Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters










Publication year range
1.
Small ; 20(20): e2308680, 2024 May.
Article in English | MEDLINE | ID: mdl-38225709

ABSTRACT

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Subject(s)
Brain-Gut Axis , Diabetes Mellitus, Type 2 , Exosomes , Garlic , Gastrointestinal Microbiome , Nanoparticles , Diabetes Mellitus, Type 2/metabolism , Garlic/chemistry , Animals , Nanoparticles/chemistry , Exosomes/metabolism , Mice , Akkermansia , Humans , Male , Diet, High-Fat , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology
2.
iScience ; 26(5): 106630, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37192973

ABSTRACT

Natural IL-17-producing γδ T cells (γδT17 cells) are unconventional innate-like T cells that undergo functional programming in the fetal thymus. However, the intrinsic metabolic mechanisms of γδT17 cell development remain undefined. Here, we demonstrate that mTORC2, not mTORC1, selectively controls the functional fate commitment of γδT17 cells through regulating transcription factor c-Maf expression. scRNA-seq data suggest that fetal and adult γδT17 cells predominately utilize mitochondrial metabolism. mTORC2 deficiency results in impaired Drp1-mediated mitochondrial fission and mitochondrial dysfunction characterized by mitochondrial membrane potential (ΔΨm) loss, reduced oxidative phosphorylation (OXPHOS), and subsequent ATP depletion. Treatment with the Drp1 inhibitor Mdivi-1 alleviates imiquimod-induced skin inflammation. Reconstitution of intracellular ATP levels by ATP-encapsulated liposome completely rescues γδT17 defect caused by mTORC2 deficiency, revealing the fundamental role of metabolite ATP in γδT17 development. These results provide an in-depth insight into the intrinsic link between the mitochondrial OXPHOS pathway and γδT17 thymic programming and functional acquisition.

3.
J Extracell Vesicles ; 12(2): e12307, 2023 02.
Article in English | MEDLINE | ID: mdl-36754903

ABSTRACT

Extracellular vesicles (EVs) contain more than 100 proteins. Whether there are EVs proteins that act as an 'organiser' of protein networks to generate a new or different biological effect from that identified in EV-producing cells has never been demonstrated. Here, as a proof-of-concept, we demonstrate that EV-G12D-mutant KRAS serves as a leader that forms a protein complex and promotes lung inflammation and tumour growth via the Fn1/IL-17A/FGF21 axis. Mechanistically, in contrast to cytosol derived G12D-mutant KRAS complex from EVs-producing cells, EV-G12D-mutant KRAS interacts with a group of extracellular vesicular factors via fibronectin-1 (Fn1), which drives the activation of the IL-17A/FGF21 inflammation pathway in EV recipient cells. We show that: (i), depletion of EV-Fn1 leads to a reduction of a number of inflammatory cytokines including IL-17A; (ii) induction of IL-17A promotes lung inflammation, which in turn leads to IL-17A mediated induction of FGF21 in the lung; and (iii) EV-G12D-mutant KRAS complex mediated lung inflammation is abrogated in IL-17 receptor KO mice. These findings establish a new concept in EV function with potential implications for novel therapeutic interventions in EV-mediated disease processes.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Pneumonia , Mice , Animals , Interleukin-17/metabolism , Interleukin-17/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mutant Proteins/metabolism , Mutant Proteins/therapeutic use , Extracellular Vesicles/metabolism , Lung Neoplasms/drug therapy , Pneumonia/genetics
4.
Exp Neurol ; 362: 114325, 2023 04.
Article in English | MEDLINE | ID: mdl-36669750

ABSTRACT

Radial glial cells (RGCs) play a pivotal role in cerebral cortical development by functioning as a source of new neurons and by supporting the migration of newborn neurons. These functions are primarily dependent on the apical-basolateral structures of radial glial processes. This study aims to investigate the effects of ethanol exposure on the development of radial glial processes and the generation, migration, and transformation of outer radial glial cells (oRGCs). For this purpose, forebrain organoids were developed from human embryonic stem cells. These forebrain organoids contain abundant neural progenitor cells (SOX2+), express high levels of neural epithelial markers ß-catenin and PKCλ, and dorsal forebrain marker PAX6, and display well-organized cortical architectures containing abundant apical and basal RGCs, intermediate progenitors (IPCs), and neurons. Exposure of forebrain organoids to ethanol resulted in a significant increase in apoptosis in Nestin-positive radial glial cells. Ethanol exposure also remarkably decreased the levels of radial glial process-associated proteins, including Nestin, GFAP, and Vimentin, in radial glial cells and distinctly impaired the integrity and morphologies of radial glial processes. In addition, the ethanol-induced impairment of the radial glial processes is associated with decreased migration and proliferation of radial glial cells, reduction in the generation of HOPX+ oRGCs, and the accelerated transformation of oRGCs into astrocytes. These results demonstrate that ethanol exposure can disrupt cerebral cortex development by impairing the formation of radial glial processes and the generation, migration, and transformation of oRGCs.


Subject(s)
Ependymoglial Cells , Human Embryonic Stem Cells , Infant, Newborn , Humans , Nestin/metabolism , Neuroglia/metabolism , Ethanol/pharmacology , Human Embryonic Stem Cells/metabolism , Cerebral Cortex/metabolism
5.
Nat Immunol ; 24(2): 239-254, 2023 02.
Article in English | MEDLINE | ID: mdl-36604547

ABSTRACT

Metastasis is the leading cause of cancer-related deaths and myeloid cells are critical in the metastatic microenvironment. Here, we explore the implications of reprogramming pre-metastatic niche myeloid cells by inducing trained immunity with whole beta-glucan particle (WGP). WGP-trained macrophages had increased responsiveness not only to lipopolysaccharide but also to tumor-derived factors. WGP in vivo treatment led to a trained immunity phenotype in lung interstitial macrophages, resulting in inhibition of tumor metastasis and survival prolongation in multiple mouse models of metastasis. WGP-induced trained immunity is mediated by the metabolite sphingosine-1-phosphate. Adoptive transfer of WGP-trained bone marrow-derived macrophages reduced tumor lung metastasis. Blockade of sphingosine-1-phosphate synthesis and mitochondrial fission abrogated WGP-induced trained immunity and its inhibition of lung metastases. WGP also induced trained immunity in human monocytes, resulting in antitumor activity. Our study identifies the metabolic sphingolipid-mitochondrial fission pathway for WGP-induced trained immunity and control over metastasis.


Subject(s)
Lung Neoplasms , beta-Glucans , Animals , Mice , Humans , Trained Immunity , Macrophages , Lysophospholipids/metabolism , Monocytes , Lung Neoplasms/pathology , beta-Glucans/metabolism , beta-Glucans/pharmacology , Tumor Microenvironment
6.
Hepatology ; 77(4): 1164-1180, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35689610

ABSTRACT

BACKGROUND AND AIMS: Intestinal farnesoid X receptor (FXR) plays a critical role in alcohol-associated liver disease (ALD). We aimed to investigate whether alcohol-induced dysbiosis increased intestinal microRNA194 (miR194) that suppressed Fxr transcription and whether Lactobacillus rhamnosus GG-derived exosome-like nanoparticles (LDNPs) protected against ALD through regulation of intestinal miR194-FXR signaling in mice. APPROACH AND RESULTS: Binge-on-chronic alcohol exposure mouse model was utilized. In addition to the decreased ligand-mediated FXR activation, alcohol feeding repressed intestinal Fxr transcription and increased miR194 expression. This transcriptional suppression of Fxr by miR194 was confirmed in intestinal epithelial Caco-2 cells and mouse enteriods. The alcohol feeding-reduced intestinal FXR activation was further demonstrated by the reduced FXR reporter activity in fecal samples and by the decreased fibroblast growth factor 15 (Fgf15) messenger RNA (mRNA) in intestine and protein levels in the serum, which caused an increased hepatic bile acid synthesis and lipogeneses. We further demonstrated that alcohol feeding increased-miR194 expression was mediated by taurine-upregulated gene 1 (Tug1) through gut microbiota regulation of taurine metabolism. Importantly, 3-day oral administration of LDNPs increased bile salt hydrolase (BSH)-harboring bacteria that decreased conjugated bile acids and increased gut taurine concentration, which upregulated Tug1, leading to a suppression of intestinal miR194 expression and recovery of FXR activation. Activated FXR upregulated FGF15 signaling and subsequently reduced hepatic bile acid synthesis and lipogenesis and attenuated ALD. These protective effects of LDNPs were eliminated in intestinal FxrΔIEC and Fgf15-/- mice. We further showed that miR194 was upregulated, whereas BSH activity and taurine levels were decreased in fecal samples of patients with ALD. CONCLUSIONS: Our results demonstrated that gut microbiota-mediated miR194 regulation contributes to ALD pathogenesis and to the protective effects of LDNPs through modulating intestinal FXR signaling.


Subject(s)
Liver Diseases, Alcoholic , MicroRNAs , Animals , Humans , Mice , Bile Acids and Salts/metabolism , Caco-2 Cells , Ethanol/pharmacology , Liver/pathology , Liver Diseases, Alcoholic/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Taurine/pharmacology , Nanoparticles
7.
Cell Host Microbe ; 30(7): 944-960.e8, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35654045

ABSTRACT

The intestinal microbiome releases a plethora of small molecules. Here, we show that the Ruminococcaceae metabolite isoamylamine (IAA) is enriched in aged mice and elderly people, whereas Ruminococcaceae phages, belonging to the Myoviridae family, are reduced. Young mice orally administered IAA show cognitive decline, whereas Myoviridae phage administration reduces IAA levels. Mechanistically, IAA promotes apoptosis of microglial cells by recruiting the transcriptional regulator p53 to the S100A8 promoter region. Specifically, IAA recognizes and binds the S100A8 promoter region to facilitate the unwinding of its self-complementary hairpin structure, thereby subsequently enabling p53 to access the S100A8 promoter and enhance S100A8 expression. Thus, our findings provide evidence that small molecules released from the gut microbiome can directly bind genomic DNA and act as transcriptional coregulators by recruiting transcription factors. These findings further unveil a molecular mechanism that connects gut metabolism to gene expression in the brain with implications for disease development.


Subject(s)
Bacteriophages , Cognitive Dysfunction , Gastrointestinal Microbiome , Amines , Animals , Bacteria , Bacteriophages/genetics , Humans , Mice , Microglia , Tumor Suppressor Protein p53
8.
Theranostics ; 12(3): 1220-1246, 2022.
Article in English | MEDLINE | ID: mdl-35154484

ABSTRACT

Background: Obesity is becoming a global epidemic and reversing the pathological processes underlying obesity and metabolic co-morbidities is challenging. Obesity induced chronic inflammation including brain inflammation is a hallmark of obesity via the gut-brain axis. The objective of this study was to develop garlic exosome-like nanoparticles (GaELNs) that inhibit systemic as well as brain inflammatory activity and reverse a HFD induced obesity in mice. Methods: GELNs were isolated and administrated orally into HFD fed mice. GaELNs were fluorescent labeled for monitoring their in vivo trafficking route after oral administration and quantified the number particles in several tissues. The brain inflammation was determined by measuring inflammatory cytokines by ELISA and real-time PCR. Mitochondrial membrane permeability of microglial cells was determined using JC-10 fluorescence dye. The in vivo apoptotic cell death was quantified by TUNEL assay. The brain metabolites were identified and quantified by LC-MS analysis. Memory function of the mice was determined by several memory functional analysis. The effect of GaELNs on glucose and insulin response of the mice was determined by glucose and insulin tolerance tests. c-Myc localization and interaction with BASP1 and calmodulin was determined by confocal microscopy. Results: Our results show that GaELNs is preferentially taken up microglial cells and inhibits the brain inflammation in HFD mice. GaELN phosphatidic acid (PA) (36:4) is required for the uptake of GaELNs via interaction with microglial BASP1. Formation of the GaELNs/BASP1 complex is required for inhibition of c-Myc mediated expression of STING. GaELN PA binds to BASP1, leading to inhibition of c-Myc expression and activity through competitively binding to CaM with c-Myc transcription factor. Inhibition of STING activity leads to reducing the expression of an array of inflammatory cytokines including IFN-γ and TNF-α. IFN-γ induces the expression of IDO1, which in turn the metabolites generated as IDO1 dependent manner activate the AHR pathway that contributes to developing obesity. The metabolites derived from the GaELNs treated microglial cells promote neuronal differentiation and inhibit mitochondrial mediated neuronal cell death. GaELNs treated HFD mice showed improved memory function and increased glucose tolerance and insulin sensitivity in these mice. Conclusion: Collectively, these results demonstrate how nanoparticles from a healthy diet can inhibit unhealthy high-fat diet induced brain inflammation and reveal a link between brain microglia/diet to brain inflammatory disease outcomes via diet-derived exosome-like nanoparticles.


Subject(s)
Encephalitis , Garlic , Nanoparticles , Animals , Antioxidants , Brain/metabolism , Cytokines/metabolism , Diet, High-Fat/adverse effects , Garlic/metabolism , Glucose , Inflammation/metabolism , Insulin , Mice , Mice, Inbred C57BL , Obesity/metabolism
9.
Theranostics ; 12(3): 1388-1403, 2022.
Article in English | MEDLINE | ID: mdl-35154496

ABSTRACT

Rationale: The obesity epidemic has expanded globally, due in large part to the increased consumption of high-fat diets (HFD), and has increased the risk of major chronic diseases, including type 2 diabetes. Diet manipulation is the foundation of prevention and treatment of obesity and diabetes. The molecular mechanisms that mediate the diet-based prevention of insulin resistance, however, remain to be identified. Here, we report that treatment with orally administered ginger-derived nanoparticles (GDNP) prevents insulin resistance by restoring homeostasis in gut epithelial Foxa2 mediated signaling in mice fed a high-fat diet (HFD). Methods: Ginger-derived nanoparticles (GDNP) were added into drinking water to treat high-fat diet fed mice for at least one year or throughout their life span. A micro array profile of intestinal, liver and fat tissue of GDNP treated mice was used to analyze their gene expression profile. Genes associated with metabolism or insulin signaling were further quantified using the real time polymerase chain reaction (RT-PCR). Surface plasmon resonance (SPR) was used for determining the interaction between Foxa2 protein and phosphatic acid lipid nanoparticles. Results: HFD-feeding inhibited the expression of Foxa2; the GDNPs increased the expression of Foxa2 and protected Foxa2 against Akt-1 mediated phosphorylation and subsequent inactivation of Foxa2. Increasing expression of Foxa2 leads to altering the composition of intestinal epithelial cell (IEC) exosomes of mice fed a HFD and prevents IEC exosome mediated insulin resistance. Collectively, oral administration of GDNP prevents insulin resistance in HFD mice. Interestingly, oral administration of GDNP also extended the life span of the mice and inhibited skin inflammation. Conclusion: Our findings showed that GDNP treatment can prevent HFD-induced obesity and insulin resistance via protecting the Foxa2 from Akt-1 mediated phosphorylation. GDNP treatment provides an alternative approach based on diet manipulation for the development of therapeutic interventions for obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Nanoparticles , Zingiber officinale , Animals , Diet, High-Fat/adverse effects , Hepatocyte Nuclear Factor 3-beta/genetics , Insulin Resistance/physiology , Liposomes , Mice , Mice, Inbred C57BL , Obesity/metabolism , Proto-Oncogene Proteins c-akt
10.
Nat Commun ; 13(1): 759, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140221

ABSTRACT

Despite the remarkable success of immunotherapy in many types of cancer, pancreatic ductal adenocarcinoma has yet to benefit. Innate immune cells are critical to anti-tumor immunosurveillance and recent studies have revealed that these populations possess a form of memory, termed trained innate immunity, which occurs through transcriptomic, epigenetic, and metabolic reprograming. Here we demonstrate that yeast-derived particulate ß-glucan, an inducer of trained immunity, traffics to the pancreas, which causes a CCR2-dependent influx of monocytes/macrophages to the pancreas that display features of trained immunity. These cells can be activated upon exposure to tumor cells and tumor-derived factors, and show enhanced cytotoxicity against pancreatic tumor cells. In orthotopic models of pancreatic ductal adenocarcinoma, ß-glucan treated mice show significantly reduced tumor burden and prolonged survival, which is further enhanced when combined with immunotherapy. These findings characterize the dynamic mechanisms and localization of peripheral trained immunity and identify an application of trained immunity to cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Immunity , Pancreas/drug effects , Pancreatic Neoplasms/drug therapy , Animals , Bacteria , Female , Fungi , Immunity, Innate/immunology , Lectins, C-Type , Male , Mice , Myeloid Cells , Receptors, CCR2/genetics , beta-Glucans/immunology , Pancreatic Neoplasms
11.
Toxicol Lett ; 358: 17-26, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35038560

ABSTRACT

Prenatal ethanol exposure can impair neural crest cell (NCC) development, including NCC survival, differentiation and migration, contributing to the craniofacial dysmorphology in Fetal Alcohol Spectrum Disorders (FASD). Epithelial-mesenchymal transition (EMT) plays an important role in regulating the migration of NCCs. The objective of this study is to determine whether ethanol exposure can suppress NCC migration through inhibiting EMT and whether microRNA-34a (miR-34a) is involved in the ethanol-induced impairment of EMT in NCCs. We found that exposure to 100 mM ethanol significantly inhibited the migration of NCCs. qRT-PCR and Western Blot analysis revealed that exposure to ethanol robustly reduced the mRNA and protein expression of Snail1, a critical transcriptional factor that has a pivotal role in the regulation of EMT. Ethanol exposure also significantly increased the mRNA expression of the Snail1 target gene E-cadherin1 and inhibited EMT in NCCs. We also found that exposure to ethanol significantly elevated the expression of miR-34a that targets Snail1 in NCCs. In addition, down-regulation of miR-34a prevented ethanol-induced repression of Snail1 and diminished ethanol-induced upregulation of Snail1 target gene E-cadherin1 in NCCs. Inhibition of miR-34a restored EMT and prevented ethanol-induced inhibition of NCC migration in vitro and in zebrafish embryos in vivo. These results demonstrate that ethanol-induced upregulation of miR-34a contributes to the impairment of NCC migration through suppressing EMT by targeting Snail1.


Subject(s)
Epithelial-Mesenchymal Transition , MicroRNAs , Animals , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Ethanol/toxicity , MicroRNAs/metabolism , Neural Crest/metabolism , RNA, Messenger/genetics , Up-Regulation , Zebrafish/genetics
12.
EMBO Rep ; 23(3): e53365, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34994476

ABSTRACT

Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.


Subject(s)
Colitis , Exosomes , Morus , Nanoparticles , Animals , Colitis/chemically induced , Colitis/metabolism , Colitis/prevention & control , Disease Models, Animal , Exosomes/metabolism , Mice , Mice, Inbred C57BL , Plant Bark/metabolism
13.
Adv Drug Deliv Rev ; 182: 114108, 2022 03.
Article in English | MEDLINE | ID: mdl-34990792

ABSTRACT

Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Carriers/pharmacology , Exosomes/metabolism , Extracellular Vesicles/metabolism , Plants/metabolism , Animals , Biomarkers , Cell Communication/physiology , Drug Carriers/metabolism , Drug Carriers/toxicity , Drug Stability , Humans , Nanoparticle Drug Delivery System/metabolism , Nanoparticle Drug Delivery System/pharmacology , Nanoparticle Drug Delivery System/toxicity
14.
Small ; 18(6): e2105385, 2022 02.
Article in English | MEDLINE | ID: mdl-34897972

ABSTRACT

Microglia modulate pro-inflammatory and neurotoxic activities. Edible plant-derived factors improve brain function. Current knowledge of the molecular interactions between edible plant-derived factors and the microglial cell is limited. Here an alcohol-induced chronic brain inflammation model is used to identify that the microglial cell is the novel target of oat nanoparticles (oatN). Oral administration of oatN inhibits brain inflammation and improves brain memory function of mice that are fed alcohol. Mechanistically, ethanol activates dectin-1 mediated inflammatory pathway. OatN is taken up by microglial cells via ß-glucan mediated binding to microglial hippocalcin (HPCA) whereas oatN digalactosyldiacylglycerol (DGDG) prevents assess of oatN ß-glucan to dectin-1. Subsequently endocytosed ß-glucan/HPCA is recruited in an endosomal recycling compartment (ERC) via interaction with Rab11a. This complex then sequesters the dectin-1 in the ERC in an oatN ß-glucan dependent manner and alters the location of dectin-1 from Golgi to early endosomes and lysosomes and increases exportation of dectin-1 into exosomes in an Rab11a dependent manner. Collectively, these cascading actions lead to preventing the activation of the alcoholic induced brain inflammation signing pathway(s). This coordinated assembling of the HPCA/Rab11a/dectin-1 complex by oral administration of oatN may contribute to the prevention of brain inflammation.


Subject(s)
Exosomes , Lectins, C-Type , Memory , Microglia , Nanoparticles , Animals , Avena , Brain , Ethanol/administration & dosage , Lectins, C-Type/metabolism , Memory/physiology , Mice , Microglia/metabolism
15.
Cell Metab ; 33(10): 2040-2058.e10, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34559989

ABSTRACT

One of the defining characteristics of a pre-metastatic niche, a fundamental requirement for primary tumor metastasis, is infiltration of immunosuppressive macrophages. How these macrophages acquire their phenotype remains largely unexplored. Here, we demonstrate that tumor-derived exosomes (TDEs) polarize macrophages toward an immunosuppressive phenotype characterized by increased PD-L1 expression through NF-kB-dependent, glycolytic-dominant metabolic reprogramming. TDE signaling through TLR2 and NF-κB leads to increased glucose uptake. TDEs also stimulate elevated NOS2, which inhibits mitochondrial oxidative phosphorylation resulting in increased conversion of pyruvate to lactate. Lactate feeds back on NF-κB, further increasing PD-L1. Analysis of metastasis-negative lymph nodes of non-small-cell lung cancer patients revealed that macrophage PD-L1 positively correlates with levels of GLUT-1 and vesicle release gene YKT6 from primary tumors. Collectively, our study provides a novel mechanism by which macrophages within a pre-metastatic niche acquire their immunosuppressive phenotype and identifies an important link among exosomes, metabolism, and metastasis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Exosomes/metabolism , Glycolysis , Humans , Lung Neoplasms/metabolism , Macrophages/metabolism , R-SNARE Proteins/metabolism , Tumor Microenvironment
16.
iScience ; 24(6): 102511, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142028

ABSTRACT

Diet and bile play critical roles in shaping gut microbiota, but the molecular mechanism underlying interplay with intestinal microbiota is unclear. Here, we showed that lemon-derived exosome-like nanoparticles (LELNs) enhance lactobacilli toleration to bile. To decipher the mechanism, we used Lactobacillus rhamnosus GG (LGG) as proof of concept to show that LELNs enhance LGG bile resistance via limiting production of Msp1 and Msp3, resulting in decrease of bile accessibility to cell membrane. Furthermore, we found that decline of Msps protein levels was regulated through specific tRNAser UCC and tRNAser UCG decay. We identified RNase P, an essential housekeeping endonuclease, being responsible for LELNs-induced tRNAser UCC and tRNAser UCG decay. We further identified galacturonic acid-enriched pectin-type polysaccharide as the active factor in LELNs to increase bile resistance and downregulate tRNAser UCC and tRNAser UCG level in the LGG. Our study demonstrates a tRNA-based gene expression regulation mechanism among lactobacilli to increase bile resistance.

17.
Mol Ther ; 29(8): 2424-2440, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33984520

ABSTRACT

Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.


Subject(s)
COVID-19/metabolism , Exosomes/metabolism , MicroRNAs/metabolism , Plants/metabolism , Pneumonia/metabolism , A549 Cells , Animals , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukin-6/metabolism , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , SARS-CoV-2/pathogenicity , Tumor Necrosis Factor-alpha/metabolism , U937 Cells , Vero Cells
18.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: mdl-33986193

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.


Subject(s)
Blood Coagulation Disorders/blood , Blood Coagulation Disorders/etiology , COVID-19/blood , COVID-19/complications , Neutrophils/immunology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Blood Coagulation Disorders/immunology , COVID-19/immunology , Cytokines/blood , Female , GPI-Linked Proteins/blood , Hospitalization , Humans , Inflammation Mediators/blood , Male , Middle Aged , Neutrophils/classification , Pandemics , Phagocytosis , Platelet Activation , Receptors, IgG/blood , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Severity of Illness Index
19.
Theranostics ; 11(9): 4061-4077, 2021.
Article in English | MEDLINE | ID: mdl-33754048

ABSTRACT

Background: Diet manipulation is the basis for prevention of obesity and diabetes. The molecular mechanisms that mediate the diet-based prevention of insulin resistance are not well understood. Here, as proof-of-concept, ginger-derived nanoparticles (GDNP) were used for studying molecular mechanisms underlying GDNP mediated prevention of high-fat diet induced insulin resistance. Methods: Ginger-derived nanoparticles (GDNP) were isolated from ginger roots and administered orally to C57BL/6 high-fat diet mice. Fecal exosomes released from intestinal epithelial cells (IECs) of PBS or GDNP treated high-fat diet (HFD) fed mice were isolated by differential centrifugation. A micro-RNA (miRNA) polymerase chain reaction (PCR) array was used to profile the exosomal miRs and miRs of interest were further analyzed by quantitative real time (RT) PCR. miR-375 or antisense-miR375 was packed into nanoparticles made from the lipids extracted from GDNP. Nanoparticles was fluorescent labeled for monitoring their in vivo trafficking route after oral administration. The effect of these nanoparticles on glucose and insulin response of mice was determined by glucose and insulin tolerance tests. Results: We report that HFD feeding increased the expression of AhR and inhibited the expression of miR-375 and VAMP7. Treatment with orally administered ginger-derived nanoparticles (GDNP) resulted in reversing HFD mediated inhibition of the expression of miR-375 and VAMP7. miR-375 knockout mice exhibited impaired glucose homeostasis and insulin resistance. Induction of intracellular miR-375 led to inhibition of the expression of AhR and VAMP7 mediated exporting of miR-375 into intestinal epithelial exosomes where they were taken up by gut bacteria and inhibited the production of the AhR ligand indole. Intestinal exosomes can also traffic to the liver and be taken up by hepatocytes, leading to miR-375 mediated inhibition of hepatic AhR over-expression and inducing the expression of genes associated with the hepatic insulin response. Altogether, GDNP prevents high-fat diet-induced insulin resistance by miR-375 mediated inhibition of the aryl hydrocarbon receptor mediated pathways over activated by HFD feeding. Conclusion: Collectively our findings reveal that oral administration of GDNP to HFD mice improves host glucose tolerance and insulin response via regulating AhR expression by GDNP induced miR-375 and VAMP7.


Subject(s)
Bacteria/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Diet, High-Fat/adverse effects , Insulin Resistance/genetics , Insulin/genetics , MicroRNAs/genetics , Receptors, Aryl Hydrocarbon/genetics , Tryptophanase/genetics , Adult , Animals , Cells, Cultured , Zingiber officinale/chemistry , Hepatocytes/drug effects , Humans , Lipids/genetics , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nanoparticles/administration & dosage , Obesity/genetics , R-SNARE Proteins/genetics
20.
Front Cell Dev Biol ; 9: 622152, 2021.
Article in English | MEDLINE | ID: mdl-33634123

ABSTRACT

The neural crest cell (NCC) is a multipotent progenitor cell population that is sensitive to ethanol and is implicated in the Fetal Alcohol Spectrum Disorders (FASD). Studies have shown that sulforaphane (SFN) can prevent ethanol-induced apoptosis in NCCs. This study aims to investigate whether ethanol exposure can induce apoptosis in human NCCs (hNCCs) through epigenetically suppressing the expression of anti-apoptotic genes and whether SFN can restore the expression of anti-apoptotic genes and prevent apoptosis in ethanol-exposed hNCCs. We found that ethanol exposure resulted in a significant increase in the expression of DNMT3a and the activity of DNMTs. SFN treatment diminished the ethanol-induced upregulation of DNMT3a and dramatically reduced the activity of DNMTs in ethanol-exposed hNCCs. We also found that ethanol exposure induced hypermethylation at the promoter regions of two inhibitor of apoptosis proteins (IAP), NAIP and XIAP, in hNCCs, which were prevented by co-treatment with SFN. SFN treatment also significantly diminished ethanol-induced downregulation of NAIP and XIAP in hNCCs. The knockdown of DNMT3a significantly enhanced the effects of SFN on preventing the ethanol-induced repression of NAIP and XIAP and apoptosis in hNCCs. These results demonstrate that SFN can prevent ethanol-induced apoptosis in hNCCs by preventing ethanol-induced hypermethylation at the promoter regions of the genes encoding the IAP proteins and diminishing ethanol-induced repression of NAIP and XIAP through modulating DNMT3a expression and DNMT activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...