Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Front Plant Sci ; 15: 1427972, 2024.
Article in English | MEDLINE | ID: mdl-38919824

ABSTRACT

To determine the appropriate seeding rate for machine-transplanted hybrid rice, field experiments were conducted during 2022-2023 using the hybrid rice variety Huazhe You 210 as the material. Four seeding rate treatments were set up: 40 (T1), 60 (T2), 80 (T3) and 100 g tray-1 (T4), to investigate the effects of seeding rate on the seedling quality, transplanting quality, yield formation, and economic benefits of high-quality indica hybrid rice seedlings. The results showed that with increasing seeding rate, the seedling base stem diameter and seedling plumpness of hybrid rice seedlings decreased, but the root entwining force gradually increased, leading to a deterioration in individual seedling quality but an improvement in collective characteristics. As the seeding rate increased, the missing hill rate during mechanical planting of hybrid rice significantly decreased, while the number of seedlings per hill and the damaged seedling rate showed an upward trend. The growth volume of tillers, tillering spikelet rate, and harvest index of hybrid rice in the field showed an overall downward trend with increasing seeding rate, while the accumulation of dry matter initially increased and then decreased. The yield and economic benefits of hybrid rice grains showed an initial increase followed by a decrease with increasing seeding rate, with the highest yield and economic benefits achieved with the T2 treatment. In conclusion, the appropriate seeding rate for machine-transplanted hybrid rice is T2 (60 g tray-1), which can maintain good seedling quality and improve transplanting quality, coordinate larger collective growth and appropriate harvest index, contributing to high yield and good economic benefits.

2.
Nanoscale ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888150

ABSTRACT

Micro-supercapacitors (MSCs) have attracted significant attention for potential applications in miniaturized electronics due to their high power density, rapid charge/discharge rates, and extended lifespan. Despite the unique properties of low-dimensional nanomaterials, which hold tremendous potential for revolutionary applications, effectively integrating these attributes into MSCs presents several challenges. 3D printing is rapidly emerging as a key player in the fabrication of advanced energy storage devices. Its ability to design, prototype, and produce functional devices incorporating low-dimensional nanomaterials positions it as an influential technology. In this review, we delve into recent advancements and innovations in micro-supercapacitor manufacturing, with a specific focus on the incorporation of low-dimensional nanomaterials using direct ink writing (DIW) 3D printing techniques. We highlight the distinct advantages offered by low-dimensional nanomaterials, from quantum effects in 0D nanoparticles that result in high capacitance values to rapid electron and ion transport in 1D nanowires, as well as the extensive surface area and mechanical flexibility of 2D nanosheets. Additionally, we address the challenges encountered during the fabrication process, such as material viscosity, printing resolution, and seamless integration of active materials with current collectors. This review highlights the remarkable progress in the energy storage sector, demonstrating how the synergistic use of low-dimensional nanomaterials and 3D printing technologies not only overcomes existing limitations but also opens new avenues for the development and production of advanced micro-supercapacitors. The convergence of low-dimensional nanomaterials and DIW 3D printing heralds the advent of the next generation of energy storage devices, making a significant contribution to the field and laying the groundwork for future innovations.

3.
Food Chem X ; 22: 101473, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38855094

ABSTRACT

To maintain the purity of the seeds and rice quality of the high-quality rice varieties, five lines with similar field and yield traits were selected from the Nanjing46 population in Liyang and used as study materials, and the original progeny were used as the control material for comparing rice quality and lipid metabolites in this study. The rice quality of the five lines still differed compared to CKN1. The Badh2-E2 gene was detected in all five lines, but its 2-AP content differed. The C11:0 content in CKN1 and VN1 was significantly greater than that in the other four lines. Most of the differentially abundant metabolites were phospholipids, including PA(16:0/18:2), PC(15:0/16:0) and PG(16:0/16:0). These metabolites can be used as potential metabolic markers for identifying quality variation. This study presents a novel methodology and theoretical framework for investigating varietal degradation and ensuring seed purity authentication.

4.
ACS Appl Mater Interfaces ; 16(17): 22147-22154, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639142

ABSTRACT

The high performance of a multistage thermoelectric cooler (multi-TEC) used in a wide low-temperature range depends on the optimized thermoelectric (TE) performance of materials during the corresponding working temperature range for each stage. Despite decades of research on the commercial TE materials of Bi2Te3, the main research is still focused on temperatures above 300 K, lacking suitable hierarchical low-temperature n-Bi2Te3 for multistage TEC. In this work, we systematically investigated the influence of doping concentration and matrix material compositions on the TE performance of n-Bi2Te3 below room temperature by the high-energy ball milling and hot deformation. Consequently, two hierarchical n-Bi2Te3 materials with excellent mechanical properties working below 248 and around 298 K, respectively, have been screened out. The Bi2Te2.7Se0.3 + 0.03 wt % TeI4 can be adopted in a low-temperature range that exhibits the high average figure of merit (zTave) of 0.61 within 173-248 K. Meanwhile, the Bi2Te2.7Se0.3 + 0.05 wt % TeI4 sample displays a competitive zTave of 0.85 within 248-298 K, which can be applied above 248 K. The research of hierarchical TE materials provides valuable insights into the high-performance design of multistage TE cooling devices.

5.
Int J Biol Macromol ; 261(Pt 2): 129918, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309388

ABSTRACT

This study examined four types of japonica rice from Yangtze River Delta, categorized based on amylose content (AC) and protein content (PC): high AC with high PC, high AC with low PC, low AC with high PC, and low AC with low PC. It systematically explored the effect of starch, protein and their interactions on eating quality of japonica rice. Rheological analysis revealed that increased amylose, long chains amylopectin or protein levels during cooking strengthen starch-protein interactions (hydrogen bonding), forming a firm gel network. Scanning electron microscopy showed that increased amylose, long chains amylopectin or protein levels made protein and starch more stable in combination during cooking, limiting starch structure cleavage. Therefore, the eating quality of high AC in similar PC japonica rice and high PC in similar AC japonica rice were poor. Further, correlation and random-forest analysis (RFA) identified amylose as the most influential factor in starch-protein interactions affecting rice eating quality, followed by amylopectin and protein. RFA also revealed that in high AC japonica rice, the interactions of Fb3 and albumin with amylose were more conducive to forming good eating quality. In low AC japonica rice, the interactions of Fb2 and prolamin with amylose were more beneficial.


Subject(s)
Oryza , Starch , Starch/chemistry , Amylopectin/chemistry , Amylose/chemistry , Oryza/chemistry , Rivers
6.
Food Res Int ; 178: 113934, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309905

ABSTRACT

Bee pollen is hailed as a treasure trove of human nutrition and has progressively emerged as the source of functional food and medicine. This review conducts a compilation of nutrients and phytochemicals in bee pollen, with particular emphasis on some ubiquitous and unique phenolamides and flavonoid glycosides. Additionally, it provides a concise overview of the diverse health benefits and therapeutic properties of bee pollen, particularly anti-prostatitis and anti-tyrosinase effects. Furthermore, based on the distinctive structural characteristics of pollen walls, a substantial debate has persisted in the past concerning the necessity of wall-disruption. This review provides a comprehensive survey on the necessity of wall-disruption, the impact of wall-disruption on the release and digestion of nutrients, and wall-disruption techniques in industrial production. Wall-disruption appears effective in releasing and digesting nutrients and exploiting bee pollen's bioactivities. Finally, the review underscores the need for future studies to elucidate the mechanisms of beneficial effects. This paper will likely help us gain better insight into bee pollen to develop further functional foods, personalized nutraceuticals, cosmetics products, and medicine.


Subject(s)
Nutrients , Pollen , Bees , Humans , Animals , Pollen/chemistry , Flavonoids/analysis , Glycosides/analysis , Phytochemicals/analysis
7.
J Agric Food Chem ; 72(10): 5089-5106, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416110

ABSTRACT

Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.


Subject(s)
Polyamines , Tandem Mass Spectrometry , Animals , Spermidine , Plants , Spermine
8.
Chem Biodivers ; 21(5): e202400085, 2024 May.
Article in English | MEDLINE | ID: mdl-38329156

ABSTRACT

A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46 µg/ml.


Subject(s)
Antioxidants , Biphenyl Compounds , Bees , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Animals , Biphenyl Compounds/antagonists & inhibitors , Gas Chromatography-Mass Spectrometry , Picrates/antagonists & inhibitors , Tandem Mass Spectrometry , Chromatography, Liquid , Solid Phase Microextraction
9.
Sci Rep ; 14(1): 4681, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409441

ABSTRACT

The preparation process and composition design of heavy-section ductile iron are the key factors affecting its fracture toughness. These factors are challenging to address due to the long casting cycle, high cost and complex influencing factors of this type of iron. In this paper, 18 cubic physical simulation test blocks with 400 mm wall thickness were prepared by adjusting the C, Si and Mn contents in heavy-section ductile iron using a homemade physical simulation casting system. Four locations with different cooling rates were selected for each specimen, and 72 specimens with different compositions and cooling times of the heavy-section ductile iron were prepared. Six machine learning-based heavy-section ductile iron fracture toughness predictive models were constructed based on measured data with the C content, Si content, Mn content and cooling rate as input data and the fracture toughness as the output data. The experimental results showed that the constructed bagging model has high accuracy in predicting the fracture toughness of heavy-section ductile iron, with a coefficient of coefficient (R2) of 0.9990 and a root mean square error (RMSE) of 0.2373.

10.
Plant Physiol Biochem ; 207: 108395, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38290342

ABSTRACT

Flowering is an important developmental transition that greatly affects the yield of many vegetable crops. In cucumber (Cucumis sativus), flowering is regulated by various factors including squamosa promoter-binding-like (SPL) family proteins. However, the role of CsSPL genes in cucumber flowering remains largely unknown. In this study, we cloned the squamosa promoter-binding-like protein 13A (CsSPL13A) gene, which encodes a highly conserved SBP-domain protein that acts as a transcription factor and localizes to the nucleus. Quantitative real-time PCR (qRT-PCR) analysis showed that CsSPL13A was mainly expressed in flowers, and its expression level increased significantly nearing the flowering stage. Additionally, compared with the wild type(WT), CsSPL13A-overexpressing transgenic cucumber plants (CsSPL13A-OE) showed considerable differences in flowering phenotypes, such as early flowering, increased number of male flowers, and longer flower stalks. CsSPL13A upregulated the expression of the flowering integrator gene Flowering Locus T (CsFT) and the sugar-mediated flowering gene ß-amylase (CsBAM) in cucumber. Yeast one-hybrid and firefly enzyme reporter assays confirmed that the CsSPL13A protein could directly bind to the promoters of CsFT and CsBAM, suggesting that CsSPL13A works together with CsFT and CsBAM to mediate flowering in cucumber. Overall, our results provide novel insights into the regulatory network of flowering in cucumber as well as new ideas for the genetic improvement of cucumber varieties.


Subject(s)
Cucumis sativus , Cucumis sativus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Flowers/metabolism , Phenotype , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant
11.
J Agric Food Chem ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37921636

ABSTRACT

We aimed to identify the characteristic phytochemicals of safflower, Chinese sumac, and bauhinia honeys to assess their authenticity. We discovered syringaldehyde, riboflavin, lumiflavin, lumichrome, rhusin [(1E,4E)-1,5-diphenylpenta-1,4-dien-3-one-O-cinnamoyl oxime], bitterin {4-hydroxy-4-[3-(1-hydroxyethyl) oxiran-2-yl]-3,5,5-trimethylcyclohex-2-en-1-one}, and unedone as characteristic phytochemicals of these three types of honeys. The average contents of syringaldehyde, riboflavin, lumiflavin, or lumichrome in safflower honey were 41.20, 5.24, 24.72, and 36.72 mg/kg; lumiflavin, lumichrome, and rhusin in Chinese sumac honey were 39.66, 40.55, and 2.65 mg/kg; bitterin, unedone, and lumichrome in bauhinia honey were 8.42, 26.33, and 8.68 mg/kg, respectively. To our knowledge, the simultaneous presence of riboflavin, lumichrome, and lumiflavin in honey is a novel finding responsible for the bright-yellow color of honey. Also, it is the first time that lumiflavin, rhusin, and bitterin have been reported in honey. We effectively distinguish pure honeys from adulterations, based on characteristic components and high-performance liquid chromatography fingerprints; thus, we seem to provide intrinsic markers and reliable assessment criteria to assess honey authenticity.

12.
Front Plant Sci ; 14: 1281309, 2023.
Article in English | MEDLINE | ID: mdl-37881617

ABSTRACT

Nitrogen (N) rate reduction and simplified fertilization can mitigate environmental impacts and reduce the involvement of manual labor in rice (Oryza sativa L.) production. Controlled-release urea (CRU) has been recommended as an effective alternative technique to conventional urea fertilization, and it can improve rice yield and N use efficiency (NUE) and reduce labor costs. However, the information on the effects of one-time fertilization with CRU on maintaining yield and improving NUE under reduced chemical N conditions is limited. In this study, controlled-release bulk blending fertilizer (CRF), consisting of CRU with release periods of 40 and 100 days, mixed with compound fertilizer, was applied as basal fertilizer. Increased ~20% plant density (ID) and rapeseed cake fertilizer (RC, increase 20% organic N) were combined with CRF, respectively. The N treatments with 20% chemical N reduction were as follows: reduced N fertilizer (RNF), CRF, CRF+ID, and CRF+RC. In addition, a conventional split fertilizer application with 300 kg ha-1 N was applied as the control (CK). Rice yield and its components, dry matter accumulation, N uptake, and NUE were investigated to evaluate whether one-time N fertilization realized stable yield and high NUE under reduced 20% chemical N conditions. Compared with CK, the CRF+RC treatment exhibited a comparable grain yield, while the other reduced N treatments (RNF, CRF, and CRF+ID) had a lower grain yield. Moreover, CRF+ID exhibited a higher rice grain yield than RNF or CRF under the same N level. Irrespective of exogenous organic N, CRF+RC exhibited significantly higher NUE than CK. The CRF+ID treatment showed a significantly higher N partial factor productivity (PFN) than CK but comparable N agronomic efficiency (NAE) and N recovery efficiency (NRE). Therefore, a one-time fertilizer application of CRF+RC maintained grain yield and improved the NUE while reducing the N rate and fertilization times, demonstrating its potential application in rice production.

13.
Sci Total Environ ; 905: 167629, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37838042

ABSTRACT

Integrated rice-crayfish farming is an ecological rice farming mode. However, limited research has examined the comprehensive impacts of greenhouse gas (GHG) emissions, nitrogen (N) uptake, and N utilization in rice under this farming modality. Herein, a dual-factor experiment was performed from 2021 to 2022 to assess the comprehensive impacts of N application and rice farming mode on greenhouse gas (GHG) emissions, N uptake, N utilization, and rice yield in paddy fields. Under N application, the rice-crayfish co-culture exhibits a 2.3 % decrease in global warming potential (GWP) and a 17.3 % increase in greenhouse gas intensity relative to the rice monoculture. Moreover, the N uptake of rice within the rice-crayfish co-culture is 5.2 %-10.4 % higher than that in the rice monoculture. However, owing to low rice yield under the rice-crayfish co-culture, its N partial factor productivity decreases by 5.6 %-22.6 %, while N agronomic efficiency is reduced by 18.3 %-46.9 % compared with the rice monoculture. In addition, N application significantly inhibits CH4 emissions from paddy fields in the rice-crayfish co-culture mode. Compared with no N application, the CH4 emissions and GWP of N-applied treatment are decreased by 12.1 %-31.0 % and 6.0 %-15.8 %, respectively. Hence, N regulation might reduce GHG emissions in rice-aquatic animal co-culturing agriculture. Collectively, the results of this study suggest that switching from a rice monoculture to rice-crayfish co-culture can mitigate GHG emissions and promote rice N uptake; however, continuously improving the productivity of co-culturing agriculture is key to achieving high N utilization efficiency and low environmental impact.


Subject(s)
Greenhouse Gases , Oryza , Animals , Greenhouse Gases/analysis , Astacoidea , Nitrogen , Soil , Methane/analysis , Nitrous Oxide/analysis , Agriculture/methods , Fertilizers/analysis
14.
Foods ; 12(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37835330

ABSTRACT

Zinc deficiency in rice can lead to reduced nutritional value and taste. This study investigates the potential of zinc oxide nanoparticles (ZnO NPs) as a foliar fertilizer during the jointing stage to improve rice yield, quality, and grain zinc enrichment. Over a two-year field experiment (2019-2020), six doses of ZnO NPs (ranging from 0 to 12 kg hm-2) were applied during the jointing stage (46 days after transplanting). The results revealed that foliar spraying of ZnO NPs increased the number of spikelets per spike and the thousand-grain weight by 7.4% to 9.2% and 4.2% to 7.1%, respectively, resulting in a substantial increase in rice yield. Furthermore, it led to a reduction in chalky white and chalky whiteness by 6.23% to 23.6% and 2.2% to 27.9%. ZnO NPs effectively boosted zinc content in rice grains while decreasing the phytic acid to zinc ratio, indicating improved zinc enrichment. Remarkably, protein and amylose content remained unaffected. These findings underscore the potential of ZnO NPs as a foliar fertilizer to enhance rice production, quality, and zinc enrichment. Further research can explore optimal application strategies and long-term effects for sustainable rice production.

15.
Plants (Basel) ; 12(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37653963

ABSTRACT

There is limited information available to assess the impact of one-time fertilization on the yield, quality, and economic benefits of direct-seeded rice. This study reports the effects of three one-time fertilizer treatments (BBU1, BBU2, and BBU3) on the yield, quality, and economic benefits of direct-seeded rice, where controlled-release nitrogen (N) fertilizer (CRNF) provided 50%, 60%, and 70% of the total N (270 kg N ha-1), and the control treatment (CK) was a split application of conventional urea (CU). The results showed that the yield of direct-seeded rice decreased significantly (p < 0.05) with the increased application ratio of CRNF under one-time fertilization, which was mainly related to N accumulation between the heading time and maturity stages. Compared to CK, the one-time fertilization treatments (BBU1, BBU2, and BBU3) maintained high milling quality, with significantly reduced chalkiness (p < 0.05), which could be related to the slow rate of N release from the CRNF. In addition, the one-time fertilization treatments reduced the protein content and increased the amylose content of the milled rice, which significantly improved the eating quality (p < 0.05). Furthermore, there was no significant difference in yield and economic benefit between BBUI and CK (p > 0.05). Overall, CRNF replacing conventional urea with 50% total N could be helpful to reduce fertilization frequency, achieve high yield and high economic efficiency, and improve rice quality of direct-seeded rice under one-time fertilization.

16.
Front Plant Sci ; 14: 1196201, 2023.
Article in English | MEDLINE | ID: mdl-37662145

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) have been widely used in agriculture as a new type of Zn fertilizer, and many studies were conducted to evaluate the effect of ZnO NPs on plant growth. However, there are relatively few studies on the effects of application methods and appropriate dosages of ZnO NPs on rice yield, quality, grain Zn content, and distribution. Therefore, in the 2019 and 2020, field trials were conducted with six ZnO NPs basal application dosages of no ZnO NPs, 3.75 kg hm-2, 7.5 kg hm-2, 15 kg hm-2, 30 kg hm-2, and 60 kg hm-2, and the effects of ZnO NPs application on rice yield, quality, grain Zn content, and distribution were investigated. The results demonstrated that applying ZnO NPs in Zn-deficient soils (available Zn < 1.0 mg kg-1) increased rice grain yield by 3.24%-4.86% and 3.51%-5.12% in 2019 and 2020, respectively. In addition, ZnO NPs improved the quality of rice by increasing the head milling rate, reducing chalky grain percentage, and increasing the taste value and breakdown of rice. In terms of Zn accumulation in rice, ZnO NPs application significantly increased the Zn content in both milled rice and brown rice, compared with no Zn treatment, in 2019 and 2020, Zn content in milled rice significantly increased by 20.46%-41.09% and 18.11%-38.84%, respectively, and in brown rice significantly increased by 25.78%-48.30% and 20.86%-42.00%, respectively. However, the Zn fertilizer utilization gradually decreased with increasing ZnO NPs application dosage. From the perspective of yield, rice quality, Zn fertilizer utilization, and Zn accumulation, basal application of 7.5 kg-30 kg hm-2 ZnO NPs is beneficial for rice yield and quality improvement and rice Zn accumulation. This study effectively demonstrated that ZnO NPs could be a potential high-performed fertilizer for enhancing rice yield, quality, and zinc content of edible grain fraction synergistically.

17.
Rice (N Y) ; 16(1): 36, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37599294

ABSTRACT

The search for an effective zinc fertilizer and its application method to effectively increase zinc content and enhance aroma in rice grains is a crucial objective. In this study, a 2-year field plot experiment was conducted to investigate the influence of ZnO NPs foliar spraying on rice quality, grain zinc and aroma content, along with exploring the physiological mechanisms underlying these effects. Our results demonstrated that the rice breakdown value and taste value of foliar spraying zinc oxide nanoparticles were improved by 31.0-41.7% and 8.2-13.0% compared with CK (control treatment involved spraying water), improving the tasting and steaming quality of rice. While Fe and Cu content in grains decreased for the application of zinc oxide nanoparticles, zinc oxide nanoparticles foliar spraying significantly increased the zinc content and accumulation of grains by 33.6-65.1% and 37.8-74.7%, respectively. Further analysis showed that the sprayed zinc oxide nanoparticles achieved effective enrichment of zinc in edible parts and increased the final bioavailability of Zn. In addition, foliar spraying of zinc oxide nanoparticles significantly increased activities of nitrate reductase and glutamine synthetase in leaves, which elevated nitrogen content in leaves and grains, and ultimately enhanced 2-acetyl-1-pyrroline (2-AP) content in grains at maturity by 6.1-21.4% compared to CK. Our findings indicated that zinc oxide nanoparticles can be practically applied as a foliar fertilizer at the gestation for quality improvement, zinc enrichment and aroma enhancement of rice grains.

18.
Food Chem X ; 18: 100720, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37397194

ABSTRACT

The correlation between flavonoids, phenolic metabolites and the total antioxidant capacity is well established. However, specific biomarkers of metabolites with antioxidant properties in purple rice grains remain unidentified. This study integrated nontargeted metabolomics, quantitative detection of flavonoids and phenolic compounds, and physiological and biochemical data to identify metabolite biomarkers of the antioxidant properties of purple rice grains after filling. The findings demonstrated a significant enhancement in the biosynthesis of flavonoids during the middle and late filling stages in purple rice grains. Additionally, the pathways involved in anthocyanin and flavonoid biosynthesis were significantly enriched. Catalase (CAT), phenylalanine ammonia-lyase (PAL), total phenols (TP), flavonoids (FD), and oligomeric proanthocyanidin (OPC) were significantly correlated with philorizin, myricetin 3-galactoside, and trilobatin. Phlorizin, myricetin 3-galactoside, and trilobatin were metabolite biomarkers of antioxidant properties in purple rice grains. This study provides new ideas for the cultivation of high-quality coloured rice varieties with high antioxidant activity.

19.
J Sci Food Agric ; 103(15): 7896-7904, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37486857

ABSTRACT

BACKGROUND: Rapeseed bee pollen has been recognized as a critical treatment for chronic non-bacterial prostatitis (CNP) and it also can modulate gut microbiota and improve gut health. This study aimed to explore the anti-prostatitis effects of rapeseed bee pollen with or without wall-disruption, and to investigate the connection between this treatment and gut microbiota. RESULTS: The results reveal that rapeseed bee pollen can effectively alleviate chronic non-bacteria prostatitis by selectively regulating gut microbiota, with higher doses and wall-disrupted pollen showing greater efficacy. Treatment with a high dose of wall-disrupted rapeseed bee pollen (WDH, 1.26 g kg-1 body weight) reduced prostate wet weight and prostate index by approximately 32% and 36%, respectively, nearly the levels observed in the control group. Wall-disrupted rapeseed bee pollen treatment also reduced significantly (p < 0.05) the expression of proinflammatory cytokines (IL-6, IL-8, IL-1ß, and TNF-α), as confirmed by immunofluorescence with laser scanning confocal microscope. Our results show that rapeseed bee pollen can inhibit pathogenic bacteria and enhance probiotics, particularly in the Firmicutes-to-Bacteroidetes (F/B) ratio and the abundance of Prevotella (genus). CONCLUSION: This is the first study to investigate the alleviation of CNP with rapeseed bee pollen through gut microbiota. These results seem to provide better understanding for the development of rapeseed bee pollen as a complementary medicine. © 2023 Society of Chemical Industry.


Subject(s)
Brassica napus , Brassica rapa , Gastrointestinal Microbiome , Prostatitis , Humans , Male , Bees , Animals , Prostatitis/drug therapy , Prostatitis/metabolism , Pollen/metabolism , Bacteria/genetics
20.
Foods ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372514

ABSTRACT

(1) Background: Propolis has attracted attention in recent years due to its important pharmacological effects. The present study aimed to investigate the botanical origins of 39 propolis samples and evaluate their antioxidant activities; (2) Methods: A HPLC-PDA system was used to analyze the phenolic compositions of propolis and poplar bud resin samples. The antioxidant activities of propolis samples were evaluated by oxygen radical absorption capacity (ORAC) and superoxide anion free radical scavenging capacity assay; (3) Results: Our study shows that 17 propolis samples were characterized by five predominant flavonoids, including 5-methoxy pinobanksin, pinobanksin, pinocembrin, pinobanksin-3-acetate, and chrysin, while 22 propolis samples were characterized by four flavonoids (pinobanksin, pinocembrin, pinobanksin-3-acetate, and chrysin). The average contents of characteristic flavonoids reached up to over 70% and 65% of total phenolics, respectively. Furthermore, the botanical origins of the two types of propolis samples were identified as Populus × euramericana cv. 'Neva' and Populus Simonii × P. nigra, respectively; (4) Conclusions: Most notably, our results reveal that these propolis samples presented excellent antioxidant activities due to their high contents of flavonoid. These flavonoid-rich propolis samples can thus be used to develop low-allergen and high-antioxidant nutraceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL
...