strength , Twins, Monozygotic , Humans , Hand Strength/physiology , Twins, Monozygotic/genetics , DNA Methylation/genetics , Male , Female , Cognition/physiology , Middle Aged , CpG Islands/genetics , Adult , Epigenesis, Genetic , Genome-Wide Association Study , Aged
17.
Intern Med J ; 54(8): 1310-1319, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38465389

ABSTRACT

BACKGROUND: Famine exposure in childhood is proven to be associated with multiple chornic disease in adult but has not been studied with chronic kidney disease (CKD). AIMS: This study was conducted to identify the relationship between famine exposure during infancy and childhood - specifically, the Chinese famine of 1959-1961 - and the risk of adult-onset chronic kidney disease (CKD) among Chinese individuals. METHODS: This study included 2937 individuals from the Qingdao Diabetes Prevention Program. They were stratified by birth year into infancy-exposed (1956-1958), childhood-exposed (1950-1955) and unexposed (1963-1971) groups. The estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation. CKD was defined as an eGFR of <90 mL/min/1.73 m2. RESULTS: The mean eGFR values for the infancy-exposed and childhood-exposed groups were 107.23 ± 12.53 and 103.23 ± 12.44 mL/min/1.73 m2, respectively, both of which were lower than that of the unexposed group (114.82 ± 13.39 mL/min/1.73 m2; P < 0.05). In the crude model, the odds ratio (OR) for CKD was 2.00 (95% confidence interval (CI): 1.39-2.88) in the infancy-exposed group and 2.92 (95% CI: 2.17-3.93) in the childhood-exposed group. Further adjustments for urban/rural residence, body mass index, age, current smoking, type 2 diabetes, systolic blood pressure, diastolic blood pressure and total cholesterol did not significantly alter the association between famine exposure and CKD. The corresponding ORs were 1.71 (95% CI: 1.17-2.50) and 2.48 (95% CI: 1.81-3.40) for the infancy-exposed and childhood-exposed groups respectively. CONCLUSIONS: Famine exposure during infancy and childhood is associated with a long-term decline in eGFR and an increased adult-onset CKD risk. Early intervention for high-risk individuals may mitigate the risk of adult-onset CKD.


Subject(s)
Famine , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Male , Female , Middle Aged , Infant , Risk Factors , Child , Adult , China/epidemiology , Child, Preschool , Aged
18.
Eur Radiol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334761

ABSTRACT

OBJECTIVES: The impact of coronary calcification on the diagnostic accuracy of computed tomography-derived fractional flow reserve (CT-FFR) and coronary computed tomography angiography (CCTA) remains a crucial consideration. This meta-analysis aims to compare the diagnostic performance of CT-FFR and CCTA at different levels of coronary artery calcium score (CACS). METHODS AND RESULTS: We searched PubMed, Embase, and the Cochrane Library for relevant articles on CCTA, CT-FFR, and invasive fractional flow reserve (FFR). Ten studies were included to evaluate the diagnostic performance of CT-FFR and CCTA at the per-patient and per-vessel levels in four CACS groups. Invasive FFR was used as the reference standard. Except for the CACS ≥ 400 group, the AUC of CT-FFR was higher than those of CCTA in other subgroups of CACS (in CACS < 100 (per-patient, 0.9 (95% CI 0.87-0.92) vs. 0.32 (95% CI 0.28-0.36); per-vessel, 0.92 (95% CI 0.89-0.94) vs. 0.66 (95% CI 0.62-0.7); both p < 0.001), CACS ≥ 100 (per-patient, 0.86 (95% CI 0.82-0.88) vs. 0.44 (95% CI 0.4-0.48); per-vessel, 0.88 (95% CI 0.85-0.9) vs. 0.51 (95% CI 0.46-0.55); both p < 0.001), and CACS < 400 (per-patient, 0.9 (95% CI 0.87-0.93) vs. 0.74 (95% CI 0.7-0.78), p < 0.001; per-vessel, 0.8 (95% CI 0.76-0.83) vs. 0.74 (95% CI 0.7-0.78); p = 0.02)). CONCLUSIONS: CT-FFR demonstrates superior diagnostic performance in low CACS groups (CACS < 400) than CCTA in detecting hemodynamic stenoses in patients with coronary artery disease (CAD). CLINICAL RELEVANCE STATEMENT: Computed tomography-derived fractional flow reserve might be utilized to determine the necessity of invasive coronary angiography in coronary artery disease patients with coronary artery calcium score < 400. KEY POINTS: • There is a lack of meta-analysis comparing the diagnostic performance of computed tomography-derived fractional flow reserve and coronary computed tomography angiography at different levels of calcification. • Computed tomography-derived fractional flow reserve only has a better diagnostic performance than coronary computed tomography angiography with low amounts of coronary calcium. • For the low coronary artery calcium score group, computed tomography-derived fractional flow reserve might be a good non-invasive method to detect hemodynamic stenoses in coronary artery disease patients.

19.
Twin Res Hum Genet ; 27(1): 18-29, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38291711

ABSTRACT

Obesity is an established risk factor for hypertension, but the mechanisms are only partially understood. We examined whether body mass index (BMI)-related DNA methylation (DNAm) variation would mediate the association of BMI with blood pressure (BP). We first conducted a genomewide DNA methylation analysis in monozygotic twin pairs to detect BMI-related DNAm variation and then evaluated the mediating effect of DNAm on the relationship between BMI and BP levels using the causal inference test (CIT) method and mediation analysis. Ontology enrichment analysis was performed for CpGs using the GREAT tool. A total of 60 twin pairs for BMI and systolic blood pressure (SBP) and 58 twin pairs for BMI and diastolic blood pressure (DBP) were included. BMI was positively associated with SBP (ß = 1.86, p = .0004). The association between BMI and DNAm of 85 CpGs reached p < 1×10-4 level. Eleven BMI-related differentially methylated regions (DMRs) within LNCPRESS1, OGDHL, RNU1-44P, NPHS1, ECEL1P2, LLGL2, RNY4P15, MOGAT3, PHACTR3, and BAI2 were found. Of the 85 CpGs, 9 mapped to C10orf71-AS1, NDUFB5P1, KRT80, BAI2, ABCA2, PEX11G and FGF4 were significantly associated with SBP levels. Of the 9 CpGs, 2 within ABCA2 negatively mediated the association between BMI and SBP, with a mediating effect of -0.24 (95% CI [-0.65, -0.01]). BMI was also positively associated with DBP (ß = 0.60, p = .0495). The association between BMI and DNAm of 193 CpGs reached p < 1×10-4 level. Twenty-five BMI-related DMRs within OGDHL, POU4F2, ECEL1P2, TTC6, SMPD4, EP400, TUBA1C and AGAP2 were found. Of the 193 CpGs, 33 mapped to ABCA2, ADORA2B, CTNNBIP1, KDM4B, NAA60, RSPH6A, SLC25A19 and STIL were significantly associated with DBP levels. Of the 33 CpGs, 12 within ABCA2, SLC25A19, KDM4B, PTPRN2, DNASE1, TFCP2L1, LMNB2 and C10orf71-AS1 negatively mediated the association between BMI and DBP, with a total mediation effect of -0.66 (95% CI [-1.07, -0.30]). Interestingly, BMI might also negatively mediate the association between the DNAm of most CpG mediators mentioned above and BP. The mediating effect of DNAm was also found when stratified by sex. In conclusion, DNAm variation may partially negatively mediate the association of BMI with BP. Our findings may provide new clues to further elucidate the pathogenesis of obesity to hypertension and identify new diagnostic biomarkers and therapeutic targets for hypertension.


Subject(s)
Blood Pressure , Body Mass Index , DNA Methylation , Obesity , Twins, Monozygotic , Humans , Male , Female , Twins, Monozygotic/genetics , Blood Pressure/genetics , Middle Aged , Obesity/genetics , Adult , China/epidemiology , Hypertension/genetics , Hypertension/epidemiology , Hypertension/physiopathology , CpG Islands/genetics , East Asian People
20.
J Med Chem ; 67(4): 2941-2962, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38294952

ABSTRACT

The fibroblast growth factor receptor (FGFR) signaling pathway plays important roles in cellular processes such as proliferation, differentiation, and migration. In this study, we highlighted the potential of FGFR inhibitors bearing the (S)-3,3-difluoro-1-(4-methylpiperazin-1-yl)-2,3-dihydro-1H-indene scaffold containing a crucial 3-pyridyl group for the treatment of FGFR mutant cancers. The representative compound (S)-23, which was identified through comprehensive evaluation, exhibited potent antiproliferative activity with GI50 in the range of 6.4-10.4 nM against FGFR1 fusion protein-carrying, FGFR2-amplified, and FGFR2 mutant cancer cell lines and good antiproliferative activity against FGFR3 translocation and mutant FGFR4 cancer cell lines, as well as potency assessment against FGFR1-4 kinases. Moreover, compound (S)-23 exhibited favorable pharmacokinetic properties, low potential for drug-drug interactions, and very potent antitumor activity in MFE-296 xenograft mouse models with a TGI of 99.1% at the dose of 10 mg/kg. These findings demonstrate that compound (S)-23 is a potential therapeutic agent for FGFR mutant tumors.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Mice , Animals , Antineoplastic Agents/pharmacology , Receptors, Fibroblast Growth Factor , Receptor, Fibroblast Growth Factor, Type 2 , Neoplasms/drug therapy , Receptor, Fibroblast Growth Factor, Type 1 , Signal Transduction , Cell Line , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL