Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Diabetes Res ; 2024: 8772009, 2024.
Article in English | MEDLINE | ID: mdl-39040854

ABSTRACT

Background: One of the most common microvascular complications of diabetes is diabetic kidney disease (DKD). The Huajuxiaoji formula (HJXJ) has shown clinical efficacy for DKD; however, its regulatory mechanisms against DKD remain elusive. We investigated NLRP3 inflammasome and the mechanisms of HJXJ by which HJXJ alleviates DKD. Methods: Phenyl sulfate (PS) was used to establish DKD models. HJXJ was administered to mice through intragastric or made into a pharmaceutical serum for the cell cultures. Biological indicator levels in mouse blood and urine were analyzed, and kidney tissues were used for HE, Masson, and PAS staining. ELISA and western blotting were used to detect inflammatory cytokines and protein levels, respectively. Reactive oxygen species (ROS) production and pyroptosis were evaluated using flow cytometry. Lentiviral vector-mediated overexpression of NLRP3 was performed to determine whether NLRP3 participates in the antipyroptotic effect of HJXJ. Results: HJXJ significantly reduced the severity of the injury and, in a dose-dependent manner, decreased the levels of biological markers including creatinine, blood urea nitrogen, urine protein, and endotoxin, as well as inflammatory cytokines such as interleukin (IL)-1ß, IL-18, tumor necrosis factor-α, and IL-6 in DKD mice. Treatment with HJXJ reversed the downregulation of podocin, nephrin, ZO-1, and occludin and upregulated ROS, NLRP3, Caspase-1 P20, and GSDMD-N induced by PS. Moreover, the upregulation of NLRP3 expression increased the number of cells positive for pyroptosis. HJXJ suppressed pyroptosis and inflammasome activation by inhibiting NLRP3 expression. Conclusions: Generally, HJXJ has the potential to reduce DKD injury and exerts anti-DKD effects by inhibiting the NLRP3-mediated NLRP3 inflammasome activation and pyroptosis in vitro and in vivo.


Subject(s)
Diabetic Nephropathies , Drugs, Chinese Herbal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Nephropathies/metabolism , Pyroptosis/drug effects , Mice , Drugs, Chinese Herbal/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Disease Models, Animal , Cytokines/metabolism
2.
J Diabetes Res ; 2024: 6942156, 2024.
Article in English | MEDLINE | ID: mdl-38282657

ABSTRACT

Background: Better therapeutic drugs are required for treating hypertensive diabetic nephropathy. In our previous study, the Huaju Xiaoji (HJXJ) formula promoted the renal function of patients with diabetes and hypertensive nephropathy. In this study, we investigated the therapeutic effect and regulation mechanism of HJXJ in hypertensive diabetic mice with nephropathy. Methods: We constructed a mouse hypertensive diabetic nephropathy (HDN) model by treating mice with streptozotocin (STZ) and nomega-nitro-L-arginine methyl ester (LNAME). We also constructed a human glomerular mesangial cell (HGMC) model that was induced by high doses of sugar (30 mmol/mL) and TGFß1 (5 ng/mL). Pathological changes were evaluated by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and Masson staining. The fibrosis-related molecules (TGFß1, fibronectin, laminin, COL I, COL IV, α-SMA, and p-smad2/3) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA levels and protein expression of endoplasmic reticulum stress, fibrosis molecules, and their downstream molecules were assessed using qPCR and Western blotting assays. Results: Administering HJXJ promoted the renal function of HDN mice. HJXJ reduced the expression of ER stress makers (CHOP and GRP78) and lncMGC, miR379, miR494, miR495, miR377, CUGBP2, CPEB4, EDEM3, and ATF3 in HDN mice and model HGMCs. The positive control drugs (dapagliflozin and valsartan) also showed similar effects after treatment with HJXJ. Additionally, in model HGMCs, the overexpression of CHOP or lncMGC decreased the effects of HJXJ-M on the level of fibrosis molecules and downstream target molecules. Conclusion: In this study, we showed that the HJXJ formula may regulate ERS-lncMGC/miRNA to enhance renal function in hypertensive diabetic mice with nephropathy. This study may act as a reference for further investigating whether combining HJXJ with other drugs can enhance its therapeutic effect. The findings of this study might provide new insights into the clinical treatment of hypertensive diabetic nephropathy with HJXJ.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Drugs, Chinese Herbal , Hypertension , MicroRNAs , Mice , Humans , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , MicroRNAs/genetics , MicroRNAs/therapeutic use , Hypertension/drug therapy , Disease Models, Animal , Mesangial Cells/metabolism , Fibrosis , RNA-Binding Proteins , Calcium-Binding Proteins , alpha-Mannosidase/metabolism , alpha-Mannosidase/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL