Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Cell Death Differ ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174646

ABSTRACT

Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.

2.
Chem Commun (Camb) ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150167

ABSTRACT

An optimal W0.4Mo0.6S2 solid solution, equipped with rich intrinsic defects, exhibits excellent stability in both 0.5 M H2SO4 and 2.0 M NaCl, showing negligible activity degradation after continuous 50 hours of working, thereby showing outstanding practical prospects.

4.
Ann Biomed Eng ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136890

ABSTRACT

PURPOSE: This study aimed to assess the feasibility of early detection of fatigued gait patterns for older adults through the development of a smart portable device. METHODS: The smart device incorporated seven force sensors and a single inertial measurement unit (IMU) to measure regional plantar forces and foot kinematics. Data were collected from 18 older adults walking briskly on a treadmill for 60 min. The optimal feature set for each recognition model was determined using forward sequential feature selection in a wrapper fashion through fivefold cross-validation. The recognition model was selected from four machine learning models through leave-one-subject-out cross-validation. RESULTS: Five selected characteristics that best represented the state of fatigue included impulse at the medial and lateral arches (increased, p = 0.002 and p < 0.001), contact angle and rotation range of angle in the sagittal plane (increased, p < 0.001), and the variability of the resultant swing angular acceleration (decreased, p < 0.001). The detection accuracy based on the dual signal source of IMU and plantar force was 99%, higher than the 95% accuracy based on the single source. The intelligent portable device demonstrated excellent generalization (ranging from 93 to 100%), real-time performance (2.79 ms), and portability (32 g). CONCLUSION: The proposed smart device can detect fatigue patterns with high precision and in real time. SIGNIFICANCE: The application of this device possesses the potential to reduce the injury risk for older adults related to fatigue during gait.

5.
Vascular ; : 17085381241273320, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140317

ABSTRACT

OBJECTIVES: Carotid artery stenosis (CAS) is a leading cause of cerebral ischemic events (CIE). Timely detection and risk assessment can aid in managing CAS patients and improving their prognosis. The aim of the current study is to identify a new biomarker for CAS and to further investigate the impact of miR-195-5p on cellular processes in vascular smooth muscle cells (VSMCs). METHODS: This study involved 112 CAS patients and 65 healthy individuals. Serum miR-195-5p levels were measured using RT-qPCR. The ROC curve was then plotted to evaluate the diagnostic potential of miR-195-5p for CAS. The Kaplan-Meier curve and Cox regression were employed to determine miR-195-5p's prognostic significance. In vitro, the effects of miR-195-5p mimic or inhibitor on VSMC proliferation and migration were assessed using CCK-8 and Transwell assays. RESULTS: In CAS patients, serum miR-195-5p levels were elevated and correlated with the degree of CAS. The ROC curve had an AUC value of 0.897, with sensitivity of 71.4% and specificity of 95.4%. Higher levels of miR-195-5p indicated a higher risk of CIE occurrence and may serve as an independent predictor of CIE. The upregulation of miR-195-5p promoted VSMC proliferation and migration, while downregulation had the opposite effect. CONCLUSIONS: miR-195-5p was demonstrated to have diagnostic and prognostic significance in CAS and may serve as a potential biomarker. It may contribute to the progression of CAS by promoting the proliferation and migration of VSMCs.

6.
Chin Med ; 19(1): 104, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107849

ABSTRACT

BACKGROUND: Oxylipins including lipoxin A4 (LXA4) facilitate the resolution of inflammation and possess analgesic properties by inhibiting macrophage infiltration and transient receptor potential (TRP) protein expression. Yu-Xue-Bi Tablet (YXB) is a traditional Chinese patent medicine used to relieve inflammatory pain. Our previous research has shown that the analgesic effect of YXB is related to inhibiting peripheral inflammation and regulating macrophage infiltration, but the mechanism is not yet clear. The purpose of this study is to explore the mechanisms of YXB on mice models with Complete Freund's Adjuvant (CFA)-induced inflammatory pain from the perspective at the resolution of inflammation. METHODS: Mechanical allodynia thresholds and heat hypersensitivity were measured using the Von Frey test and the hot plate test respectively. The open field test and the tail suspension test were employed to measure anxiety and depressive behaviors respectively. The expression of CD68+ and the proportion of F4/80+CD11b+ cells were measured by immunofluorescence staining and flow cytometry. The expression of transient receptor potential ankyrin 1(TRPA1) was measured by immunofluorescence staining and western blotting. Oxylipins omics analysis provided quantitative data on oxylipins in the paws, and enzyme linked immunosorbent assay (ELISA) was used to measure the levels of LXA4 there. Immunofluorescence staining was used to perform the expression of Leukotriene A4 hydroxylase (LTA4H) in the paws of mice. The impact of injecting the formyl peptide receptor 2(FPR2) antagonist WRW4 and the TRPA1 agonist AITC into the left paws was observed, focusing on the expression of mechanical allodynia thresholds, the expression of CD68+, TRPA1 in the paws, and Calcitonin gene-related peptide (CGRP) in the L5 spinal dorsal horn. RESULTS: YXB elevated mechanical allodynia thresholds, alleviated heat hypersensitivity and anxiety and depressive behaviors in CFA mice. It significantly reduced the number of CD68+ and proportion of F4/80+CD11b+ within the paws, thereby decreasing macrophage infiltration. Additionally, it diminished the expression of TRPA1 in the paws and TRPV1 in the DRG, leading to an inhibition of peripheral sensitization. Through quantitative analysis, it was found that YXB could modulate DHA-derived oxylipins and LXA4. ELISA results indicated that YXB elevated the levels of LXA4 and inhibited the expression of LAT4H in the paws. Furthermore, the pro-resolution and analgesic effects of YXB were hindered after administration of the FPR2 antagonist. Compared with the AITC group, YXB showed no significant improvement in anti-inflammatory and analgesic effects. CONCLUSIONS: YXB can regulate the oxylipins of paws in CFA mice to promote the resolution of inflammation. The LXA4-FPR2-TRPA1 pathway is a key mechanism for the resolution of inflammation and analgesic effects.

7.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3566-3573, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041128

ABSTRACT

This study established an ultra-performance liquid chromatography(UPLC) fingerprint of abandoned stems and leaves of Artemisia selengensis and quantitative analysis of multi-components by single marker(QAMS) for five phenolic acid components. Waters Acquity UPLC BEH C_(18) chromatography column(2.1 mm×100 mm, 1.7 µm) was used. The gradient elution was carried out with the mobile phase composed of 0.1% phosphoric acid water and acetonitrile at a flow rate of 0.3 mL·min~(-1) and a column temperature at 30 ℃. The detection wavelength was 330 nm, and the injection volume was 2 µL. Similarity evaluation and cluster analysis were conducted on the fingerprint data, and 15 common components in 13 batches of abandoned stems and leaves of A. selengensis were identified. The relative correction factors of ferulic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C were calculated using chlorogenic acid as the internal reference. The QAMS for determining five components in the abandoned stems and leaves of A. selengensis was established. At the same time, the content of these five components was determined using the external standard method(ESM), and the results showed that there were no significant differences in their content determined by the QAMS and the ESM. The results indicated that the content of phenolic acid components in the abandoned stems and leaves of A. selengensis from different varieties and different origins had obvious differences. In addition, the content of phenolic acid components in the abandoned stems and leaves of lignified A. selengensis was significantly higher than that of non-lignified A. selengensis. In summary, QAMS established in this study can be quickly, accurately, and economically used to determine the content of five phenolic acid components in abandoned stems and leaves of A. selengensis, laying a foundation for the resource development and utilization of abandoned stems and leaves of A. selengensis.


Subject(s)
Artemisia , Hydroxybenzoates , Plant Leaves , Plant Stems , Quality Control , Plant Leaves/chemistry , Plant Stems/chemistry , Artemisia/chemistry , Chromatography, High Pressure Liquid/methods , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis
8.
Sci Rep ; 14(1): 16854, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039150

ABSTRACT

The utilization of drag-reducing polymers has long been hindered by their irritancy, corrosiveness, and toxicity across various domains. In this investigation, we explored sodium alginate, a natural drag reducer, for its efficacy in reducing drag and its resilience to shear in millimeter-scale pipelines. Initially, an experimental setup was devised to assess the drag reduction capabilities of sodium alginate at varying concentrations and flow rates using Response Surface Methodology (RSM). The relationship between drag reduction (DR), concentration (C), and flow rate (Q) was established by analyzing the experimental data. Subsequently, variance analysis was employed to validate the data accuracy, with a comparison between predicted and experimental DR values revealing an error margin within ± 20%. Analysis of cyclic shear testing of sodium alginate solution in tubes demonstrated its effectiveness as a shear flow drag reducer. Furthermore, results from laser particle size analysis indicated minimal molecular breakage of sodium alginate during cyclic shear.

9.
Bioengineering (Basel) ; 11(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39061749

ABSTRACT

BACKGROUND: The treatment options for third-trimester musculoskeletal issues are limited. This study aims to examine how heel height affects gait biomechanics and provides heel height recommendations for various musculoskeletal problems. METHODS: Five third-trimester gravidas were recruited wearing uniform footwear with four heel heights (0 mm, 15 mm, 30 mm, and 45 mm). Lower-limb muscle forces, joint angles, joint torques, joint contact forces, and ground reaction forces (GRF) at specific moments (the first peak, valley, and second peak of GRF) were collected for one-way analysis of variance with repeated measures. RESULTS: The soleus, gastrocnemius, tibialis posterior, plantaris, obturator externus, gluteus maximus, gemellus superior, and obturator internus were the smallest at heel heights of 45 mm and 15 mm at the valley of GRF. Hip extension and knee flexion displayed the smallest joint angle and joint torques at a height of 15 mm. Ankle joint contact force decreased with increased heel height. CONCLUSIONS: The height of the heel significantly impacts muscle force, joint angles, joint torques, and joint contact force. A heel of 15 mm might be the most suitable heel height to potentially avoid or alleviate musculoskeletal problems during the third trimester.

10.
Small Methods ; : e2400098, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054724

ABSTRACT

Organic semiconductor (OSC) films fabricated by meniscus-guided coating (MGC) methods are suitable for cost-effective and flexible electronics. However, achieving crystalline thin films by MGC methods is still challenging because the nucleation and crystal growth processes are influenced by the intertwined interactions among solvent evaporation, stochastic nucleation, and the fluid flow instabilities. Herein, a novel flexible fountain pen with active ink supply is designed and used to print OSCs. This direct-write method allows the flexible pen tip to contact the substrate, maintaining a robust meniscus by eliminating the gap found in conventional MGCs. An in situ optical microscopy observation system shows that the precursor film plays a critical role on the crystallization and the formation of coffee rings and dendrites. The computational fluid dynamics simulations demonstrate that the microstructure of the pen promotes extensional flows, facilitating mass transport and crystal alignment. Highly-aligned ribbon-shaped crystals of a small organic molecule (TIPS-pentacene), as well as a semiconducting polymer (N2200) with highly-ordered orientations, have been successfully printed by the flexible fountain pen. Organic field-effect transistors based on the flexible pen printed OSCs exhibit high performances and strong anisotropic mobility. In addition, the flexible fountain pen is expandable for printing multiple lines or large-area films.

12.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894630

ABSTRACT

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Subject(s)
Berberine , Forkhead Box Protein O3 , Hypoxia , Signal Transduction , Sirtuins , Berberine/pharmacology , Berberine/therapeutic use , Animals , Sirtuins/metabolism , Sirtuins/genetics , Signal Transduction/drug effects , Hypoxia/metabolism , Mice , Male , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitophagy/drug effects , Ventricular Remodeling/drug effects , Disease Models, Animal
13.
Nat Sci Sleep ; 16: 787-800, 2024.
Article in English | MEDLINE | ID: mdl-38894977

ABSTRACT

Purpose: Clinical studies have demonstrated the intricate association between the onset and progression of obstructive sleep apnea (OSA) and the activation of the inflammatory cascade reaction. This study delves into investigating the causal links between 91 circulating inflammatory proteins (CIPs) and OSA through the application of Mendelian randomization (MR) techniques. Methods: Utilizing genetic data on OSA sourced from the Finnish Biobank (FinnGen) Genome-wide Association Studies (GWAS) of the European population, alongside summary-level GWAS data of CIPs from 14,824 European participants, we conducted a bidirectional MR study. Results: This study suggests that several factors may be associated with the risk of OSA. IL-17C (odds ratio (OR) = 1.090, p = 0.0311), CCL25 (OR = 1.079, p = 0.0493), FGF-5 (OR = 1.090, p = 0.0003), CD5 (OR = 1.055, p = 0.0477), and TNFSF14 (OR = 1.092, p = 0.0008) may positively correlate with OSA risk. Conversely, IL-20RA (OR = 0.877, p = 0.0107), CCL19 (OR = 0.933, p = 0.0237), MIP-1 alpha (OR = 0.906, p = 0.0042), Flt3L (OR = 0.941, p = 0.0019), CST5 (OR = 0.957, p = 0.0320), OPG (OR = 0.850, p = 0.0001), and TRAIL (OR = 0.956, p = 0.0063) may reduce the risk of OSA. Additionally, elevated levels of IL-10RA (OR = 1.153, p = 0.0478) were observed as a consequence of OSA. Conversely, OSA may potentially lead to decreased levels of CCL28 (OR = 0.875, p = 0.0317), DNER (OR = 0.874, p = 0.0324), FGF-21 (OR = 0.846, p = 0.0344), and CSF-1 (OR = 0.842, p = 0.0396). Conclusion: Through this bidirectional MR study, we have identified 12 upstream regulatory proteins and 5 downstream effect proteins that are linked to OSA. These findings hold promise in providing potential therapeutic targets for the inflammatory mechanisms underlying OSA.

15.
Cell Mol Life Sci ; 81(1): 209, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710967

ABSTRACT

As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.


Subject(s)
Membrane Proteins , Nerve Tissue Proteins , Neurodegenerative Diseases , Animals , Humans , Amyloid/metabolism , Amyloid/genetics , Amyloid/chemistry , Lysosomes/metabolism , Lysosomes/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Mutation , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/chemistry , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology
16.
J Colloid Interface Sci ; 671: 270-282, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38810341

ABSTRACT

It remains a big challenge to fabricate low / medium internal phase gel emulsion for the safe wound dressing with low stimulation to the skin. Herein, utilizing the self-assembly and gelation of amphiphilic herbal small molecule-glycyrrhizic acid (GA) derived from traditional Chinese medicine, a new type of supramolecular gel emulsion (SGE) with antibacterial activity and low / medium internal phase was proposed. In the SGE, the oil droplets were stabilized by the nanofibers self-assembled from GA, and the SGE was formed by the supramolecular assembly of GA nanofibers in the presence of Pickering emulsions. As a result, under low / medium internal phase (φ = 30-50 %), SGEs could be readily prepared. Antibacterial tests demonstrated that the growth of gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) could be effectively inhibited by the SGE. Additionally, compared to high internal phase SGE, SGE with φ = 50 % displayed lower cytotoxicity and a positive impact on the healing process of infectious diabetic wounds. This work provided a novel approach for constructing low / medium internal phase gel emulsion via herbal small molecule-based supramolecular assembly.


Subject(s)
Anti-Bacterial Agents , Emulsions , Escherichia coli , Microbial Sensitivity Tests , Staphylococcus aureus , Wound Healing , Wound Healing/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Emulsions/chemistry , Animals , Gels/chemistry , Mice , Particle Size , Humans , Rats , Diabetes Mellitus, Experimental/drug therapy , Cell Survival/drug effects
17.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1570-1578, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621941

ABSTRACT

This study aims to clarify the effects of dihydroartemisinin(DHA) combined with pregabalin(PGB) on neuropathic pain(NP) in mice and explore the neuroinflammatory regulatory mechanism. NP mice model was established using spinal nerve ligation, whereas the sham group exposed the spinal nerve without ligation. The mice were randomly divided into sham group, model group, PGB groups of low, medium, and high doses(PGB-L, PGB-M, and PGB-H, with 22, 45, and 91 mg·kg~(-1)), DHA group(16 mg·kg~(-1)), and DHA combined with PGB groups of low, medium, and high doses(DHA + PGB-L, DHA + PGB-M, and DHA + PGB-H). Administration by gavage 18 days after modeling. Von Frey and cold plate were used to detect mechanical pain threshold and cold pain sensitivity in mice. The tail suspension test and forced swimming test were used to investigate depressive behavior, and the open field test was used to estimate anxiety behavior. The Morris water maze was used to evaluate cognitive function. Liquid suspension chip technology was used to quantitatively analyze immune inflammation-related factors. Immunofluorescence was used to detect the expression of CC chemokine ligand 3(CCL3) and transmembrane protein 119(TMEM119). The results showed that compared with the sham group, the mechanical pain and cold pain sensitivity thresholds of the model group were significantly reduced, and the struggle time was significantly increased in the tail suspension test and forced swimming test. The activity time in the central area was significantly reduced in the open field test. The residence time in the second/fourth quadrant was significantly longer than that in other quadrants, and the latency time of platform climbing significantly increased after platform withdrawal in the Morris water maze experiment. The expression of CCL3 was significantly increased; the number of TMEM119 positive cells and the cell body area were significantly increased. Compared with the model group, the DHA + PGB-M group showed a significant increase in mechanical pain and cold pain sensitivity thresholds, as well as a significant increase in struggle time in the tail suspension test and forced swimming test. The activity time in the central area of the open field test was significantly reduced. The residence time in the second/fourth quadrant was significantly shorter than that in other quadrants, and the latency time of platform climbing after platform withdrawal was significantly reduced. Compared with the PGB-M group, the mechanical pain threshold of D14-17 in the DHA + PGB-M group was significantly increased, and the struggle time during forced swimming was significantly increased. The residence time in the second/fourth quadrant of the Morris water maze was significantly shorter than that in other quadrants. Compared with the model group, the expression of CCL3, the number of TMEM119 positive cells, and the cell body area in the DHA + PGB-M group were significantly decreased. This study indicates that DHA + PGB can enhance the analgesic effect of PGB on NP mice, break through the limitations of PGB tolerance, and make up for the shortcomings of PGB in antidepressant and cognitive improvement. Its mechanism may be related to regulating neuroinflammation by inhibiting the activation of microglial cells and expression of CCL3.


Subject(s)
Artemisinins , Neuralgia , Mice , Animals , Pregabalin , gamma-Aminobutyric Acid , Neuralgia/drug therapy , Neuralgia/genetics , Neuralgia/metabolism
18.
J Clin Gastroenterol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38652022

ABSTRACT

BACKGROUND: There is a lack of sufficient evidence on whether mixed-type differentiated predominant early gastric cancer (MD-EGC) can be treated endoscopically by referring to the criteria for differentiated-type early gastric cancer (EGC). This study aims to evaluate the efficacy of endoscopic submucosal dissection (ESD) in MD-EGC. METHODS: Patients with differentiated-type EGC treated with ESD first from January 2015 to June 2021 were reviewed, including MD-EGC and pure differentiated-type EGC (PD-EGC). Clinical data, including the clinicopathological characteristics, resection outcomes of ESD, and recurrence and survival time, were collected, and the difference between MD-EGC and PD-EGC was tested. RESULTS: A total of 48 patients (48 lesions) with MD-EGC and 850 patients (890 lesions) with PD-EGC were included. Compared with PD-EGC, MD-EGC had a higher submucosal invasion rate (37.5% vs. 13.7%, P<0.001) and lymphatic invasion rate (10.4% vs. 0.4%, P<0.001). The rates of complete resection (70.8% vs. 92.5%, P<0.001) and curative resection (54.2% vs. 87.4%, P<0.001) in MD-EGC were lower than those of PD-EGC. Multivariate analysis revealed that MD-EGC (OR 4.26, 95% CI, 2.22-8.17, P<0.001) was an independent risk factor for noncurative resection. However, when curative resection was achieved, there was no significant difference in the rates of recurrence (P=0.424) between the 2 groups, whether local or metachronous recurrence. Similarly, the rates of survival(P=0.168) were no significant difference. CONCLUSIONS: Despite the greater malignancy and lower endoscopic curative resection rate of MD-EGC, patients who met curative resection had a favorable long-term prognosis.

19.
Transl Cancer Res ; 13(2): 989-998, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482418

ABSTRACT

Background: Early-stage colorectal cancer (CRC) patients treated with either endoscopic resection (ER) alone or combined ER with chemoradiotherapy (CRT) have unknown survival rates. A national descriptive epidemiological study was conducted to compare the long-term survival of patients with T1 stage CRC with or without the two different treatment options. Methods: Our study identified the records of patients with T1-stage CRC between 2010 and 2018 by searching the Surveillance, Epidemiology, and End Results (SEER) database. Long-term survival was compared using Kaplan-Meier methods and Cox proportional hazard models based on patient demographic and cancer parameters. Results: After propensity score matching (PSM), 825 T1-stage CRC patients were finally enrolled in this study, with 718 patients treated with ER and 107 patients treated with ER + CRT. The overall survival (OS) and cancer specific survival (CSS) rates were similar between the two treatment options (OS: P=0.47; CSS: P=0.28). According to subgroup analysis, older patients and patients with rectal tumor locations exhibited significantly higher OS and CSS rates in the ER + CRT group than in the ER group (OS: P<0.0001; CSS: P<0.0001). Conclusions: The findings from the SEER database showed that OS and CSS rates were similar between the ER and ER + CRT treated groups. Older patients and patients with rectal cancer benefited the most from ER + CRT treatment.

20.
Nat Commun ; 15(1): 1973, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438342

ABSTRACT

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.

SELECTION OF CITATIONS
SEARCH DETAIL