Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Front Microbiol ; 15: 1348027, 2024.
Article in English | MEDLINE | ID: mdl-38601930

ABSTRACT

Background: Previous studies have suggested that the gut microbiota (GM) is closely associated with the development of autoimmune cholestatic liver disease (ACLD), but limitations, such as the presence of confounding factors, have resulted in a causal relationship between the gut microbiota and autoimmune cholestatic liver disease that remains uncertain. Thus, we used two-sample Mendelian randomization as a research method to explore the causal relationship between the two. Methods: Pooled statistics of gut microbiota from a meta-analysis of genome-wide association studies conducted by the MiBioGen consortium were used as an instrumental variable for exposure factors. The Pooled statistics for primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) were obtained from the R9 version of the FinnGen database (https://r9.finngen.fi/). Inverse-variance Weighted (IVW), cML-MA, MR-Egger regression, Weighted median (WME), Weighted mode (WM), and Simple mode (SM) were used to detect the association between intestinal flora and the causal relationship between intestinal flora and ACLD, in which IVW method was dominant, was assessed based on the effect indicator dominance ratio (odds ratio, OR) and 95% confidence interval (CI). Sensitivity analysis, heterogeneity test, gene pleiotropy test, MR pleiotropy residual sum and outlier test (MR-PRESSO) were combined to verify the stability and reliability of the results. Reverse Mendelian randomization analysis was performed on gut microbiota and found to be causally associated with ACLD. Results: The IVW results showed that the relative abundance of the genus Clostridium innocuum group, genus Butyricicoccus, and genus Erysipelatoclostridium was negatively correlated with the risk of PBC, that is, increased abundance reduced the risk of PBC and was a protective, and the relative abundance of the genus Eubacterium hallii was positively correlated with the risk of PSC, which is a risk factor for PSC. Family Clostridiaceae1 and family Lachnospiraceae were negatively correlated with the risk of PSC, which is a protective factor for PSC. Conclusion: This study found a causal relationship between gut microbiota and ACLD. This may provide valuable insights into gut microbiota-mediated pathogenesis of ACLD. It is necessary to conduct a large-sample randomized controlled trial (RCT) at a later stage to validate the associated role of the relevant gut microbiota in the risk of ACLD development and to explore the associated mechanisms.

2.
Adv Sci (Weinh) ; : e2401313, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569518

ABSTRACT

In this study, a novel wide-bandgap small molecule guest material, ITOA, designed and synthesized for fabricating efficient ternary organic solar cells (OSCs) ITOA complements the absorbance of the PM6:Y6 binary system, exhibiting strong crystallinity and modest miscibility. ITOA optimizes the morphology by promoting intensive molecular packing, reducing domain size, and establishing a preferred vertical phase distribution. These features contribute to improved and well-balanced charge transport, suppressed carrier recombination, and efficient exciton dissociation. Consequently, a significantly enhanced efficiency of 18.62% for the ternary device is achieved, accompanied by increased short-circuit current density (JSC), fill factor (FF), and open-circuit voltage (VOC). Building on this success, replacing Y6 with BTP-eC9 leads to an outstanding PCE of 19.33% for the ternary OSCs. Notably, the introduction of ITOA expedites the formation of the optimized morphology, resulting in an impressive PCE of 18.04% for the ternary device without any postprocessing. Moreover, the ternary device exhibits enhanced operational stability under maximum power point (MPP) tracking. This comprehensive study demonstrates that a rationally designed guest molecule can optimize morphology, reduce energy loss, and streamline the fabrication process, essential for achieving high efficiency and stability in OSCs, paving the way for practical commercial applications.

3.
Discov Nano ; 19(1): 39, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436896

ABSTRACT

Organic solar cells (OSCs) are considered as a crucial energy source for flexible and wearable electronics. Pseudo-planar heterojunction (PPHJ) OSCs simplify the solution preparation and morphology control. However, non-halogenated solvent-printed PPHJ often have an undesirable vertical component distribution and insufficient donor/acceptor interfaces. Additionally, the inherent brittleness of non-fullerene small molecule acceptors (NFSMAs) in PPHJ leads to poor flexibility, and the NFSMAs solution shows inadequate viscosity during the printing of acceptor layer. Herein, we propose a novel approach termed polymer-incorporated pseudo-planar heterojunction (PiPPHJ), wherein a small amount of polymer donor is introduced into the NFSMAs layer. Our findings demonstrate that the incorporation of polymer increases the viscosity of acceptor solution, thereby improving the blade-coating processability and overall film quality. Simultaneously, this strategy effectively modulates the vertical component distribution, resulting in more donor/acceptor interfaces and an improved power conversion efficiency of 17.26%. Furthermore, PiPPHJ-based films exhibit superior tensile properties, with a crack onset strain of 12.0%, surpassing PPHJ-based films (9.6%). Consequently, large-area (1 cm2) flexible devices achieve a considerable efficiency of 13.30% and maintain excellent mechanical flexibility with 82% of the initial efficiency after 1000 bending cycles. These findings underscore the significant potential of PiPPHJ-based OSCs in flexible and wearable electronics.

4.
Nat Commun ; 14(1): 6964, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907534

ABSTRACT

High-efficiency organic solar cells are often achieved using toxic halogenated solvents and additives that are constrained in organic solar cells industry. Therefore, it is important to develop materials or processing methods that enabled highly efficient organic solar cells processed by halogen free solvents. In this paper, we report an innovative processing method named auxiliary sequential deposition that enables 19%-efficiency organic solar cells processed by halogen free solvents. Our auxiliary sequential deposition method is different from the conventional blend casting or sequential deposition methods in that it involves an additional casting of dithieno[3,2-b:2',3'-d]thiophene between the sequential depositions of the donor (D18-Cl) and acceptor (L8-BO) layers. The auxiliary sequential deposition method enables dramatic performance enhancement from 15% to over 18% compared to the blend casting and sequential deposition methods. Furthermore, by incorporating a branched-chain-engineered acceptor called L8-BO-X, device performance can be boosted to over 19% due to increased intermolecular packing, representing top-tier values for green-solvent processed organic solar cells. Comprehensive morphological and time-resolved characterizations reveal that the superior blend morphology achieved through the auxiliary sequential deposition method promotes charge generation while simultaneously suppressing charge recombination. This research underscores the potential of the auxiliary sequential deposition method for fabricating highly efficient organic solar cells using environmentally friendly solvents.

5.
Virus Genes ; 59(6): 852-867, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857999

ABSTRACT

Bacteriophages are a type of virus widely distributed in nature that demonstrates a remarkable aptitude for selectively recognizing and infecting bacteria. In particular, Klebsiella pneumoniae is acknowledged as a clinical pathogen responsible for nosocomial infections and frequently develops multidrug resistance. Considering the increasing prevalence of antibiotic-resistant bacteria, bacteriophages have emerged as a compelling alternative therapeutic approach. In this study, a novel phage named BUCT_49532 was isolated from sewage using K. pneumoniae K1119 as the host. Electron microscopy revealed that BUCT_49532 belongs to the Caudoviricetes class. Further analysis through whole genome sequencing demonstrated that BUCT_49532 is a Jedunavirus comprised of linear double-stranded DNA with a length of 49,532 bp. Comparative genomics analysis based on average nucleotide identity (ANI) values revealed that BUCT_49532 should be identified as a novel species. Characterized by a good safety profile, high environmental stability, and strong lytic performance, phage BUCT_49532 presents an interesting case for consideration. Although its host range is relatively narrow, its application potential can be expanded by utilizing phage cocktails, making it a promising candidate for biocontrol approaches.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Klebsiella pneumoniae/genetics , Genomics , Myoviridae/genetics , Host Specificity , Bacteria , Genome, Viral/genetics
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1345-1349, 2023 Nov 10.
Article in Chinese | MEDLINE | ID: mdl-37906139

ABSTRACT

OBJECTIVE: To analyze the clinical and genetic characteristics of three Chinese pedigrees affected with Citrullinemia type I (CTLN1). METHODS: Three children diagnosed at the Children's Hospital Affiliated to Shandong University from 2017 to 2020 were selected as the study subjects. Genomic DNA was extracted from peripheral blood samples of the probands and their parents. Next generation sequencing (NGS) was carried out to detect pathological variants of the probands. Sanger sequencing was used for validating the candidate variant among the pedigrees. RESULTS: The probands have respectively carried compound heterozygous variants of c.207_209delGGA and c.1168G>A, c.349G>A and c.364-1G>A, c.470G>A and c.970G>A of the ASS1 gene, which were respectively inherited from their parents. CONCLUSION: The newly discovered c.207_209delGGA and c.364-1G>A variants have enriched the mutational spectrum of the ASS1 gene. And the mutation spectrum of Chinese CTLN1 patients is heterogeneous.


Subject(s)
Argininosuccinate Synthase , Citrullinemia , Child , Humans , Argininosuccinate Synthase/genetics , Citrullinemia/genetics , East Asian People , Mutation , Pedigree
7.
Polymers (Basel) ; 15(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631520

ABSTRACT

Organic solar cells (OSCs) have gained increasing attention. Among the various directions in OSCs, all-polymer solar cells (all-PSCs) have emerged as a highly promising and currently active research area due to their excellent film formation properties, mechanical properties, and thermal stabilities. However, most of the high-efficiency all-PSCs are processed from chloroform with an active layer thickness of ~100 nm. In order to meet the requirements for industrialization, a thicker active layer processed from low-vapor pressure solvents (preferentially a hydrocarbon solvent) is strongly desired. Herein, we employ toluene (a hydrocarbon solvent with a much higher boiling point than chloroform) and a method known as sequential processing (SqP) to mitigate the rapid decline in efficiency with increasing film thickness. We show that SqP enables a more favorable vertical phase segregation that leads to less trap-assisted recombination and enhanced charge extraction and lifetime than blend-cast devices at higher film thicknesses.

8.
J Phys Chem Lett ; 14(29): 6532-6541, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37450690

ABSTRACT

Organic solar cells (OSCs) have attracted lots of attention owing to their low cost, lightweight, and flexibility properties. Nowadays, the performance of OSCs is continuously improving with the development of active layer materials. However, the traditional hole transport layer (HTL) material Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) presents insufficient conductivity and rapid degradation, which decreases the efficiency and stability of OSCs. To conquer the challenge, the two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanomaterials incorporated into the PEDOT:PSS as hybrid HTL are reported. The addition of g-C3N4 into PEDOT:PSS enables the thickness of the HTL to decrease for enhancing the transmittance of the film and increase the conductivity of PEDOT:PSS. Thus, the device exhibts improved charge transport and suppressed carrier recombination, leading to the increase in short-circuit current density and power conversion efficiency of the devices. This work demonstrates that the incorporation of 2D g-C3N4 into PEDOT:PSS for D18:Y6 and PM6:L8-BO-based OSCs can significantly improve the device efficiency to 17.48% and 18.47% with the enhancement of 7.04% and 8.46%, respectively.

9.
Adv Mater ; 35(26): e2301231, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37044383

ABSTRACT

Currently, nearly all high-efficiency organic photovoltaic devices use donor polymers based on the benzo-dithiophene (BDT) unit. To diversify the choices of building blocks for high-performance donor polymers, the use of benzo-difuran (BDF) units is explored, which can achieve reduced steric hindrance, stronger molecular packing, and tunable energy levels. In previous research, the performance of BDF-based devices lagged behind those of BDT-based devices. In this study, a high efficiency (18.4%) is achieved using a BDF-based polymer donor, which is the highest efficiency reported for BDF donor materials to date. The high efficiency is enabled by a donor polymer (D18-Fu) and the aid of a solid additive (2-chloronaphthalene), which is the isomer of the commonly used additive 1-chloronaphthalene. These results revealed the significant effect of 2-chloronaphthalene in optimizing the morphology and enhancing the device parameters. This work not only provides a new building block that can achieve an efficiency comparable to dominant BDT units but also proposes a new solid additive that can replace the widely used 1-chloronaphthalene additive.

10.
Molecules ; 28(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985640

ABSTRACT

The electron transport layer (ETL) with excellent charge extraction and transport ability is one of the key components of high-performance perovskite solar cells (PSCs). SnO2 has been considered as a more promising ETL for the future commercialization of PSCs due to its excellent photoelectric properties and easy processing. Herein, we propose a facile and effective ETL modification strategy based on the incorporation of methylenediammonium dichloride (MDACl2) into the SnO2 precursor colloidal solution. The effects of MDACl2 incorporation on charge transport, defect passivation, perovskite crystallization, and PSC performance are systematically investigated. First, the surface defects of the SnO2 film are effectively passivated, resulting in the increased conductivity of the SnO2 film, which is conducive to electron extraction and transport. Second, the MDACl2 modification contributes to the formation of high-quality perovskite films with improved crystallinity and reduced defect density. Furthermore, a more suitable energy level alignment is achieved at the ETL/perovskite interface, which facilitates the charge transport due to the lower energy barrier. Consequently, the MDACl2-modified PSCs exhibit a champion efficiency of 22.30% compared with 19.62% of the control device, and the device stability is also significantly improved.

11.
J Environ Manage ; 329: 117064, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36535145

ABSTRACT

In recent decades, terraces abandonment has been prevalent in the hilly areas of China. Soil fungi play an important role in clarifying soil ecosystematic feedback after ancient rice terraces abandonment, but how their community composition and function shift remains unclear. Soil profiles of 0-120 cm were excavated in ancient rice terraces, dry land, and forest land (formed from ancient rice terraces abandonment), respectively. The 13C NMR and high-throughput sequencing were used to determine soil organic carbon chemical groups and fungal community, respectively, and FUNGuild was used to predict functional groups. The results showed that the soil fungal community changed from Ascomycota to Basidiomycota after ancient rice terraces abandonment. The trophic modes of dry land and forest land were transformed into pathotrophic fungi and symbiotrophic fungi, respectively. The number of nodes and edges of fungal co-occurrence networks increased by 83.8% and 644.1% in dry land, and 81.3% and 431.2% in forest land, respectively. Moreover, soil nutrients (especially DOC, TN, and TP) can more affected the variation of fungal community composition and function than soil organic carbon chemical groups. These findings indicate that soil fungal community shifts in different directions in response to ancient rice terraces abandonment, which is related to the adaptive strategies for environmental changes and may be more conducive to the acquisition and turnover of soil nutrients.


Subject(s)
Mycobiome , Oryza , Soil/chemistry , Carbon , Fungi , Nutrients , China , Soil Microbiology
12.
Polymers (Basel) ; 16(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38201756

ABSTRACT

The two-step layer-by-layer (LBL) deposition of donor and acceptor films enables desired vertical phase separation and high performance in organic solar cells (OSCs), which becomes a promising technology for large-scale printing devices. However, limitations including the use of toxic solvents and unpredictable infiltration between donor and acceptor still hinder the commercial production of LBL OSCs. Herein, we developed a water-based nanoparticle (NP) ink containing donor polymer to construct a mesoscale structure that could be infiltrated with an acceptor solution. Using non-halogen o-xylene for acceptor deposition, the LBL strategy with a mesoscale structure delivered outstanding efficiencies of 18.5% for binary PM6:L8-BObased LBL OSCs. Enhanced charge carrier mobility and restricted trap states were observed in the meso-LBL devices with optimized vertical morphology. It is believed that the findings in this work will bring about more research interest and effort on eco-friendly processing in preparation for the industrial production of OSCs.

13.
Front Microbiol ; 13: 1007237, 2022.
Article in English | MEDLINE | ID: mdl-36532439

ABSTRACT

Microbial communities and functions play an important role in soil carbon and nitrogen transformations, and, in recent decades, the abandonment of terraces is prevalant in the hilly areas of China. However, it is unclear how soil carbon and nitrogen contents and prokaryotic communities changed as a result of the abandonment of ancient rice terraces. Soil profiles ranging from 0 to 120 cm were excavated on drylands, forestlands (both converted due to the abandonment of ancient rice terraces), and ancient rice terraces. The FAPROTAX database was used to predict soil prokaryotic functional groups. The results showed that soil organic carbon (SOC) and total nitrogen (TN) contents of abandoned ancient rice terraces in drylands (51.09 and 33.20%) and forestlands (31.76 and 16.59%) were significantly reduced. Soil prokaryotic diversity and community composition changed dramatically after the abandonment of terraces and were mainly affected by soil pH and ammoniacal nitrogen ( NH 4 + -N). Community composition was more similar in drylands and forestlands. Moreover, the abundance of transformation functional genes of carbon (57.01 and 50.80%) and nitrogen (15.25 and 22.36%) in bacterial communities was significantly reduced, and of carbon in the archaeal communities decreased sharply (28.10 and 46.50%), in drylands and forestlands. These findings indicate that short-term abandonment of ancient rice terraces reduces soil carbon and nitrogen contents, which may be closely related to the decline of prokaryotic functional groups. The prevalence of short-term abandonment of rice terraces in the hilly areas of China may pose adverse ecological risks.

14.
Polymers (Basel) ; 14(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36236177

ABSTRACT

Water processing is an ideal strategy for the ecofriendly fabrication of organic photovoltaics (OPVs) and exhibits a strong market-driven demand. Here, we report a state-of-the-art active material, namely PM6:BTP-eC9, for the synthesis of water-borne nanoparticle (NP) dispersion towards ecofriendly OPV fabrication. The surfactant-stripping technique, combined with a poloxamer, facilitates purification and eliminates excess surfactant in water-dispersed organic semiconducting NPs. The introduction of 1,8-diiodooctane (DIO) for the synthesis of surfactant-stripped NP (ssNP) further promotes a percolated microstructure of the polymer and NFA in each ssNP, yielding water-processed OPVs with a record efficiency of over 11%. The use of an additive during water-borne ssNP synthesis is a promising strategy for morphology optimization in NP OPVs. It is believed that the findings in this work will engender more research interest and effort relating to water-processing in preparation of the industrial production of OPVs.

15.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144539

ABSTRACT

Multicomponent organic solar cells (OSCs), such as the ternary and quaternary OSCs, not only inherit the simplicity of binary OSCs but further promote light harvesting and power conversion efficiency (PCE). Here, we propose a new type of multicomponent solar cells with non-fullerene acceptor isomers. Specifically, we fabricate OSCs with the polymer donor J71 and a mixture of isomers, ITCF, as the acceptors. In comparison, the ternary OSC devices with J71 and two structurally similar (not isomeric) NFAs (IT-DM and IT-4F) are made as control. The morphology experiments reveal that the isomers-containing blend film demonstrates increased crystallinity, more ideal domain size, and a more favorable packing orientation compared with the IT-DM/IT-4F ternary blend. The favorable orientation is correlated with the balanced charge transport, increased exciton dissociation and decreased bimolecular recombination in the ITCF-isomer-based blend film, which contributes to the high fill factor (FF), and thus the high PCE. Additionally, to evaluate the generality of this method, we examine other acceptor isomers including IT-M, IXIC-2Cl and SY1, which show same trend as the ITCF isomers. These results demonstrate that using isomeric blends as the acceptor can be a promising approach to promote the performance of multicomponent non-fullerene OSCs.

16.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080479

ABSTRACT

In this work, we performed a systematic comparison of different duration of solvent vapor annealing (SVA) treatment upon state-of-the-art PM6:SY1 blend film, which is to say for the first time, the insufficient, appropriate, and over-treatment's effect on the active layer is investigated. The power conversion efficiency (PCE) of corresponding organic solar cell (OSC) devices is up to 17.57% for the optimized system, surpassing the two counterparts. The properly tuned phase separation and formed interpenetrating network plays an important role in achieving high efficiency, which is also well-discussed by the morphological characterizations and understanding of device physics. Specifically, these improvements result in enhanced charge generation, transport, and collection. This work is of importance due to correlating post-treatment delicacy, thin-film morphology, and device performance in a decent way.

17.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080502

ABSTRACT

All-polymer solar cells (All-PSCs), whose electron donor and acceptors are both polymeric materials, have attracted great research attention in the past few years. However, most all-PSC devices with top-of-the-line efficiencies are processed from chloroform. In this work, we apply the sequential processing (SqP) method to fabricate All-PSCs from an aromatic hydrocarbon solvent, toluene, and obtain efficiencies up to 17.0%. By conducting a series of characterizations on our films and devices, we demonstrate that the preparation of SqP devices using toluene can effectively reduce carrier recombination, enhance carrier mobility and promote the fill factor of the device.

18.
Polymers (Basel) ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145979

ABSTRACT

All-polymer solar cells (all-PSCs) are organic solar cells in which both the electron donor and the acceptor are polymers and are considered more promising in large-scale production. Thanks to the polymerizing small molecule acceptor strategy, the power conversion efficiency of all-PSCs has ushered in a leap in recent years. However, due to the electrical properties of polymerized small-molecule acceptors (PSMAs), the FF of the devices is generally not high. The typical electron transport material widely used in these devices is PNDIT-F3N, and it is a common strategy to improve the device fill factor (FF) through interface engineering. This work improves the efficiency of all-polymer solar cells through interfacial layer engineering. Using PDINN as the electron transport layer, we boost the FF of the devices from 69.21% to 72.05% and the power conversion efficiency (PCE) from 15.47% to 16.41%. This is the highest efficiency for a PY-IT-based binary all-polymer solar cell. This improvement is demonstrated in different all-polymer material systems.

19.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35887393

ABSTRACT

The spread of multidrug-resistant Klebsiella pneumoniae (MDR-KP) has become an emerging threat as a result of the overuse of antibiotics. Bacteriophage (phage) therapy is considered to be a promising alternative treatment for MDR-KP infection compared with antibiotic therapy. In this research, a lytic phage BUCT610 was isolated from hospital sewage. The assembled genome of BUCT610 was 46,774 bp in length, with a GC content of 48%. A total of 83 open reading frames (ORFs) and no virulence or antimicrobial resistance genes were annotated in the BUCT610 genome. Comparative genomics and phylogenetic analyses showed that BUCT610 was most closely linked with the Vibrio phage pYD38-A and shared 69% homology. In addition, bacteriophage BUCT610 exhibited excellent thermal stability (4-75 °C) and broad pH tolerance (pH 3-12) in the stability test. In vivo investigation results showed that BUCT610 significantly increased the survival rate of Klebsiella pneumonia-infected Galleria mellonella larvae from 13.33% to 83.33% within 72 h. In conclusion, these findings indicate that phage BUCT610 holds great promise as an alternative agent with excellent stability for the treatment of MDR-KP infection.


Subject(s)
Bacteriophages , Moths , Animals , Anti-Bacterial Agents/pharmacology , Genomics , Klebsiella pneumoniae/genetics , Larva/genetics , Moths/genetics , Phylogeny
20.
Polymers (Basel) ; 14(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35631941

ABSTRACT

In this work, we apply the sequential processing (SqP) method to address the relatively low electron mobility in recent all-polymer solar cells (all-PSCs) based on the polymerized small-molecule acceptor (PSMA). Compared to the blend-casting (BC) method, all-PSCs composed of PM6/PY-IT via the SqP method show boosted electron mobility and a more balanced charge carrier transport, which increases the FF of the SqP device and compensates for the short-circuit current loss, rendering comparable overall performance with the BC device. Through film-depth-dependent light absorption spectroscopy, we analyze the sub-layer absorption and exciton generation rate in the vertical direction of the device, and discuss the effect of the increased electron mobility on device performance, accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...