Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Animals (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731297

ABSTRACT

To explore the impacts of multiple environmental stressors on animal communities in aquatic ecosystems, we selected protozoa-a highly sensitive group of organisms-to assess the effect of environmental change. To conduct this simulation we conducted a three-factor, outdoor, mesocosm experiment from March to November 2021. Changes in the community structure and functional group composition of protozoan communities under the separate and combined effects of these three environmental stressors were investigated by warming and the addition of nitrogen, phosphorus, and pesticides. The results were as follows: (1) Both eutrophication and pesticides had a considerable promotional effect on the abundance and biomass of protozoa; the effect of warming was not considerable. When warming was combined with eutrophication and pesticides, there was a synergistic effect and antagonistic effect, respectively. (2) Eutrophication promoted α diversity of protozoa and affected their species richness and dominant species composition; the combination of warming and pesticides remarkably reduced the α diversity of protozoa. (3) Warming, eutrophication, and pesticides were important factors affecting the functional groups of protozoa. Interaction among different environmental factors could complicate changes in the aquatic ecological environment and its protozoan communities. Indeed, in the context of climate change, it might be more difficult to predict future trends in the protozoan community. Therefore, our results provide a scientific basis for the protection and restoration of shallow lake ecosystems; they also offer valuable insights in predicting changes in shallow lakes.

2.
Carbohydr Polym ; 338: 122193, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763708

ABSTRACT

Efficient purification of gamma-cyclodextrin (γ-CD) is always challenging due to its structural similarity to other CDs and low crystallinity in water. In addressing this issue, an approach was proposed based on the formation mechanism of cyclodextrin metal-organic frameworks (CD-MOFs). This method involved the selective coordination of CDs mixture with potassium ions in water, facilitated by ethanol-induced crystallization, leading to the purification of γ-CD. The results showed that potassium ions enhanced γ-CD crystallization, and ethanol was crucial to selectively coordinating potassium ions with γ-CD. The characterizations revealed that the resulting CD-MOFs exhibited a small particle size, high surface area, and high thermal stability, and was identical to γ-CD-MOF, further indicating the final γ-CD with high purity. The separation factors of γ-CD/α-CD and γ-CD/ß-CD were 309 and 260, respectively. Moreover, this method was validated through its application to the industrial enzymatic CDs mixture. The purification of γ-CD could achieve 99.99 ± 0.01 % after four crystallization cycles. Therefore, selectively coordinating with potassium ions to form MOFs provided a valuable reference for the purification of γ-CD and even the direct synthesis of γ-CD-MOF from CDs mixture. This advancement will also benefit the future production and application of γ-CD.

3.
Nat Commun ; 15(1): 4340, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773142

ABSTRACT

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Subject(s)
Apoptosis Regulatory Proteins , Disease Models, Animal , Lipopolysaccharides , MAP Kinase Kinase Kinases , Macrophages , Sepsis , Animals , Sepsis/immunology , Sepsis/drug therapy , Sepsis/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Male , Mice , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , Phosphorylation , Humans , Ubiquitination , Zearalenone/analogs & derivatives , Zearalenone/pharmacology , Zearalenone/administration & dosage , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Inflammation/metabolism , Inflammation/pathology , Phosphoric Monoester Hydrolases/metabolism , Mice, Knockout , Lactones , Resorcinols
4.
Angew Chem Int Ed Engl ; : e202408189, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774981

ABSTRACT

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as promising candidates in gas sensing, owing to their tunable porous structure and conductivity. Nevertheless, the reported gas sensing mechanisms heavily relied on electron transfer between metal nodes and gas molecules. Normally, the strong interaction between the metal sites and target gas molecule would result poor recovery and thus bad recycling property. Herein, we propose a redox synergy strategy to overcome this issue by balancing the reactivity of metal sites and ligands. A 2D c-MOF, Zn3(HHTQ)2, was prepared for nitrogen dioxide (NO2) sensing, which was constructed from active ligands (hexahydroxyl-tricycloquinazoline, HHTQ) and inactive transition-metal ions (Zn2+). Substantial characterizations and theoretical calculations demonstrated that by utilizing only the redox interactions between ligands and NO2, not only high sensitivity and selectivity, but also excellent cycling stability in NO2 sensing could be achieved. In contrast, control experiments employing isostructural 2D c-MOFs with Cu/Ni metal nodes exhibited irreversible NO2 sensing. Our current work provides a new design strategy for gas sensing materials, emphasizing harnessing the redox activity of only ligands to enhance the stability of MOF sensing materials.

5.
NPJ Parkinsons Dis ; 10(1): 97, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702337

ABSTRACT

Observational studies in Parkinson's disease (PD) deeply characterize relatively small numbers of participants. The Molecular Integration in Neurological Diagnosis Initiative seeks to characterize molecular and clinical features of every PD patient at the University of Pennsylvania (UPenn). The objectives of this study are to determine the feasibility of genetic characterization in PD and assess clinical features by sex and GBA1/LRRK2 status on a clinic-wide scale. All PD patients with clinical visits at the UPenn PD Center between 9/2018 and 12/2022 were eligible. Blood or saliva were collected, and a clinical questionnaire administered. Genotyping at 14 GBA1 and 8 LRRK2 variants was performed. PD symptoms were compared by sex and gene groups. 2063 patients were approached and 1,689 (82%) were enrolled, with 374 (18%) declining to participate. 608 (36%) females were enrolled, 159 (9%) carried a GBA1 variant, and 44 (3%) carried a LRRK2 variant. Compared with males, females across gene groups more frequently reported dystonia (53% vs 46%, p = 0.01) and anxiety (64% vs 55%, p < 0.01), but less frequently reported cognitive impairment (10% vs 49%, p < 0.01) and vivid dreaming (53% vs 60%, p = 0.01). GBA1 variant carriers more frequently reported anxiety (67% vs 57%, p = 0.04) and depression (62% vs 46%, p < 0.01) than non-carriers; LRRK2 variant carriers did not differ from non-carriers. We report feasibility for near-clinic-wide enrollment and characterization of individuals with PD during clinical visits at a high-volume academic center. Clinical symptoms differ by sex and GBA1, but not LRRK2, status.

6.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727288

ABSTRACT

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Glioblastoma , Integrin alpha3 , Integrin beta1 , TNF-Related Apoptosis-Inducing Ligand , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Apoptosis/genetics , Cell Line, Tumor , Integrin beta1/metabolism , Integrin beta1/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Integrin alpha3/metabolism , Integrin alpha3/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
7.
Can Assoc Radiol J ; : 8465371241238917, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577746

ABSTRACT

PURPOSE: To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS: A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS: The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.

8.
BMC Pediatr ; 24(1): 227, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561715

ABSTRACT

BACKGROUND: Summarizing the clinical features of children with intussusception secondary to small bowel tumours and enhancing awareness of the disease. METHODS: Retrospective summary of children with intussusception admitted to our emergency department from January 2016 to January 2022, who underwent surgery and were diagnosed with small bowel tumours. Summarize the types of tumours, clinical presentation, treatment, and prognosis. RESULTS: Thirty-one patients were included in our study, 24 males and 7 females, with an age of onset ranging from 1 m to 11y 5 m. Post-operative pathology revealed 4 types of small intestinal tumour, 17 lymphomas, 10 adenomas, 4 inflammatory myofibroblastomas and 1 lipoma. The majority of tumours in the small bowel occur in the ileum (83.9%, 26/31). Abdominal pain, vomiting and bloody stools were the most common clinical signs. Operative findings indicated that the small bowel (54.8%, 17/31) and ileocolic gut were the main sites of intussusception. Two types of procedure were applied: segmental bowel resection (28 cases) and wedge resection of mass in bowel wall (3 cases). All patients recovered well postoperatively, with no surgical complications observed. However, the primary diseases leading to intussusception showed slight differences in long-term prognosis due to variations in tumor types. CONCLUSIONS: Lymphoma is the most common cause of intussusception in pediatric patients with small bowel tumours, followed by adenoma. Small bowel tumours in children tend to occur in the ileum. Therefore, the treatment of SBT patients not only requires surgeons to address symptoms through surgery and obtain tissue samples but also relies heavily on the expertise of pathologists for accurate diagnosis. This has a significant impact on the overall prognosis of these patients.


Subject(s)
Intestinal Neoplasms , Intussusception , Male , Female , Humans , Child , Intussusception/etiology , Intussusception/surgery , Retrospective Studies , Intestinal Neoplasms/complications , Intestinal Neoplasms/surgery , Abdominal Pain/complications , Intestine, Small/surgery
9.
Foods ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611279

ABSTRACT

The detection of the storage state of frozen meat, especially meat frozen-thawed several times, has always been important for food safety inspections. Hyperspectral imaging (HSI) is widely applied to detect the freshness and quality of meat or meat products. This study investigated the feasibility of the low-cost HSI system, combined with the chemometrics method, to classify beef cuts among fresh (F), frozen-stored (F-S), frozen-thawed three times (F-T-3) and frozen-thawed five times (F-T-5). A compact, low-cost HSI system was designed and calibrated for beef sample measurement. The classification model was developed for meat analysis with a method to distinguish fat and muscle, a CARS algorithm to extract the optimal wavelength subset and three classifiers to identify each beef cut among different freezing processes. The results demonstrated that classification models based on feature variables extracted from differentiated tissue spectra achieved better performances, with ACCs of 92.75% for PLS-DA, 97.83% for SVM and 95.03% for BP-ANN. A visualization map was proposed to provide detailed information about the changes in freshness of beef cuts after freeze-thawing. Furthermore, this study demonstrated the potential of implementing a reasonably priced HSI system in the food industry.

10.
Angew Chem Int Ed Engl ; : e202401238, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651232

ABSTRACT

Emerging high entropy compounds (HECs) have attracted huge attention in electrochemical energy-related applications. The features of ultrafine size and carbon incorporation show great potential to boost the ion-storage kinetics of HECs. However, they are rarely reported because high-temperature calcination tends to result in larger crystallites, phase separation, and carbon reduction. Herein, using the NaCl self-assembly template method, by introducing a high-pressure field in the calcination process, the atom diffusion and phase separation are inhibited for the general formation of HECs, and the HEC aggregation is inhibited for obtaining ultrafine size. The general preparation of ultrafine-sized (< 10 nm) HECs (nitrides, oxides, sulfides, and phosphates) anchored on porous carbon composites is realized. They are demonstrated by combining advanced characterization technologies with theoretical computations. Ultrafine-sized high entropy sulfides-MnFeCoCuSnMo/porous carbon (HES-MnFeCoCuSnMo/PC) as representative anodes exhibit excellent sodium-ion storage kinetics and capacities (a high rating capacity of 278 mAh g-1 at 10 A g-1 for full cell and a high cycling capacity of 281 mAh g-1 at 20 A g-1 after 6000 cycles for half cell) due to the combining advantages of high entropy effect, ultrafine size, and PC incorporation. Our work provides a new opportunity for designing and fabricating ultrafine-sized HECs.

11.
Comput Struct Biotechnol J ; 23: 1298-1310, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38560280

ABSTRACT

In gestational diabetes mellitus (GDM), adipose tissue undergoes metabolic disturbances and chronic low-grade inflammation. Alternative polyadenylation (APA) is a post-transcriptional modification mechanism that generates mRNA with variable lengths of 3' untranslated regions (3'UTR), and it is associated with inflammation and metabolism. However, the role of APA in GDM adipose tissue has not been well characterized. In this study, we conducted transcriptomic and proteomic sequencing on subcutaneous and omental adipose tissues from both control and GDM patients. Using Dapars, a novel APA quantitative algorithm, we delineated the APA landscape of adipose tissue, revealing significant 3'UTR elongation of mRNAs in the GDM group. Omental adipose tissue exhibited a significant correlation between elongated 3'UTRs and reduced translation levels of genes related to metabolism and inflammation. Validation experiments in THP-1 derived macrophages (TDMs) demonstrated the impact of APA on translation levels by overexpressing long and short 3'UTR isoforms of a representative gene LRRC25. Additionally, LRRC25 was validated to suppress proinflammatory polarization in TDMs. Further exploration revealed two underexpressed APA trans-acting factors, CSTF3 and PPP1CB, in GDM omental adipose tissue. In conclusion, this study provides preliminary insights into the APA landscape of GDM adipose tissue. Reduced APA regulation in GDM omental adipose tissue may contribute to metabolic disorders and inflammation by downregulating gene translation levels. These findings advance our understanding of the molecular mechanisms underlying GDM-associated adipose tissue changes.

12.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562852

ABSTRACT

Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.

13.
Mov Disord ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610104

ABSTRACT

BACKGROUND: The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE: The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS: We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS: GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS: rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537684

ABSTRACT

Hepatic ischemia-reperfusion injury(HIRI) remains to be an unsolved risk factor that contributes to organ failure after liver surgery. Our clinical retrospective study showed that lower donor liver CX3-C chemokine receptor-1(CX3CR1) mRNA expression level were correlated with upregulated pro-resolved macrophage receptor MERTK, as well as promoted restoration efficiency of allograft injury in liver transplant. To further characterize roles of CX3CR1 in regulating resolution of HIRI, we employed murine liver partial warm ischemia-reperfusion model by Wt & Cx3cr1-/- mice and the reperfusion time was prolonged from 6 h to 4-7 days. Kupffer cells(KCs) were depleted by clodronate liposome(CL) in advance to focus on infiltrating macrophages, and repopulation kinetics were determined by FACS, IF and RNA-Seq. CX3CR1 antagonist AZD8797 was injected i.p. to interrogate potential pharmacological therapeutic strategies. In vitro primary bone marrow macrophages(BMMs) culture by LXR agonist DMHCA, as well as molecular and functional studies, were undertaken to dissect roles of CX3CR1 in modulating macrophages cytobiological development and resolutive functions. We observed that deficiency or pharmacological inhibition of CX3CR1 facilitated HIRI resolution via promoted macrophages migration in CCR1/CCR5 manner, as well as enhanced MerTK-mediated efferocytosis. Our study demonstrated the critical roles of CX3CR1 in progression of HIRI and identified it as a potential therapeutic target in clinical liver transplantation.


Subject(s)
CX3C Chemokine Receptor 1 , Liver , Mice, Knockout , Reperfusion Injury , Animals , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Mice , Liver/metabolism , Liver/pathology , Male , Humans , Kupffer Cells/metabolism , Kupffer Cells/pathology , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Liver Transplantation , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Homeostasis , Disease Models, Animal
15.
Sci Total Environ ; 924: 171512, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38453081

ABSTRACT

The presence of pesticide residues in aquatic environments poses a significant threat to both aquatic ecosystems and human health. The presence of these residues can result in significant harm to aquatic ecosystems and can negatively impact the health of aquatic organisms. Consequently, this issue requires urgent attention and effective measures to mitigate its impact. However, developing sensitive and rapid detection methods remains a challenge. In this study, an all-in-one test strip, which integrated bioenzymes, nanoenzymes, and a chromogen, was developed in combination with an enzyme labeling instrument for a highly sensitive and convenient sensing of malathion residues. The oxidase activity of heme chloride (Hemin) in the strip can catalyze the oxidation of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue-colored oxide. Simultaneously, the alkaline phosphatase (ALP) present in the strip can break down l-ascorbic acid-2-phosphate to produce ascorbic acid (AA). This AA then acts to reduce the oxidized form of TMB, turning it into a colorless substance and leading to the disappearance of its fluorescent signal. In the presence of a pesticide, the activity of ALP is inhibited and formation of AA is blocked, thereby preventing the reduction of oxidized TMB and producing a colored signal. According to this principle, the integrated test strip detected the target pesticide with high performance as per the optical density value determined via an enzyme marker. The detection limit of the test strip was 0.209 ng/mL with good sensitivity. The method was used for detecting malathion in actual river water samples, and the recoveries were in the range of 93.53 %-96.87 %. The newly devised technique effectively identified malathion in samples of natural water. This research has introduced a novel approach for the precise and convenient surveillance of pesticide remnants. Additionally, these discoveries could inspire the advancement of proficient multi-enzyme detection systems.


Subject(s)
Malathion , Pesticides , Humans , Ecosystem , Hydrogen Peroxide , Limit of Detection , Coloring Agents/chemistry , Alkaline Phosphatase , Water
16.
RSC Adv ; 14(11): 7592-7600, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38440283

ABSTRACT

Thermal conversion of kraft lignin, an abundant renewable aromatic substrate, into advanced carbon materials including graphitic carbon and multilayer/turbostratic graphene has recently attracted great interest. Our innovative catalytic upgrading approach integrated with molecular cracking and welding (MCW) enables mass production of lignin-derived multilayer graphene-based materials. To understand the critical role of metal catalysts in the synthesis of multilayer graphene, this study was focused on investigating the effects of transition metals (i.e., molybdenum (Mo), nickel (Ni), copper (Cu), and iron (Fe)) on thermal and graphitization behaviors of lignin. During the preparation of metal-lignin (M-lignin) complexes, Fenton-like reactions were observed with the formation of Fe- and Cu-lignin complexes, while Ni ions strongly interacted with oxygen-containing surface functional groups of lignin and Mo oxyanions weakly interacted with lignin through ionic bonding. Different chelation mechanisms of transition metal ions with lignin influenced the stabilization, graphitization, and MCW steps involved in thermal upgrading. The M-lignin complex behaviors in each of the three steps were characterized. It was found that multilayer graphene-based materials with nanoplatelets can be obtained from the Fe-lignin complex via MCW operation at 1000 °C under methane (CH4). Raman spectra indicated that Fe- and Ni-lignin complexes experienced a higher degree of graphitization than Cu- and Mo-lignin complexes during thermal treatment.

17.
J Med Virol ; 96(3): e29530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38529528

ABSTRACT

Integration of hepatitis B virus (HBV) DNA into the human genome is recognized as an oncogenic factor and a barrier to hepatitis B cure. In the study, biopsy liver tissues were collected from adolescents and young adults with acute HBV infection younger than or equal to 35 years of age and from HBV-infected infant patients younger than or equal to 6 months of age. A high-throughput sequencing method was used to detect HBV DNA integration. Totally, 12 adolescents, young adults, and 6 infants were included. Among the 12 patients with acute HBV infection, immunohistochemical staining of intrahepatic hepatitis B surface antigen for all displayed negative results, and no HBV DNA integrants in the hepatocyte DNA were confirmed. All infant patients had elevated levels of alanine aminotransferase and high levels of serum HBV DNA. Numerous gene sites of hepatocyte DNA were integrated by HBV DNA for each infant patient, ranging from 120 to 430 integration sites. The fragile histidine triad gene was the high-frequency integrated site in the intragenic region for infant patients. In conclusion, hepatocyte DNA is integrated by HBV DNA in babies with active hepatitis B but seems seldom affected among adolescents and young adults with acute HBV infection. Infantile hepatitis B should be taken seriously considering abundant HBV DNA integration events.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Infant , Adolescent , Humans , Young Adult , Hepatitis B virus/genetics , DNA, Viral/genetics , Liver/pathology , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens , Genomics
18.
Biomimetics (Basel) ; 9(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38534835

ABSTRACT

The current motion interaction model has the problems of insufficient motion fidelity and lack of self-adaptation to complex environments. To address this problem, this study proposed to construct a human motion control model based on the muscle force model and stage particle swarm, and based on this, this study utilized the deep deterministic gradient strategy algorithm to construct a motion interaction control model based on the muscle force model and the deep reinforcement strategy. Empirical analysis of the human motion control model proposed in this study revealed that the joint trajectory correlation and muscle activity correlation of the model were higher than those of other comparative models, and its joint trajectory correlation was up to 0.90, and its muscle activity correlation was up to 0.84. In addition, this study validated the effectiveness of the motion interaction control model using the depth reinforcement strategy and found that in the mixed-obstacle environment, the model's desired results were obtained by training 1.1 × 103 times, and the walking distance was 423 m, which was better than other models. In summary, the proposed motor interaction control model using the muscle force model and deep reinforcement strategy has higher motion fidelity and can realize autonomous decision making and adaptive control in the face of complex environments. It can provide a theoretical reference for improving the effect of motion control and realizing intelligent motion interaction.

19.
ACS Appl Mater Interfaces ; 16(6): 7883-7893, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299449

ABSTRACT

Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.

20.
Neoplasia ; 50: 100983, 2024 04.
Article in English | MEDLINE | ID: mdl-38417222

ABSTRACT

While BRAF alterations have been established as a driver in various solid malignancies, the characterization of BRAF alterations in prostate cancer (PCa) has not been thoroughly interrogated. By bioinformatics analysis, we first found that BRAF alterations were associated with advanced PCa and exhibited mutually exclusive pattern with ERG alteration across multiple cohorts. Of the most interest, recurrent non-V600 BRAF mutations were found in 3 of 21 (14.3 %) PCa patients demonstrating IDC-P morphology. Furthermore, experimental overexpression of BRAFK601E and BRAFL597R exhibited emergence of oncogenic phenotypes with intensified MAPK signaling in vitro, which could be targeted by MEK inhibitors. Comparison of the incidence of BRAF alterations in IDC-P between western and Chinese ancestry revealed an increased prevalence in the Chinese population. The BRAF mutation may represent important genetic alteration in a subset of IDC-P, highlighting the role of MAPK signaling pathway in this subtype of PCa. To the best of knowledge, this is the first description of non-V600 BRAF mutation in setting of IDC-P, which may in part explain the aggressive phenotype seen in IDC-P and could also bring more treatment options for PCa patients with IDC-P harboring such mutations.


Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Prostatic Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Male , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , China , Mutation , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...