Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
iScience ; 27(9): 110775, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39286495

ABSTRACT

Histone lysine isonicotinylation (Kinic) induced by isoniazid (INH) was recently identified as a post-translational modification in cells. However, global cellular non-histone proteins Kinic remains unclear. Using proteomic technology, we identified 11,442 Kinic sites across 2,792 proteins and demonstrated that Kinic of non-histone proteins is involved in multiple function pathways. Non-histone proteins Kinic can be regulated by isonicotinyl-transferases, including CBP and Tip60, and deisonicotinylases, including HDAC8 and HDAC6. In particular, the Kinic of poly (ADP-ribose) (PAR) polymerase 1 (PARP1) can be catalyzed by CBP and deisonicotinylation can be catalyzed by HDAC8. Tip60 and HDAC6 are isonicotinyl-transferase and the deisonicotinylase of SMAD3, respectively. Importantly, we found the K378inic of SMAD3 increases its phosphorylation, activates TGFß pathway, and promotes liver cancer cells migration and invasion. In conclusion, our study demonstrated non-histone proteins Kinic occur extensively in cells and plays an important role in regulation of various cellular functions, including cancer progression.

2.
Biosens Bioelectron ; 266: 116720, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39241338

ABSTRACT

Quantification of trace amounts of proteins is technically challenging because proteins cannot be directly amplified like nucleic acids. To improve the analytical sensitivity and to complement conventional protein analysis methods, we developed a highly sensitive and homogeneous detection strategy called Protein-Induced DNA Dumbbell Amplification (PINDA). PINDA combines protein recognition with exponential nucleic acid amplification by using protein binding probes made of DNA strands conjugated to protein affinity ligands. When a pair of probes bind to the same target protein, complementary nucleic acid sequences that are conjugated to each probe are brought into close proximity. The increased local concentration of the probes results in the formation of a stable dumbbell structure of the nucleic acids. The DNA dumbbell is readily amplifiable exponentially using techniques such as loop-mediated isothermal amplification. The PINDA assay eliminates the need for washing or separation steps, and is suitable for on-site applications. Detection of the model protein, thrombin, has a linear range of 10 fM-100 pM and detection limit of 10 fM. The PINDA technique is successfully applied to the analysis of dairy samples for the detection of ß-lactoglobulin, a common food allergen, and Salmonella enteritidis, a foodborne pathogenic bacterium. The PINDA assay can be easily modified to detect other targets by changing the affinity ligands used to bind to the specific targets.


Subject(s)
Biosensing Techniques , DNA , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Biosensing Techniques/methods , DNA/chemistry , DNA/genetics , Salmonella enteritidis/isolation & purification , Salmonella enteritidis/genetics , Thrombin/analysis , Limit of Detection , Lactoglobulins/analysis , Lactoglobulins/chemistry , Food Contamination/analysis , Humans , Animals , Food Analysis/methods , Milk/chemistry , Milk/microbiology , Food Microbiology
3.
Mol Neurobiol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312071

ABSTRACT

In this study, we explored the potential application of [d-Ala2, d-Leu5]-enkephalin (DADLE) in anti-ageing field in response to the trend of increasing global population ageing. We aimed to reveal experimentally whether DADLE can positively affect the lifespan and health of aged mammals through its unique anti-inflammatory or metabolic mechanisms. Forty-two female C57/BL6J mice aged 18 months were intraperitoneally injected with DADLE or normal saline for 2 months. Cognitive and motor functions were assessed using a water maze and treadmill stress test, respectively. The expressions of P16INK4A, Lamin B1 and sirtuin 1 were observed in the hippocampus and heart. The level of pro-inflammatory cytokines in the serum was measured by enzyme-linked immunosorbent assay. The telomere length of the mice was determined using the polymerase chain reaction method. Transcriptome analysis of 6-month-old female C57BL/6 J mice brains and hearts was assessed for body weight effects. Supplementation of exogenous DADLE to aged mice has demonstrated significant benefits, including improved motor function, enhanced cognitive performance and significantly extended lifespan. DADLE treatment resulted in a substantial increase in anti-ageing markers and a corresponding decrease in pro-ageing markers in the heart and brain of these mice. DADLE attenuated age-related inflammation, as evidenced by reductions in serum pro-inflammatory cytokines and inflammatory cell infiltration in tissues. Furthermore, DADLE supplementation significantly prolonged relative telomere length in aged female mice, suggesting a potential mechanism for its anti-ageing effects. Transcriptome analysis revealed that immune response and cellular signalling pathways are intricately involved in the protective effects of DADLE in aged mice, providing further insights into its mechanism of action. Inflammatory reaction may be improved by DADLE by regulating the infiltration of inflammatory cells in the liver and kidney and regulating the cognitive function of the brain and the ageing of the heart in mice.

4.
Sci Rep ; 14(1): 18469, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122748

ABSTRACT

Endothelial progenitor cells (EPCs) play a crucial role in maintaining vascular health and aiding in the repair of damaged blood vessels. However, the specific impact of EPCs-derived exosomes on vascular endothelial cell injury caused by lipopolysaccharide (LPS) remains inadequately understood. This study aims to explore the potential benefits of EPC-exosomes in mitigating LPS-induced vascular injury and to elucidate the underlying mechanism. Initially, EPCs were isolated from mouse peripheral blood, and their identity was confirmed through flow cytometry and immunocytochemistry. Subsequently, the exosomes derived from EPCs were identified using transmission electron microscopy (TEM) and western blot analysis. A sepsis model was induced by subjecting brain microvascular endothelial cells (BMECs) to LPS-induced injury. Both EPC and their exosomes demonstrated a significant increase in BMECs proliferation, reduced apoptosis, decreased levels of pro-inflammatory factors (TNF-α, IL-6, and caspase-3), and enhanced sprouting and angiogenesis of BMECs. Notable, the Exosomes demonstrated a more pronounced impact on these parameters. Furthermore, both EPCs and Exosomes exhibited significantly increased levels of miR-126a-5p, with the Exosomes showing a more substantial enhancement. These findings suggest that supplementing exosomal miR-126a-5p from EPCs can provide protective effects on BMECs, offering a potential therapeutic option for treating sepsis-induced microvascular endothelial cell injury.


Subject(s)
Brain , Endothelial Cells , Endothelial Progenitor Cells , Exosomes , Lipopolysaccharides , MicroRNAs , Exosomes/metabolism , Animals , Endothelial Progenitor Cells/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Lipopolysaccharides/toxicity , Mice , Brain/metabolism , Brain/pathology , Endothelial Cells/metabolism , Apoptosis , Cell Proliferation , Microvessels/metabolism , Male , Sepsis/metabolism , Mice, Inbred C57BL
5.
Sci China Life Sci ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096338

ABSTRACT

METTL3 methylates RNA and regulates the fate of mRNA through its methyltransferase activity. METTL3 enhances RNA translation independently of its catalytic activity. However, the underlying mechanism is still elusive. Here, we report that METTL3 is both interacted with and acetylated at lysine 177 by the acetyltransferase PCAF and deacetylated by SIRT3. Neither the methyltransferase activity nor the stability of METTL3 is affected by its acetylation at K177. Importantly, acetylation of METTL3 blocks its interaction with EIF3H, a subunit of the translation initiation factor, thereby reducing mRNA translation efficiency. Interestingly, acetylation of METTL3 responds to oxidative stress. Mechanistically, oxidative stress enhances the interaction of PCAF with METTL3, increases METTL3 acetylation, and suppresses the interaction of METTL3 with EIF3H, thereby decreasing the translation efficiency of ribosomes and inhibiting cell proliferation. Altogether, we suggest a mechanism by which oxidative stress regulates RNA translation efficiency by the modulation of METTL3 acetylation mediated by PCAF.

6.
Sci Rep ; 14(1): 19110, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154060

ABSTRACT

Predicting the capacity of lithium-ion battery (LIB) plays a crucial role in ensuring the safe operation of LIBs and prolonging their lifespan. However, LIBs are easily affected by environmental interference, which may impact the precision of predictions. Furthermore, interpretability in the process of predicting LIB capacity is also important for users to understand the model, identify issues, and make decisions. In this study, an interpretable method considering environmental interference (IM-EI) for predicting LIB capacity is introduced. Spearman correlation coefficients, interpretability principles, belief rule base (BRB), and interpretability constraints are used to improve the prediction precision and interpretability of IM-EI. Dynamic attribute reliability is introduced to minimize the effect of environmental interference. The experimental results show that IM-EI model has good interpretability and high precision compared to the other models. Under interference conditions, the model still has good precision and robustness.

7.
ACS Meas Sci Au ; 4(4): 459-466, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39184356

ABSTRACT

DNA glycosylase dysregulation is implicated in carcinogenesis and therapeutic resistance of cancers. Thus, various DNA-based detection platforms have been developed by leveraging the base excision activity of DNA glycosylases. However, the efficacy of DNA-based methods is hampered due to nonspecific degradation by nucleases commonly present in cancer cells and during preparations of cell lysates. In this report, we describe a fluorescence-based assay using a specific and nuclease-resistant three-dimensional DNAzyme walker to investigate the activity of DNA glycosylases from cancer cell lysates. We focus on DNA glycosylases that excise uracil from deoxyuridine (dU) lesions, namely, uracil DNA glycosylase (UDG) and single-stranded monofunctional uracil DNA glycosylase (SMUG1). The limits of detection for detecting UDG and SMUG1 in the buffer were 3.2 and 3.0 pM, respectively. The DNAzyme walker detected uracil excision activity in diluted cancer cell lysate from as few as 48 A549 cells. The results of the UDG inhibitor experiments demonstrate that UDG is the predominant uracil-excising glycosylase in A549 cells. Approximately 500 nM of UDG is present in each A549 cell on average. No fluorescence was generated in the samples lacking DNAzyme activation, indicating that there was no nonspecific nuclease interference. The ability of the DNAzyme walker to respond to glycosylase activity illustrates the potential use of DNAzyme walker technology to monitor and study biochemical processes involving glycosylases.

8.
J Am Chem Soc ; 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183441

ABSTRACT

Active clustered regularly interspaced short palindromic repeats (CRISPR/Cas12a) systems possess both cis-cleavage (targeted) and trans-cleavage (collateral) activities, which are useful for genome engineering and diagnostic applications. Both single- and double-stranded DNA can activate crRNA-Cas12a ribonucleoprotein (RNP) to achieve cis- and trans-cleavage enzymatic activities. However, it is not clear whether RNA can activate the CRISPR/Cas12a system and what is critical to the trans-cleavage activity. We report here that RNA can activate the CRISPR/Cas12a system and trigger its trans-cleavage activity. We reveal that the activated crRNA-Cas12a RNP favors the trans-cleavage of longer sequences than commonly used. These new findings of the RNA-activated trans-cleavage capability of Cas12a provided the foundation for the design and construction of CRISPR nanorobots that operate in living cells. We assembled the crRNA-Cas12a RNP and nucleic acid substrates on gold nanoparticles to form CRISPR nanorobots, which dramatically increased the local effective concentration of the substrate in relation to the RNP and the trans-cleavage kinetics. Binding of the target microRNA to the crRNA-Cas12a RNP activated the nanorobots and their trans-cleavage function. The repeated (multiple-turnover) trans-cleavage of the fluorophore-labeled substrates generated amplified fluorescence signals. Sensitive and real-time imaging of specific microRNA in live cells demonstrated the promising potential of the CRISPR nanorobot system for future applications in monitoring and modulating biological functions within living cells.

9.
Oncol Rep ; 52(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963043

ABSTRACT

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that there appeared to be two instances of overlapping data panels comparing between the cell migration and invasion assay data shown in Figs. 4 and 6 on p. 143 and 145, respectively, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original sources. In addition, the authors themselves realized that incorrect western blotting data for Snail protein in Fig. 10A on p. 147 had been included in the figure.  The authors were able to re­examine their original data files, and realized that the affected data panels in these figures had inadvertently been incorporated into them incorrectly. The revised versions of Figs. 4, 6, and 10, featuring the correct data for the 'NC / Control' panels in Fig. 4B and C and the 'siRNA2 / ATP 12 h' panels in Fig. 4A and B, a replacement data panel for the 'siRNA1 / Control' experiment in Fig. 6, and the correct western blotting data for Snail protein in Fig. 10A (together with a revised histogram for the MCF7 cell line relating to Fig. 10A) are shown on the next three pages. The authors wish to emphasize that the errors made in compiling these figures did not affect the overall conclusions reported in the paper, and they are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this corrigendum. All the authors agree to the publication of this corrigendum, and also apologize to the readership for any inconvenience caused. [Oncology Reports 39: 138­150, 2018; DOI: 10.3892/or.2017.6081].

10.
Sci Adv ; 10(27): eadk8958, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959315

ABSTRACT

The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.


Subject(s)
Epithelial Cells , Receptors, Notch , Signal Transduction , Animals , Epithelial Cells/metabolism , Female , Receptors, Notch/metabolism , Humans , Mice , Cell Lineage , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
11.
Front Nutr ; 11: 1370286, 2024.
Article in English | MEDLINE | ID: mdl-38887500

ABSTRACT

Nutritional support is crucial for the prognosis of children supported by extracorporeal membrane oxygenation (ECMO). This article discusses the latest research progress and guideline recommendations for nutritional support during ECMO. We summarize the nutritional status and evaluation of ECMO patients, nutritional support methods and timing, trace elements, the impact of continuous renal replacement therapy (CRRT), and energy requirements and algorithms. The article shows that malnutrition is high in ECMO patients compared to other critically ill patients, with nearly one-third of patients experiencing a decrease in nutritional indicators. The timing of the initiation of nutrition is very important for the nutritional status of the child. Early enteral nutrition can improve patient prognosis, which is the most commonly used, with parenteral nutrition as a supplement. However, the proportion of enteral nutrition is relatively low, and a stepwise nutrition algorithm can determine when to initiate early enteral nutrition and parenteral nutrition. Malnourishment during critical illness have been associated with increased morbidity as well as increased mortality. Nutritional status should be evaluated at admission by screening tools. In addition, changes in the levels of several metabolites in vivo, such as blood lipids, carnitine, and thiamine, can also reflect the degree of nutritional deficiency in critically ill children. This article provides a reference for the implementation of nutrition of pediatric ECMO patients and further research on nutritional support.

12.
Biosens Bioelectron ; 260: 116429, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38838573

ABSTRACT

Developing highly sensitive and specific on-site tests is imperative to strengthen preparedness against future emerging infectious diseases. Here, we describe the construction of a Cas12a-mediated DNAzyme actuator capable of converting the recognition of a specific DNA sequence into an amplified colorimetric signal. To address viral RNA extraction challenges for on-site applications, we developed a rapid and efficient method capable of lysing the viral particles, preserving the released viral RNA, and concentrating the viral RNA. Integration of the DNAzyme actuator with the viral RNA extraction method and loop-mediated isothermal amplification enables a streamlined colorimetric assay for highly sensitive colorimetric detection of respiratory RNA viruses in gargle and saliva. This assay can detect as few as 83 viral particles/100 µL in gargle and 166 viral particles/100 µL in saliva. The entire assay, from sample processing to visual detection, was completed within 1 h at a single controlled temperature. We validated the assay by detecting SARS-CoV-2 in 207 gargle and saliva samples, achieving a clinical sensitivity of 96.3 % and specificity of 100%. The assay is adaptable for detecting specific nucleic acid sequences in other pathogens and is suitable for resource-limited settings.


Subject(s)
Biosensing Techniques , Colorimetry , DNA, Catalytic , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Saliva , Colorimetry/methods , RNA, Viral/isolation & purification , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , DNA, Catalytic/chemistry , Biosensing Techniques/methods , Saliva/virology , Saliva/chemistry , Humans , Nucleic Acid Amplification Techniques/methods , COVID-19/virology , COVID-19/diagnosis , CRISPR-Associated Proteins/isolation & purification , CRISPR-Associated Proteins/chemistry , Endodeoxyribonucleases/chemistry , Limit of Detection , Feces/virology , Feces/chemistry , Bacterial Proteins , Molecular Diagnostic Techniques
13.
Chem Asian J ; 19(15): e202400195, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38751300

ABSTRACT

In this study, we have successfully designed and synthesized two novel dual-emission emitters featuring phenothiazine-5-oxide and phenothiazine-5,5-dioxide motifs, characterized by highly lopsided and asymmetric conformational states. Through rigorous spectral examinations and DFT calculations, the compounds exhibit distinctive ICT phenomena, coupled with efficient emission in solid states and AIEE characteristics under high water fractions in DMF/H2O mixtures. These non-planar luminogens exhibit vibrant green and blue solid-state luminescence, with fluorescence quantum yields of 24.1 % and 15.21 %, respectively. Additionally, they both emit green fluorescence in THF solution, with notable emission quantum yields (QYs) 36.4 % and 30.4 %. Comprehensive theoretical investigations unveil well-defined electron cloud density separation between the energies of HOMO/LUMO levels within the two luminogens. Notably, the targeted molecule harboring the phenothiazine-S,S-dioxide motif also demonstrates remarkable reversible mechanofluorochromic properties. Moreover, we testify their potential in applications such as solid-state rewritable information storage and live-cell imaging in solution states. Through theoretical calculations and comparative studies, we have explored the intrinsic relationship between molecular structure and performance, effectively screening and identifying new fluorescent molecules exhibiting outstanding luminescent attributes. These discoveries establish a robust theoretical and technical foundation for the synthesis and application of efficient DSE-based MFC materials, opening new avenues in the realm of advanced luminescent materials.

14.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627785

ABSTRACT

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Subject(s)
Mammary Neoplasms, Animal , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Mice , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , DNA Damage , DNA Repair , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
15.
Angew Chem Int Ed Engl ; 63(22): e202404069, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38526321

ABSTRACT

Activation of the CRISPR-Cas13a system requires the formation of a crRNA-Cas13a ribonucleoprotein (RNP) complex and the binding of an RNA activator to the RNP. These two binding processes play a crucial role in the performance of the CRISPR-Cas13a system. However, the binding kinetics remain poorly understood, and a main challenge is the lack of a sensitive method for real-time measurements of the dynamically formed active CRISPR-Cas13a enzyme. We describe here a new method to study the binding kinetics and report the rate constants (kon and koff) and dissociation constant (Kd) for the binding between Cas13a and its activator. The method is able to unravel and quantify the kinetics of binding and cleavage separately, on the basis of measuring the real-time trans-cleavage rates of the CRISPR-Cas system and obtaining the real-time concentrations of the active CRISPR-Cas ternary complex. We further discovered that once activated, the Cas13a system operates at a wide range of temperatures (7-37 °C) with fast trans-cleavage kinetics. The new method and findings are important for diverse applications of the Cas13a system, such as the demonstrated quantification of microRNA at ambient temperatures (e.g., 25 °C).


Subject(s)
CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Kinetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics
16.
Mol Psychiatry ; 29(5): 1253-1264, 2024 May.
Article in English | MEDLINE | ID: mdl-38228891

ABSTRACT

The pathophysiology of autism spectrum disorders (ASDs) is causally linked to postsynaptic scaffolding proteins, as evidenced by numerous large-scale genomic studies [1, 2] and in vitro and in vivo neurobiological studies of mutations in animal models [3, 4]. However, due to the distinct phenotypic and genetic heterogeneity observed in ASD patients, individual mutation genes account for only a small proportion (<2%) of cases [1, 5]. Recently, a human genetic study revealed a correlation between de novo variants in FERM domain-containing-5 (FRMD5) and neurodevelopmental abnormalities [6]. In this study, we demonstrate that deficiency of the scaffolding protein FRMD5 leads to neurodevelopmental dysfunction and ASD-like behavior in mice. FRMD5 deficiency results in morphological abnormalities in neurons and synaptic dysfunction in mice. Frmd5-deficient mice display learning and memory dysfunction, impaired social function, and increased repetitive stereotyped behavior. Mechanistically, tandem mass tag (TMT)-labeled quantitative proteomics revealed that FRMD5 deletion affects the distribution of synaptic proteins involved in the pathological process of ASD. Collectively, our findings delineate the critical role of FRMD5 in neurodevelopment and ASD pathophysiology, suggesting potential therapeutic implications for the treatment of ASD.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Membrane Proteins , Neurodevelopmental Disorders , Animals , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Neurons/metabolism , Behavior, Animal/physiology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Mice, Knockout , Autistic Disorder/genetics , Autistic Disorder/metabolism , Mice, Inbred C57BL , Social Behavior , Stereotyped Behavior , Synapses/metabolism , Female
17.
Neuroscience ; 541: 14-22, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38280511

ABSTRACT

Innate defensive behavior is important for animal survival. The Vglut2+ neurons in the ventral tegmental area (VTA) have been demonstrated to play important roles in innate defensive behaviors, but the neural circuit mechanism is still unclear. Here, we find that VTA - zona incerta (ZI) glutamatergic projection is involved in regulating innate fear responses. Combining calcium signal recording and chemogentics, we find that VTA-Vglut2+ neurons respond to foot shock stimulus. Inhibition of VTA-Vglut2+ neurons reduces foot shock-evoked freezing, while chemogentic activation of these neurons results in an enhanced fear response. Using viral tracing and immunofluorescence, we show that VTA - Vglut2+ neurons send direct excitatory outputs to the ZI. Moreover, we find that the activity of VTAVglut2 - ZI projection is pivotal in modulating fear response. Together, our study reveals a new VTA - ZI glutamatergic circuit in mediating innate fear response and provides a potential target for treating post-traumatic stress disorder.


Subject(s)
Ventral Tegmental Area , Zona Incerta , Animals , Ventral Tegmental Area/physiology , Neurons/physiology , Fluorescent Antibody Technique , Fear/physiology
19.
Cancer Lett ; 582: 216526, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38061486

ABSTRACT

Smad3 is the key mediator of TGF-ß1-triggered signal transduction and the related biological responses, promoting cell invasion and metastasis in various cancers, including lung cancer. However, the deubiquitinase stabilizing Smad3 remains unknown. In this study, we present a paradigm in which POH1 is identified as a novel deubiquitinase of Smad3 that plays a tumor-promoting role in lung adenocarcinoma (LUAD) by regulating Smad3 stability. POH1 markedly increased Smad3 protein levels and prolonged its half-life. POH1 directly interacted and colocalized with Smad3, leading to the removal of poly-deubiquitination of Smad3. Functionally, POH1 facilitated cell proliferation, migration, and invasion by stabilizing Smad3. Importantly, POH1 also promoted liver metastasis of lung cancer cells. The protein levels of both POH1 and Smad3 were raised in the tumor tissues of patients with LUAD, which predicts poor prognosis. Collectively, we demonstrate that POH1 acts as an oncoprotein by enhancing TGF-ß1/Smad3 signaling and TGF-ß1-mediated metastasis of lung cancer.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Transforming Growth Factor beta1/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Cell Line, Tumor , Adenocarcinoma of Lung/genetics , Deubiquitinating Enzymes/metabolism , Cell Movement
20.
Life Sci ; 338: 122389, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38160786

ABSTRACT

AIMS: Cancer remains a significant global public health issue. There is growing proof that Ring Finger Protein 186 (RNF186) may play a function in pan-cancer, however, this has not yet been thoroughly determined. This study aims to analyze RNF186 with potential implications in progression and prognosis in human cancer. MATERIALS AND METHODS: A comprehensive bioinformatics approaches combined with experimental verification were used across 33 types of cancers in this study to conduct a pan-cancer investigation of RNF186 from the perspectives of gene expression, prognosis, genomic alterations, immunological markers, gene set, and function. KEY FINDINGS: RNF186 is a valuable prognostic biomarker in several cancer types, especially breast invasive carcinoma (BRCA) and uterine corpus endometrial carcinoma (UCEC). The levels of RNF186 promoter methylation and genetic alterations may be responsible for some cancers' abnormal expression. Furthermore, RNF186 expression was determined to be associated with immune checkpoint genes. Analysis of RNF186-related genes revealed that proteasome and PI3K-AKT signaling pathway were primarily involved in the cellular function of RNF186. Additionally, our research first confirmed that RNF186 may function as an oncogene and contribute to cancer proliferation, migration and invasion in UCEC. In contrast, RNF186 may play an inhibitory role in BRCA progression. This function depends on the ligase activity of RNF186. SIGNIFICANCE: This study suggests that RNF186 is a novel critical target for tumor progression in BRCA and UCEC. It reveals that RNF186 may be associated with tumor immunotherapy, which may provide an effective predictive evaluation of the prognosis of immunotherapy.


Subject(s)
Breast Neoplasms , Carcinoma , Humans , Female , Phosphatidylinositol 3-Kinases , Oncogenes , Breast , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL