Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Ethnopharmacol ; 332: 118363, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763373

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a renowned tonic traditional Chinese medicine, is widely recognized for the exceptional activity in soothing nerves and nourishing the brain. It has been extensively employed to alleviate various neurological disorders, notably Parkinson's disease (PD). AIM OF THE STUDY: To appraise the antiparkinsonian effect of GAA, the main bioactive constituent of G. lucidum, and clarify the molecular mechanism through the perspective of ferritinophagy-mediated dopaminergic neuron ferroptosis. MATERIALS AND METHODS: PD mouse and cell models were established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Cell viability, behavioral tests and immunofluorescence analysis were performed to evaluate the neurotoxicity, motor dysfunction and dopaminergic loss, respectively. Biochemical assay kits were used to determine the levels of iron, lipid reactive oxygen species (ROS), malondialdehyde (MDA), total ROS and glutathione (GSH). Western blot and immunofluorescence were applied to detect the expressions of nuclear receptor co-activator 4 (NCOA4), ferritin heavy chain 1 (FTH1), p62 and LC3B. Additionally, NCOA4-overexpressing plasmid vector was constructed to verify the inhibitory effect of GAA on the neurotoxicity and ferroptosis-related parameters in PD models. RESULTS: GAA significantly mitigated MPP+/MPTP-induced neurotoxicity, motor dysfunction and dopaminergic neuron loss (p<0.01 or p<0.05). In contrast to MPP+/MPTP treatment, GAA treatment decreased the levels of iron, MDA, lipid and total ROS, while increasing the GSH level. GAA also reduced the levels of NCOA4 and LC3B, and enhanced the expressions of FTH1 and p62 in PD models (p<0.01 or p<0.05). However, the protective effect of GAA against the neurotoxicity, NCOA4-mediated ferritinophagy and ferroptosis in PD model was abolished by the overexpression of NCOA4 (p<0.01). CONCLUSION: GAA exerted a protective effect on PD, and this effect was achieved by suppressing dopaminergic neuron ferroptosis through the inhibition of NCOA4-mediated ferritinophagy.


Subject(s)
Dopaminergic Neurons , Ferritins , Ferroptosis , Mice, Inbred C57BL , Nuclear Receptor Coactivators , Animals , Ferroptosis/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Nuclear Receptor Coactivators/metabolism , Mice , Male , Ferritins/metabolism , Neuroprotective Agents/pharmacology , Autophagy/drug effects , Antiparkinson Agents/pharmacology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Disease Models, Animal
2.
J Agric Food Chem ; 72(8): 4127-4141, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38362879

ABSTRACT

An amyloid-ß (Aß) fibril is a vital pathogenic factor of Alzheimer's disease (AD). Aß fibril disintegrators possess great potential to be developed into novel anti-AD agents. Here, a ligand fishing method was employed to rapidly discover Aß42 fibril disintegrators from Ganoderma lucidum using Aß42 fibril-immobilized magnetic beads, which led to the isolation of six Aß42 fibril disintegrators including ganodermanontriol, ganoderic acid DM, ganoderiol F, ganoderol B, ganodermenonol, and ergosterol. Neuroprotective evaluation in vitro exhibited that these Aß42 fibril disintegrators could significantly mitigate Aß42-induced neurotoxicity. Among these six disintegrators, ergosterol and ganoderic acid DM with stronger protecting activity were further selected to evaluate their neuroprotective effect on AD in vivo. Results showed that ergosterol and ganoderic acid DM could significantly alleviate Aß42-induced cognitive dysfunction and hippocampus neuron loss in vivo. Moreover, ergosterol and ganoderic acid DM could significantly inhibit Aß42-induced neuron apoptosis and Nrf2-mediated neuron oxidative stress in vitro and in vivo.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Reishi , Triterpenes , Alzheimer Disease/drug therapy , Neuroprotective Agents/pharmacology , Ligands , Amyloid beta-Peptides , Amyloid , Ergosterol , Peptide Fragments/therapeutic use
3.
Int J Biol Macromol ; 236: 124001, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36907308

ABSTRACT

This study aimed to explore whether Dendrobium huoshanense stem polysaccharide (cDHPS) ameliorates alcohol-induced gastric ulcer (GU) through the strengthening effect of the gastric mucosal barrier in rats and its potential mechanism. In normal rats, the pretreatment of cDHPS effectively strengthened gastric mucosal barrier by increasing mucus secretion and tight junction protein expression. In GU rats, cDHPS supplementation effectively alleviated alcohol-induced gastric mucosal injury and nuclear factor κB (NF-κB)-driven inflammation by strengthening gastric mucosal barrier. Moreover, cDHPS significantly activated nuclear factor E2-related factor 2 (Nrf2) signaling and promoted antioxidant enzymes activities in both normal and GU rats. These results suggested that the pretreatment of cDHPS could strengthen gastric mucosal barrier to inhibit oxidative stress and NF-κB-driven inflammation induced gastric mucosal injury, which was likely related to the activation of Nrf2 signaling.


Subject(s)
Dendrobium , Stomach Ulcer , Rats , Animals , NF-kappa B/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Inflammation , Polysaccharides/adverse effects
4.
Chem Biodivers ; 19(8): e202200471, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35774029

ABSTRACT

Dendrobium huoshanense flowers have been widely used for liver protection in China. This work was aimed to discover the natural products with activity of mitigating alcoholic hepatocyte injury from Dendrobium huoshanense flowers via bioactivity-guided isolation, and to clarify the underlying mechanisms of these natural products. As a result, three flavonoids, 3'-O-methylquercetin-3-O-ß-D-galactopyranoside (1), 3'-O-methylquercetin-3-O-ß-D-glucopyranoside (2) and quercetin-3-O-ß-D-glucopyranoside (3), were firstly isolated from D. huoshanense flowers. Results exhibited that flavonoids 1-3 could enhance the cell viability, decrease the expression of ALT and AST, inhibit the cell apoptosis, alleviate the oxidative stress, and mitigate the inflammatory response of alcohol-induced L02 cells. Mechanism study exhibited that flavonoids 1-3 could increase the expression of Nrf2 as well as its downstream antioxidation genes of alcohol-induced L02 cells, while ML-385 (Nrf2 inhibitor) could abolish the inhibitory effects of 1-3 on alcohol-induced hepatocyte injury. Flavonoids 1-3 could also reduce the phosphorylation levels of IκBα and NF-κB p65 of alcohol-induced L02 cells, while SC75741 (NF-κB inhibitor) could not enhance the inhibitory effects of 1-3 on alcohol-induced L02 cells injury. The data above indicated that flavonoids 1-3 could inhibit alcohol-induced hepatocyte injury, which might be attributed to alleviating oxidative stress and mitigating inflammatory response by activating Nrf2 and inhibiting NF-κB pathways.


Subject(s)
Biological Products , Dendrobium , Biological Products/pharmacology , Ethanol/pharmacology , Flavonoids/pharmacology , Flowers/metabolism , Hepatocytes/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress
5.
Carbohydr Polym ; 292: 119683, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35725176

ABSTRACT

Promoting M1 polarization of tumor-associated macrophages (TAMs) is an effective pathway for malignant tumor therapy. In this study, we aimed to demonstrate whether homogeneous Dendrobium officinale polysaccharide (DOP) could promote M1 polarization of TAMs to inhibit tumor growth, and how it promoted. Results exhibited that DOP could inhibit the tumor growth and promote the M1 polarization of TAMs in tumor-bearing mice. Macrophage depletion and replenishment experiment clearly proved that the inhibitory effect of DOP on tumor growth is dependent on promoting M1 polarization of TAMs. Moreover, we found that DOP could reach tumor microenvironment (TME) and directly bind to TAMs to promote its M1 polarization via targeting toll-like receptor 2 (TLR2) after oral administration. These results clarified that DOP could remarkably inhibit the tumor growth of tumor-bearing mice via directly targeting the TLR2 of TAMs to promote its M1 polarization.


Subject(s)
Dendrobium , Neoplasms , Animals , Mice , Neoplasms/pathology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Toll-Like Receptor 2 , Tumor Microenvironment , Tumor-Associated Macrophages
6.
Phytomedicine ; 102: 154193, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35636177

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is an age-related neurodegenerative disorder without effective treatments. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been suggested to be capable of protecting against PD by inhibiting endoplasmic reticulum (ER) stress-mediated neuronal apoptosis. PURPOSE: This study was aimed to evaluate the antiparkinsonian effect of dendrobine and reveal its underlying mechanisms from the perspective of MANF-mediated ER stress suppression. METHODS: Behavioral assessments of PD mice as well as LDH/CCK-8 assay in SH-SY5Y cells and primary midbrain neurons were carried out to detect the antiparkinsonian effect of dendrobine. Immunofluorescence, western blot, flow cytometry and shRNA-mediated MANF knockdown were used to determine the apoptosis of dopaminergic neurons and the expressions of ER stress-related proteins for investigating the underlying mechanism of dendrobine. RESULTS: Dendrobine significantly ameliorated the motor performance of PD mice and attenuated the injuries of dopaminergic neurons. Dendrobine could also relieve neuronal apoptosis, up-regulate MANF expression and inhibit ER stress, which were largely abolished by shRNA-mediated MANF knockdown in PD model. CONCLUSION: Dendrobine might protect against PD by inhibiting dopaminergic neuron apoptosis, which was achieved by facilitating MANF-mediated ER stress suppression. Our study suggested that dendrobine could act as a MANF up-regulator to protect against PD, and provided a potential candidate for exploring etiological agents of PD.


Subject(s)
Alkaloids , Dopaminergic Neurons , Endoplasmic Reticulum Stress , Parkinson Disease , Alkaloids/pharmacology , Animals , Antiparkinson Agents/pharmacology , Apoptosis/drug effects , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Endoplasmic Reticulum Stress/drug effects , Humans , Mice , Nerve Growth Factors/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , RNA, Small Interfering/pharmacology
8.
J Neurosci ; 34(40): 13535-48, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25274829

ABSTRACT

Stroke is a major public health concern. The lack of effective therapies heightens the need for new therapeutic targets. Mammalian brain has the ability to rewire itself to restore lost functionalities. Promoting regenerative repair, including neurogenesis and dendritic remodeling, may offer a new therapeutic strategy for the treatment of stroke. Here, we report that interaction of neuronal nitric oxide synthase (nNOS) with the protein postsynaptic density-95 (PSD-95) negatively controls regenerative repair after stroke in rats. Dissociating nNOS-PSD-95 coupling in neurons promotes neuronal differentiation of neural stem cells (NSCs), facilitates the migration of newborn cells into the injured area, and enhances neurite growth of newborn neurons and dendritic spine formation of mature neurons in the ischemic brain of rats. More importantly, blocking nNOS-PSD-95 binding during the recovery stage improves stroke outcome via the promotion of regenerative repair in rats. Histone deacetylase 2 in NSCs may mediate the role of nNOS-PSD-95 association. Thus, nNOS-PSD-95 can serve as a target for regenerative repair after stroke.


Subject(s)
Infarction, Middle Cerebral Artery/surgery , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neural Stem Cells/transplantation , Nitric Oxide Synthase Type I/metabolism , Regeneration/physiology , Animals , Brain/pathology , Brain/ultrastructure , Cell Differentiation/physiology , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Disease Models, Animal , Disks Large Homolog 4 Protein , Embryo, Mammalian , Glucose/deficiency , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Hypoxia/physiopathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/metabolism , Neurons/pathology , Neurons/ultrastructure , Nitric Oxide Synthase Type I/genetics , Rats , Rats, Sprague-Dawley
9.
J Environ Public Health ; 2013: 624194, 2013.
Article in English | MEDLINE | ID: mdl-23690804

ABSTRACT

To investigate the prevalence of active transport (AT, defined as walking or bicycling for transport) and to explore the association between AT and health outcomes, we conducted a population-based cross-sectional study in Jiangsu, China, where walking and bicycling are still the main modes of transport. In this study, 8400 community residents aged 18 or above were interviewed following a multistage random sampling method (100% response rate). Face-to-face questionnaire survey data, anthropometric measurements, and biochemical data from blood tests were collected. Results show that 49.6% of the subjects, as part of daily transport, actively traveled on average 5.3 days per week, 53.5 minutes per day, and 300.3 minutes per week. There was an inverse correlation between AT and some health outcomes: AT respondents had a higher prevalence of cholesterol disorder; AT respondents who actively travelled every day had a higher risk of diabetes, whilst AT respondents with shorter daily or weekly duration had a lower risk of obesity, central obesity, and cholesterol disorder. Moreover, AT influences more health aspects among urban residents than among rural residents. Findings of this study do not support the notion that AT is beneficial to population health. Further research is needed in determining the negative side effects of AT.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Hypertension/epidemiology , Motor Activity , Obesity/epidemiology , Transportation , Adolescent , Adult , Aged , Aged, 80 and over , Bicycling , China/epidemiology , Cholesterol/blood , Cross-Sectional Studies , Diabetes Mellitus, Type 2/etiology , Female , Humans , Hypertension/etiology , Male , Middle Aged , Obesity/etiology , Prevalence , Risk Factors , Surveys and Questionnaires , Transportation/methods , Walking , Young Adult
10.
Ying Yong Sheng Tai Xue Bao ; 23(5): 1400-6, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-22919855

ABSTRACT

Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Efficiency , Soil/analysis , Water/physiology , Agricultural Irrigation , China , Conservation of Natural Resources , Plant Roots/physiology , Water/analysis , Water Movements
11.
Ying Yong Sheng Tai Xue Bao ; 21(1): 36-40, 2010 Jan.
Article in Chinese | MEDLINE | ID: mdl-20387420

ABSTRACT

Taking three spring wheat cultivars as test materials, a field experiment was conducted to study the effects of different irrigation treatments on the stomatal conductance of the cultivars during their growth period, with the relationships between the stomatal conductance and the environmental factors analyzed. On the basis of winter irrigation with 1800 m3 x hm(-2) of water, three irrigation treatments, i. e., irrigating three times (T1), two times (T2), and once (T3) during spring wheat growth period, were installed, with 1050 m3 x hm(-2) of irrigation water each time. All irrigation treatments had greater effects on the stomatal conductance, which was decreased with the decreasing times of irrigation, and varied with the cultivars. From jointing stage to florescence, the stomatal conductance in all treatments had the same variation trend, i. e., decreased after an initial increase, and reached the peak at heading stage. After florescence, difference occurred among the treatments. In treatment T1, the stomatal conductance of all test cultivars increased after an initial decrease; in treatment T2, the variation patterns of stomatal conductance differed with cultivars; while in treatment T3, the conductance of all cultivars decreased all along. Among the environmental factors, relative atmospheric humidity had the greatest effects on the stomatal conductance, and their correlation coefficient in treatments T2 and T3 reached significant (0.82) and very significant (0.92* *), respectively. The stomatal regulation mechanism of spring wheat adapting to water deficit in Hexi corridor was of feedback manner.


Subject(s)
Agricultural Irrigation/methods , Plant Transpiration/physiology , Triticum/metabolism , Water/metabolism , Ecosystem , Plant Stomata/physiology , Seasons , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...