Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
Zhongguo Zhen Jiu ; 44(5): 555-64, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38764106

ABSTRACT

OBJECTIVE: To observe the effect of acupotomy on heat shock protein A family member 5 (HSPA5)/glutathione peroxidase 4 (GPX4) signaling pathway in the chondrocytes of the rabbits with knee osteoarthritis (KOA) and explore the mechanism of acupotomy on chondrocyte ferroptosis in KOA. METHODS: Twenty-seven New Zealand rabbits were randomly divided into a normal group, a model group and an acupotomy group, with 9 rabbits in each group. The left hind limb was fixed by the modified Videman method for 6 weeks to establish KOA model. After modeling, acupotomy was given in the acupotomy group, once a week and for consecutive 3 weeks. Using Lequesne MG score, the local symptoms, physical signs and functions of knee joint were evaluated. With HE staining and saffrane-solid green staining adopted, the morphology of chondrocytes and cartilage tissue was observed. Under transmission electron microscope, the mitochondrial structure of chondrocytes was observed. The iron content of cartilage tissue was detected by iron ion kit. The mitochondrial membrane potential (Δψm) and the reactive oxygen species (ROS) level in cartilage tissue were determined by flow cytometry, and the mitochondrial damage rate was calculated. The mRNA expression of HSPA5, GPX4, type Ⅱ collagen α1 chain (COL2A1), matrix metalloproteinases (MMP) 3 and MMP13 was detected by the real-time quantitative PCR; and the protein expression of HSPA5, GPX4, type Ⅱ collagen (COL-Ⅱ), MMP3 and MMP13 was detected by Western blot. The mean flourscence intensity of HSPA5 and GPX4 in cartilage tissue was determined by immunofluorescence. RESULTS: Before intervention, compared with the normal group, the Lequesne MG scores were increased in the model group and the acupotomy group (P<0.01). After intervention, the Lequesne MG score in the acupotomy group was decreased when compared with that in the model group. In comparison with that in the normal group, the number of chondrocytes was reduced and the cells were disarranged; the layers of cartilage structure were unclear, the tide lines disordered and blurred; the mitochondria were wrinkled and the mitochondrial crista decreased or even disappeared in the model group. Compared with the model group, the number of chondrocytes was increased, the layers of cartilage structure were clear, the tide lines recovered, the number of mitochondria elevated, with normal structure and more crista in the acupotomy group. The iron content of cartilage tissue was increased (P<0.01), the Δψm of chondrocytes was declined, the mitochondrial damage rate was increased (P<0.01), the average fluorescence intensity of ROS was increased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was decreased (P<0.01), the mRNA and protein expression of MMP3 and MMP13 was increased (P<0.01) and the average fluorescence intensity of HSPA5, GPX4 was decreased (P<0.01) in the model group when compared with those in the normal group. Compared with the model group, the iron content in cartilage tissue was reduced (P<0.01), the Δψm of chondrocytes was increased, the mitochondrial damage rate was decreased (P<0.01), and the average fluorescence intensity of ROS was decreased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was higher (P<0.01), and the mRNA and protein expression of MMP3 and MMP13 was lower, and the average fluorescence intensity of HSPA5, GPX4 was increased (P<0.01) in the acupotomy group. CONCLUSION: Acupotomy can alleviate cartilage injury of KOA rabbits, and its mechanism may be related to the regulation of HSPA5/GPX4 signaling pathway to maintain iron homeostasis in articular cartilage, thus inhibiting chondrocyte ferroptosis and relieving extracellular matrix degradation.


Subject(s)
Acupuncture Therapy , Chondrocytes , Ferroptosis , Heat-Shock Proteins , Osteoarthritis, Knee , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Animals , Rabbits , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/physiopathology , Chondrocytes/metabolism , Male , Humans , Acupuncture Therapy/instrumentation , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Endoplasmic Reticulum Chaperone BiP , Female
2.
Stem Cell Res Ther ; 15(1): 131, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702793

ABSTRACT

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS: Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS: The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION: This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Wharton Jelly/cytology , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Cell Proliferation , Cell Separation/methods , Cell Separation/standards
3.
Front Plant Sci ; 15: 1365264, 2024.
Article in English | MEDLINE | ID: mdl-38559765

ABSTRACT

Introduction: Tilia amurensis Rupr (T. amurensis) is one endangered and national class II key protected wild plant in China. It has ornamental, material, economic, edible and medicinal values. At present, the resources of T. amurensis are decreasing, and the prediction of the distribution of its potential habitat in China can provide a theoretical basis for the cultivation and rational management of this species. Methods: In this study, the R language was used to evaluate 358 distribution records and 38 environment variables. The MaxEnt model was used to predict the potential distribution areas of T. amurensis under the current and future climate scenarios. The dominant environmental factors affecting the distribution of T. amurensis were analyzed and the Marxan model was used to plan the priority protected areas of this species. Results: The results showed that Bio18, Slope, Elev, Bio1, Bio9 and Bio2 were the dominant environmental factors affecting the distribution of T. amurensis. Under the future climatic scenarios, the potential suitable areas for T. amurensis will mainly distribute in the Northeast China, the total suitable area will reduce compared with the current climate scenarios, and the general trend of the centroid of suitable habitat will be towards higher latitudes. The SPF value of the best plan obtained from the priority conservation area planning was 1.1, the BLM value was 127,616, and the priority conservation area was about 57.61×104 km2. The results suggested that climate, soil and topographic factors jointly affected the potential geographical distribution of T. amurensis, and climate and topographic factors had greater influence than soil factors. Discussion: The total suitable area of T. amurensis in China under different climate scenarios in the future will decrease, so more effective protection should be actively adopted.

4.
World J Gastrointest Surg ; 16(3): 966-973, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577088

ABSTRACT

BACKGROUND: Colorectal cavernous hemangioma is a rare vascular malformation resulting in recurrent lower gastrointestinal hemorrhage, and can be misinterpreted as colitis. Surgical resection is currently the mainstay of treatment, with an emphasis on sphincter preservation. CASE SUMMARY: We present details of two young patients with a history of persistent hematochezia diagnosed with colorectal cavernous hemangioma by endoscopic ultrasound (EUS). Cavernous hemangioma was relieved by several EUS-guided lauromacrogol injections and the patients achieved favorable clinical prognosis. CONCLUSION: Multiple sequential EUS-guided injections of lauromacrogol is a safe, effective, cost-efficient, and minimally invasive alternative for colorectal cavernous hemangioma.

5.
Regen Biomater ; 11: rbae027, 2024.
Article in English | MEDLINE | ID: mdl-38605854

ABSTRACT

Poor bone growth remains a challenge for degradable bone implants. Montmorillonite and strontium were selected as the carrier and bone growth promoting elements to prepare strontium-doped montmorillonite coating on Mg-Ca alloy. The surface morphology and composition were characterized by SEM, EDS, XPS, FT-IR and XRD. The hydrogen evolution experiment and electrochemical test results showed that the Mg-Ca alloy coated with Sr-MMT coating possessed optimal corrosion resistance performance. Furthermore, in vitro studies on cell activity, ALP activity, and cell morphology confirmed that Sr-MMT coating had satisfactory biocompatibility, which can significantly avail the proliferation, differentiation, and adhesion of osteoblasts. Moreover, the results of the 90-day implantation experiment in rats indicated that, the preparation of Sr-MMT coating effectively advanced the biocompatibility and bone repair performance of Mg-Ca alloy. In addition, The Osteogenic ability of Sr-MMT coating may be due to the combined effect of the precipitation of Si4+ and Sr2+ in Sr-MMT coating and the dissolution of Mg2+ and Ca2+ during the degradation of Mg-Ca alloy. By using coating technology, this study provides a late-model strategy for biodegradable Mg alloys with good corrosion resistance, biocompatibility. This new material will bring more possibilities in bone repair.

6.
ChemistryOpen ; 13(5): e202300223, 2024 May.
Article in English | MEDLINE | ID: mdl-38647351

ABSTRACT

Silver/polymeric vesicle composite nanoparticles with good antibacterial properties were fabricated in this study. Silver nanoparticles (AgNPs) were prepared in situ on cross-linked vesicle membranes through the reduction of silver nitrate (AgNO3) using polyvinylpyrrolidone (PVP) via coordination bonding between the Ag+ ions and the nitrogen atoms on the vesicles. X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), and transmission electron microscopy (TEM) analyses confirmed the formation of AgNPs on the vesicles. The antibacterial test demonstrated good antibacterial activity against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) for the produced AgNP-decorated vesicles. The minimum inhibitory concentration (MIC) values of the AgNP-decorated vesicles for E. coli and S. aureus were 8.4 and 9.6 µg/mL, respectively. Cell viability analysis on the A549 cells indicated that the toxicity was low when the AgNP concentrations did not exceed the MIC values, and the wound healing test confirmed the good antibacterial properties of the AgNP-decorated vesicles.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Humans , Cell Survival/drug effects , A549 Cells , Polymers/chemistry , Polymers/pharmacology
7.
Plants (Basel) ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38592915

ABSTRACT

Basella alba is a frequently consumed leafy vegetable. However, research on its nutritional components is limited. This study aimed to explore the variation in the nutritional components and antioxidant capacity of different cultivars and organs of Basella alba. Here, we primarily chose classical spectrophotometry and high-performance liquid chromatography (HPLC) to characterize the variation in nutritional components and antioxidant capacity among different organs (inflorescences, green fruits, black fruits, leaves, and stems) of eight typical cultivars of Basella alba. The determination indices (and methods) included the total soluble sugar (anthrone colorimetry), total soluble protein (the Bradford method), total chlorophyll (the ethanol-extracting method), total carotenoids (the ethanol-extracting method), total ascorbic acid (the HPLC method), total proanthocyanidins (the p-dimethylaminocinnamaldehyde method), total flavonoids (AlCl3 colorimetry), total phenolics (the Folin method), and antioxidant capacity (the FRAP and ABTS methods). The results indicated that M5 and M6 exhibited advantages in their nutrient contents and antioxidant capacities. Additionally, the inflorescences demonstrated the highest total ascorbic acid and total phenolic contents, while the green and black fruits exhibited relatively high levels of total proanthocyanidins and antioxidant capacity. In a comparison between the green and black fruits, the green fruits showed higher levels of total chlorophyll (0.77-1.85 mg g-1 DW), total proanthocyanidins (0.62-2.34 mg g-1 DW), total phenolics (15.28-27.35 mg g-1 DW), and ABTS (43.39-59.16%), while the black fruits exhibited higher levels of total soluble protein (65.45-89.48 mg g-1 DW) and total soluble sugar (56.40-207.62 mg g-1 DW) in most cultivars. Chlorophyll, carotenoids, and flavonoids were predominantly found in the leaves of most cultivars, whereas the total soluble sugar contents were highest in the stems of most cultivars. Overall, our findings underscore the significant influence of the cultivars on the nutritional composition of Basella alba. Moreover, we observed notable variations in the nutrient contents among the different organs of the eight cultivars, and proanthocyanidins may contribute significantly to the antioxidant activity of the fruits. On the whole, this study provides a theoretical basis for the genetic breeding of Basella alba and dietary nutrition and serves as a reference for the comprehensive utilization of this vegetable.

8.
Discov Oncol ; 15(1): 129, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662249

ABSTRACT

BACKGROUND: Concurrent follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL)was reported in some studies, while the diagnosis of TdT (terminal deoxynucleotydil transferase) positive high grade B cell lymphoma (HGBL) with MYC and BCL2 rearrangements ("double hit") transformed from FL/DLBCL has been rarely reported. Herein, we described the clinical features and mutation profiles of a case diagnosed with TdT positive "double hit" HGBL following the treatment of FL/DLBCL. CASE PRESENTATION: This is a 43-year-old Chinese man who was diagnosed with low grade FL (account for 80%) combined with DLBCL (20%) at a stage of IVB. The patient presented with BCL2/IGH translocation without MYC rearrangement, as well as the expressions of CD20, CD19, CD10 and BCL2 at the initial diagnosis of FL/DLBCL. MYC rearrangement and TdT expression occurred after the treatment. The targeted sequencing revealed mutations in KMT2D, FOXO1, CREBBP, ATM, STAT6, BCL7A, DDX3X, MUC4, FGFR3, ARID5B, DDX11 and PRKCSH genes were the co-mutations shared by the FL/DLBCL and TdT positive "double hit" HGBL, while CCND3, BIRC6, ROBO1 and CHEK2 mutations specifically occurred after the treatment. The overall survival time was 37.8 and 17.8 months after the initial diagnosis of FL/DLBCL and TdT positive "double hit" HGBL, respectively. CONCLUSION: This study reports a rare case of TdT positive "double hit" HGBL following the treatment of concurrent FL/DLBCL and highlights the mutation characteristics. Collectively, this study will help enrich the knowledge of TdT positive "double hit" HGBL transformed from FL/DLBCL.

9.
Molecules ; 29(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543000

ABSTRACT

In recent years, oxygen vacancy (VO) engineering has become a research hotspot in the field of photocatalysis. Herein, an efficient GQDs/BiOCl-VO heterojunction photocatalyst was fabricated by loading graphene quantum dots (GQDs) onto BiOCl nanosheets containing oxygen vacancies. ESR and XPS characterizations confirmed the formation of oxygen vacancy. Combining experimental analysis and DFT calculations, it was found that oxygen vacancy promoted the chemical adsorption of O2, while GQDs accelerated electron transfer. Benefiting from the synergistic effect of oxygen vacancy, GQDs, and dye sensitization, the as-prepared GQDs/BiOCl-VO sample exhibited improved efficiency for RhB degradation under visible-light irradiation. A 2 wt% GQDs/BiOCl-VO composite effectively degraded 98% of RhB within 20 min. The main active species were proven to be hole (h+) and superoxide radical (·O2-) via ESR analysis and radical trapping experiments. This study provided new insights into the effective removal of organic pollutants from water by combining defect engineering and quantum dot doping techniques in heterojunction catalysts.

10.
Front Plant Sci ; 15: 1319680, 2024.
Article in English | MEDLINE | ID: mdl-38444531

ABSTRACT

Pigments derived from red pepper fruits are widely used in food and cosmetics as natural colorants. Nitrogen (N) is a key nutrient affecting plant growth and metabolism; however, its regulation of color-related metabolites in pepper fruit has not been fully elucidated. This study analyzed the effects of N supply (0, 250, and 400 kg N ha-1) on the growth, fruit skin color, and targeted and non-target secondary metabolites of field-grown pepper fruits at the mature red stage. Overall, 16 carotenoids were detected, of which capsanthin, zeaxanthin, and capsorubin were the dominant ones. N application at 250 kg ha-1 dramatically increased contents of red pigment capsanthin, yellow-orange zeaxanthin and ß-carotene, with optimum fruit yield. A total of 290 secondary metabolites were detected and identified. The relative content of most flavonoids and phenolic acids was decreased with increasing N supply. Correlation analysis showed that color parameters were highly correlated with N application rates, carotenoids, flavonoids, phenolic acids, lignans, and coumarins. Collectively, N promoted carotenoid biosynthesis but downregulated phenylpropanoid and flavonoid biosynthesis, which together determined the spectrum of red color expression in pepper fruit. Our results provide a better understanding of the impact of N nutrition on pepper fruit color formation and related physiology, and identification of target metabolites for enhancement of nutritional quality and consumer appeal.

11.
Small ; : e2311969, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529775

ABSTRACT

Two-dimensional (2D) halide perovskites (HPs) are of significant interest to researchers because of their natural structural frameworks and intriguing optoelectronic properties. However, the direct fabrication of ordered mixed-spacer quasi-2D HPs remains challenging. Herein, a synthetic strategy inspired by the principle of supramolecular synthons is employed for the self-assembly of a series of ordered mixed-spacer bilayered HPs. The key innovation involves the introduction of intermolecular hydrogen bonds using a bifunctional 3-aminopropionitrile cation. Three homogeneous n = 2 structures are obtained, with a subtly ordered perovskite connected by two distinct types of organic cation layers, resulting in a recurrent ABAB' stacking sequence. These three compounds exhibit attractive semiconducting properties. Moderate bandgaps in the range of 2.70 to 2.76 eV with an absorption wavelength range of 448-459 nm exhibit excellent photoelectric response. Moreover, the ordered structures facilitate excellent polarization-sensitive photodetection, with an impressive on/off ratio of 103. The response speed ranged from 298 to 381 µs, and the out-of-plane polarization-related dichroism ratio is determined to be 1.19. Such ordered mixed-spacer bilayered perovskites have not been reported. These results enrich the HPs system and play a significant role in the direct assembly of novel perovskites with ordered structures.

12.
Pak J Med Sci ; 40(4): 572-576, 2024.
Article in English | MEDLINE | ID: mdl-38544999

ABSTRACT

Objective: To explore the effects of serum glycated serum protein (GSP), homocysteine (Hcy) and cystatin-C (Cys-C) levels on pregnancy outcomes in patients with gestational diabetes mellitus (GDM). Methods: Retrospective selection of 247 pregnant women who underwent normal prenatal examinations in The Yan'an People's Hospital from January 2020 to May 2022 were included in this retrospective study. Among them, 119 were pregnant women with diabetes (GDM-group) and 128 were pregnant women with normal blood glucose (Normal-group). The levels of serum GSP, HCY, CYS-C, and incidence of adverse pregnancy outcomes were compared between the two groups. The clinical value of levels of serum GSP, Hcy, and Cys-C in predicting adverse pregnancy outcomes were analyzed. Results: Compared with the Normal-group, the overall incidence of adverse pregnancy outcomes, serum GSP, Hcy, and Cys-C levels in the GDM-group were significantly higher (p<0.05). Logistic regression analysis showed that the levels of GSP, Hcy, and Cys-C were independent risk factors for adverse pregnancy outcomes in the GDM-group (p<0.05). Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) for diagnosing adverse pregnancy outcomes in pregnant women with GDM using serum GSP, Hcy, and CysC levels alone were 0.817, 0.843, and 0.775, respectively. The AUC of the three indicators combined was 0.921, indicating that this combination has a good predictive value for diagnosing adverse outcomes in GDM-complicated pregnancies. Conclusions: GDM is associated with a high risk of adverse pregnancy outcomes. Levels of serum GSP, Hcy, and Cys-C are higher in patients with GDM. The higher the levels of GSP, Hcy, and Cys-C, the greater the risk of adverse pregnancy outcomes. Combining these three indicators can effectively predict maternal pregnancy outcomes.

13.
Front Plant Sci ; 15: 1304121, 2024.
Article in English | MEDLINE | ID: mdl-38486852

ABSTRACT

Chionanthus retusus (C. retusus) has a high economic and medicinal value, but in recent years it has been included in the list of China's major protected plants and China's Red List of Biodiversity due to the serious destruction of its wild germplasm resources. Based on 131 sample points of C. retusus, this study simulated potential habitats and spatial changes of C. retusus in the 21st century using the Maxent model combined with the geographic information system ArcGIS, predicted prioritized protected areas by the Marxan model, and assessed current conservation status through GAP analysis. The results showed that (1) when the regularization multiplier was 1.5 and the feature combinations were linear, quadratic, and fragmented, the area under the curve of the subjects in the training and test sets were both above 0.9, the true skill statistic value was 0.80, and the maximum Kappa value was 0.62, meaning that the model had high accuracy; (2) Temperature seasonality, annual precipitation, min temperature for coldest month, and precipitation of wettest month had relatively strong influences on species' ranges. (3) The moderately and optimally suitable habitats of C. retusus were primly located in the areas of southwestern Shanxi, central Hebei, western Henan, Shandong, Shaanxi, Anhui and Hubei; (4) Under different future climate scenarios, the area of each class of suitable habitat will increase for varied amounts compared to the current period, with a general trend of expansion to the south; (5) The C. retusus priority protected areas were mainly located in most of Shandong, southern Liaoning, southwestern Shanxi, western Henan, and central Hebei, and its conservation vacancy area was relatively large compared to its protected area. These results will provide scientific strategies for implementing long-term conservation of C. retusus in China and similar regions under warming conditions in the 21st century.

14.
Adv Sci (Weinh) ; 11(16): e2304381, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380526

ABSTRACT

This work aims to explore the long-term prognosis of hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). In this prospective study, eligible inpatients with HBV-ACLF are enrolled and followed up from December 2012 to February 2023, for clinical events, laboratory tests at least every 6 months. Overall, the survival rates at 28 days, 90 days, 1 year, 5 years, and 8 years are 64.7%, 48.8%, 46.1%, 43.8%, and 42.2%, respectively. Among the 8-year mortality and liver transplant cases, ACLF survivors (who survived over 90 days) accounted for 7.8% (9/115). Among 101 patients who survived for more than 90 days, 97.9% of patients achieve virologic response at 1 year. For HBeAg-positive patients, the HBeAg seroconversion are 25.5%, 63.6%, and 76.9% at 1, 5, and 8 years, respectively. Alanine aminotransferase, aspartate aminotransferase, total bilirubin, INR, white blood cell count, and albumin levels gradually improve within the first year. Fibrosis biomarkers APRI, FIB-4 and Chitinase-3-like protein 1 (CHI3L1) levels decreases within the first 5 years. The Cox proportional hazards regression reveal that high total bilirubin (HR = 1.008, p = 0.021) is the independent risk factor for 8-year survival of ALCF survivors. The 90-day period following of HBV-ACLF represented a critical juncture for long-term prognosis, revealing favorable outcomes beyond this timeframe.


Subject(s)
Acute-On-Chronic Liver Failure , Humans , Male , Female , Prospective Studies , Prognosis , Adult , Longitudinal Studies , Acute-On-Chronic Liver Failure/mortality , Middle Aged , Cohort Studies , Survival Rate , Survival Analysis , Hepatitis B virus , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/mortality
15.
Environ Res ; 249: 118417, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38316385

ABSTRACT

The impact of drought on terrestrial ecosystems is increasing, and the spatiotemporal heterogeneity of drought changes exacerbates the difficulty of determining ecosystem responses, especially in arid regions far from oceans. Tree rings have been widely used to understand how forest ecosystems respond to drought. However, the link between local hydroclimate variations related to tree rings and large-scale climate changes is not clear in the Qilian Mountains. Here, we used the tree ring width index to analyze the trend of Picea crassifolia growth and its relationship with climate in the middle Qilian Mountains. The results showed that the radial growth trend of Picea crassifolia is synchronized in the middle Qilian Mountains by calculating the Gleichläufigkeit index (GLK). Our analyses indicated that tree radial growth is positively correlated with drought during the growing season. Tree growth responds stably to drought (scPDSI and SPEI) and precipitation but unstably to temperature during 1950-2019. We further traced the meteorological factors that cause regional drought changes associated with radial growth. An increased total precipitation and decreased evaporation contribute to drought alleviation, favoring an increased tree radial growth. The increased total precipitation is mainly due to increased large-scale precipitation, which is related to water vapor transport changes. This study attempts to explore the influence of large-scale meteorology on regional drought change and its related tree radial growth response, which helps us to better understand the changes in forest ecosystems under climate change.


Subject(s)
Climate Change , Droughts , Trees , Trees/growth & development , Rain , Picea/growth & development , China , Desert Climate , Forests
16.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339079

ABSTRACT

In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.


Subject(s)
Brassica , Selenium , Selenium/pharmacology , Selenium/metabolism , Cadmium/metabolism , Brassica/metabolism , Antioxidants/pharmacology , Glutathione/metabolism , Gene Expression Profiling , Transcriptome
17.
Nat Commun ; 15(1): 1638, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388538

ABSTRACT

Gut bacteriome dysbiosis is known to be implicated in the pathogenesis of inflammatory bowel disease (IBD). Crohn's disease (CD) is an IBD subtype with extensive mucosal inflammation, yet the mucosal virome, an empirical modulator of the bacteriome and mucosal immunity, remains largely unclear regarding its composition and role. Here, we exploited trans-cohort CD patients and healthy individuals to compositionally and functionally investigate the small bowel (terminal ileum) virome and bacteriome. The CD ileal virome was characterised by an under-representation of both lytic and temperate bacteriophages (especially those targeting bacterial pathogens), particularly in patients with flare-up. Meanwhile, the virome-bacteriome ecology in CD ileal mucosa was featured by a lack of Bifidobacterium- and Lachnospiraceae-led mutualistic interactions between bacteria and bacteriophages; surprisingly it was more pronounced in CD remission than flare-up, underlining the refractory and recurrent nature of mucosal inflammation in CD. Lastly, we substantiated that ileal virions from CD patients causally exacerbated intestinal inflammation in IBD mouse models, by reshaping a gut virome-bacteriome ecology preceding intestinal inflammation (microbial trigger) and augmenting microbial sensing/defence pathways in the intestine cells (host response). Altogether, our results highlight the significance of mucosal virome in CD pathogenesis and importance of mucosal virome restoration in CD therapeutics.


Subject(s)
Bacteriophages , Crohn Disease , Inflammatory Bowel Diseases , Humans , Animals , Mice , Crohn Disease/pathology , Virome , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Ileum/pathology , Bacteria , Inflammation/pathology
18.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396927

ABSTRACT

Melatonin, a pleiotropic small molecule, is employed in horticultural crops to delay senescence and preserve postharvest quality. In this study, 100 µM melatonin treatment delayed a decline in the color difference index h* and a*, maintaining the content of chlorophyll and carotenoids, thereby delaying the yellowing and senescence of Chinese kale. Transcriptome analysis unequivocally validates melatonin's efficacy in delaying leaf senescence in postharvest Chinese kale stored at 20 °C. Following a three-day storage period, the melatonin treatment group exhibited 1637 differentially expressed genes (DEGs) compared to the control group. DEG analysis elucidated that melatonin-induced antisenescence primarily governs phenylpropanoid biosynthesis, lipid metabolism, plant signal transduction, and calcium signal transduction. Melatonin treatment up-regulated core enzyme genes associated with general phenylpropanoid biosynthesis, flavonoid biosynthesis, and the α-linolenic acid biosynthesis pathway. It influenced the redirection of lignin metabolic flux, suppressed jasmonic acid and abscisic acid signal transduction, and concurrently stimulated auxin signal transduction. Additionally, melatonin treatment down-regulated RBOH expression and up-regulated genes encoding CaM, thereby influencing calcium signal transduction. This study underscores melatonin as a promising approach for delaying leaf senescence and provides insights into the mechanism of melatonin-mediated antisenescence in postharvest Chinese kale.


Subject(s)
Brassica , Melatonin , Humans , Brassica/genetics , Brassica/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Plant Senescence , Calcium/metabolism , Treatment Delay , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome
19.
World J Clin Cases ; 12(3): 582-586, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38322472

ABSTRACT

BACKGROUND: Rhabdomyosarcoma is a tumor of mesenchymal origin. Secondary leukemia is a complication of previous transformation to other hematologic disorders or is a treatment-related acute myeloid leukemia secondary to cytotoxic chemotherapy or radiation therapy for other malignancies. CASE SUMMARY: We present the case of a 36-year-old female patient who was diagnosed with rhabdomyosarcoma and acute myeloid leukemia. Further disease progression was observed after multiline chemotherapy. Eventually, the patient suffered cerebral hemorrhage, which resulted in death. CONCLUSION: The incidence of rhabdomyosarcoma in adults is extremely low, and secondary leukemia caused by rhabdomyosarcoma is even rarer. Secondary leukemia has a very poor prognosis and a low overall survival rate.

20.
World J Clin Cases ; 12(4): 814-819, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38322688

ABSTRACT

BACKGROUND: Monomorphic epithelial intestinal T-cell lymphoma (MEITL) is a rare type of peripheral T-cell lymphoma. The clinical manifestations are diarrhea, abdominal pain, perforation and an abdominal mass. CASE SUMMARY: We present a 52-year-old female patient who was diagnosed with MEITL. Further disease progression was observed after multiline chemotherapy. Eventually, the patient died of a severe infection. CONCLUSION: MEITL is a rare intestinal primary T-cell lymphoma with aggressive behavior, a high risk of severe life-threatening complications, and a poor prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...