Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
World J Clin Cases ; 12(15): 2627-2635, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817239

ABSTRACT

BACKGROUND: Multiple endocrine neoplasia type 2 (MEN2) is a rare, autosomal dominant endocrine disease. Currently, the RET proto-oncogene is the only gene implicated in MEN2A pathogenesis. Once an RET carrier is detected, family members should be screened to enable early detection of medullary thyroid carcinoma, pheochromocytoma, and hyperparatitity. Among these, medullary thyroid carcinoma is the main factor responsible for patient mortality. Accordingly, delineating strategies to inform clinical follow-up and treatment plans based on genes is paramount for clinical practitioners. CASE SUMMARY: Herein, we present RET proto-oncogene mutations, clinical characteristics, and treatment strategies in a family with MEN2A. A family study was conducted on patients diagnosed with MEN2A. DNA was extracted from the peripheral blood of family members, and first-generation exon sequencing of the RET proto-oncogene was conducted. The C634Y mutation was identified in three family members spanning three generations. Two patients were sequentially diagnosed with pheochromocytomas and bilateral medullary thyroid carcinomas. A 9-year-old child harboring the gene mutation was diagnosed with medullary thyroid carcinoma. Surgical resection of the tumors was performed. All family members were advised to undergo complete genetic testing related to the C634Y mutation, and the corresponding treatments administered based on test results and associated clinical guidelines. CONCLUSION: Advancements in MEN2A research are important for familial management, assessment of medullary thyroid cancer invasive risk, and deciding surgical timing.

2.
Sci Rep ; 14(1): 6814, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514736

ABSTRACT

The present study aims to assess the treatment outcome of patients with diabetes and tuberculosis (TB-DM) at an early stage using machine learning (ML) based on electronic medical records (EMRs). A total of 429 patients were included at Chongqing Public Health Medical Center. The random-forest-based Boruta algorithm was employed to select the essential variables, and four models with a fivefold cross-validation scheme were used for modeling and model evaluation. Furthermore, we adopted SHapley additive explanations to interpret results from the tree-based model. 9 features out of 69 candidate features were chosen as predictors. Among these predictors, the type of resistance was the most important feature, followed by activated partial throm-boplastic time (APTT), thrombin time (TT), platelet distribution width (PDW), and prothrombin time (PT). All the models we established performed above an AUC 0.7 with good predictive performance. XGBoost, the optimal performing model, predicts the risk of treatment failure in the test set with an AUC 0.9281. This study suggests that machine learning approach (XGBoost) presented in this study identifies patients with TB-DM at higher risk of treatment failure at an early stage based on EMRs. The application of a convenient and economy EMRs based on machine learning provides new insight into TB-DM treatment strategies in low and middle-income countries.


Subject(s)
Diabetes Mellitus , Humans , Comorbidity , Treatment Failure , Electronic Health Records , Machine Learning
3.
Genomics ; 116(3): 110823, 2024 May.
Article in English | MEDLINE | ID: mdl-38492820

ABSTRACT

The TIFY gene family plays an essential role in plant development and abiotic and biotic stress responses. In this study, genome-wide identification of TIFY members in tobacco and their expression pattern analysis in response to Ralstonia solanacearum infection were performed. A total of 33 TIFY genes were identified, including the TIFY, PPD, ZIM&ZML and JAZ subfamilies. Promoter analysis results indicated that a quantity of light-response, drought-response, SA-response and JA-response cis-elements exist in promoter regions. The TIFY gene family exhibited expansion and possessed gene redundancy resulting from tobacco ploidy change. In addition, most NtTIFYs equivalently expressed in roots, stems and leaves, while NtTIFY1, NtTIFY4, NtTIFY18 and NtTIFY30 preferentially expressed in roots. The JAZ III clade showed significant expression changes after inoculation with R. solanacearum, and the expression of NtTIFY7 in resistant varieties, compared with susceptible varieties, was more stably induced. Furthermore, NtTIFY7-silenced plants, compared with the control plants, were more susceptible to bacterial wilt. These results lay a foundation for exploring the evolutionary history of TIFY gene family and revealing gene function of NtTIFYs in tobacco bacterial wilt resistance.


Subject(s)
Multigene Family , Nicotiana , Plant Diseases , Plant Proteins , Ralstonia solanacearum , Ralstonia solanacearum/genetics , Nicotiana/genetics , Nicotiana/microbiology , Nicotiana/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Disease Resistance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Promoter Regions, Genetic
4.
J Clin Pharmacol ; 64(6): 737-743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381330

ABSTRACT

Perampanel (PER) is a new type of antiseizure medication used for partial or generalized seizures. However, the plasma concentration shows obvious individual variability in children. The present study aims to ascertain the effect of age, comedications, and cytochrome P450 (CYP) 3A4/5 polymorphisms on PER exposure in Chinese pediatric patients with epilepsy. Clinical data were retrospectively collected in a tertiary children's hospital medical records system from January 2021 to December 2022. The influence factors on the daily dose, plasma concentration, and concentration-to-dose ratio (CDR) of PER were investigated. A total of 135 pediatric patients with 178 blood samples were involved. With a median daily dose of 4.0 mg (interquartile range, 3.0-5.0 mg), the median plasma concentration was 409.4 ng/mL (interquartile range, 251.7-639.4 ng/mL). The CDR in patients aged less than 4 years was significantly decreased by 48.0% and 39.1% compared with those aged 4-11 years and 12 years or older, respectively. Enzyme inducers significantly decreased the CDR of PER by 34.5%, while valproic acid showed an increase of 71.7%. In addition, genotype CYP3A5*3/*3 carriers presented a significant increase of 21.5% compared to the CYP3A5*1/*3 expresser. No correlations were observed between the CDR and CYP3A4∗1G polymorphism. PER showed high variations in individual plasma concentrations. Age younger than 4 years, comedication with enzyme inducers or valproic acid, and possession of the CYP3A5*3 genotype potentially predicted PER exposure in pediatric patients with epilepsy.


Subject(s)
Anticonvulsants , Cytochrome P-450 CYP3A , Epilepsy , Nitriles , Pyridones , Humans , Cytochrome P-450 CYP3A/genetics , Child , Child, Preschool , Female , Male , Epilepsy/drug therapy , Epilepsy/genetics , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Anticonvulsants/blood , Anticonvulsants/administration & dosage , Pyridones/pharmacokinetics , Pyridones/blood , Pyridones/therapeutic use , Nitriles/therapeutic use , Retrospective Studies , Age Factors , Adolescent , Asian People/genetics , Drug Interactions , China , Polymorphism, Genetic , Valproic Acid/therapeutic use , Valproic Acid/pharmacokinetics , Valproic Acid/blood , Drug Therapy, Combination , Polymorphism, Single Nucleotide , Infant , East Asian People
5.
Food Chem X ; 21: 101145, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38312488

ABSTRACT

The novel loquat cultivar 'Chunhua No.1' (CH1) is a promising commercial cultivar. However, CH1 has texture characteristics different from those of common loquat, and its formation mechanism remains unclear. Here, we first identified the phenolic compounds of CH1 and its parent ('Dawuxing', DWX) and the effect on texture formation. The special presence of stone cells explained the flavor differences in CH1. Chlorogenic acid, neochlorogenic acid, and coniferyl alcohol were the main phenolic compounds in loquat, and the high content of coniferyl alcohol was a potential factor for the rough texture of CH1. Transcriptome reveals that phenylpropanoid metabolism was activated during CH1 fruit texture formation. Kyoto Encyclopedia of Genes and Genomes (KEGG) identified 51 structural genes involved in phenylpropanoid biosynthesis, and Weighted Gene Co-expression Network Analysis (WGCNA) identified four structural genes and 88 transcription factors. These findings provide new insights into the phenolic metabolism and flavor formation of loquat fruit.

6.
Genomics ; 116(2): 110784, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199265

ABSTRACT

Bacterial wilt (BW) caused by Ralstonia solanacearum is a globally prevalent bacterial soil-borne disease. In this study, transcriptome sequencing were subjected to roots after infection with the R. solanacearum in the resistant and susceptible tobacco variety. DEGs that responded to R. solanacearum infection in both resistant and susceptible tobacco contributed to pectinase and peroxidase development and were enriched in plant hormone signal transduction, signal transduction and MAPK signalling pathway KEGG terms. Core DEGs in the resistant tobacco response to R. solanacearum infection were enriched in cell wall, membrane, abscisic acid and ethylene terms. qRT-PCR indicated that Nitab4.5_0004899g0110, Nitab4.5_0004234g0080 and Nitab4.5_0001439g0050 contributed to the response to R. solanacearum infection in different resistant and susceptible tobacco. Silencing the p450 gene Nitab4.5_0001439g0050 reduced tobacco resistance to bacterial wilt. These results improve our understanding of the molecular mechanism of BW resistance in tobacco and solanaceous plants.


Subject(s)
Ralstonia solanacearum , Ralstonia solanacearum/genetics , Gene Expression Profiling , Plant Growth Regulators/pharmacology , Abscisic Acid , Nicotiana/genetics , Gene Silencing , Disease Resistance/genetics
7.
BMC Pregnancy Childbirth ; 23(1): 829, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041018

ABSTRACT

BACKGROUND: The occurrence of orofacial Clefts (OFCs) is a congenital disease caused by many factors. According to recent studies, air pollution has a strong correlation with the occurrence of OFCs. However, there are still some controversies about the current research results, and there is no relevant research to review the latest results in recent years. OBJECTIVE: In this paper, the authors conducted a systematic review and meta-analysis to explore the correlation between ambient air pollution and the occurrence of neonatal OFCs deformity. METHODS: We searched Pubmed, Web of science, and Embase databases from the establishment of the database to May 2023. We included observational studies on the relationship between prenatal exposure to fine particulate matter 2.5 (PM2.5), fine particulate matter 10 (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO) and the risk of cleft lip (CL), cleft palate (CP), cleft lip with or without palate (CL/P). the Newcastle-Ottawa quality assessment scale (NOS) was used to evaluate the quality of the literature. Funnel plot and Egger's regression were used to verify the publication bias. Random effect model or fixed effect model was used to estimate the combined relative risk (RR) and 95% confidence interval (95%CI). RESULTS: A total of eleven studies were included in this study, including four cohort studies and seven case-control studies, including 22,453 cases of OFCs. Ten studies had low risk of bias and only one study had high risk of bias. Three studies reported that PM2.5 was positively correlated with CL and CP, with a combined RR and 95%CI of 1.287(1.174,1.411) and 1.267 (1.105,1.454). Two studies reported a positive correlation between O3 and CL, with a combined RR and 95%CI of 1.132(1.047,1.225). Two studies reported a positive correlation between PM10 and CL, with a combined RR and 95%CI of 1.108 (1.017,1.206). No association was found between SO2, CO, NO2 exposure during pregnancy and the risk of OFCs. CONCLUSION: The results of this study showed that there was a significant statistical correlation between exposure to PM10, PM2.5, O3 and the risk of OFCs in the second month of pregnancy. Exposure assessment, research methods and mechanisms need to be further explored.


Subject(s)
Air Pollutants , Air Pollution , Cleft Lip , Cleft Palate , Ozone , Infant, Newborn , Female , Pregnancy , Humans , Air Pollutants/analysis , Cleft Lip/epidemiology , Cleft Lip/etiology , Cleft Palate/epidemiology , Cleft Palate/etiology , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Ozone/analysis , Sulfur Dioxide , Nitrogen Dioxide/adverse effects , Environmental Exposure
8.
Front Plant Sci ; 14: 1265018, 2023.
Article in English | MEDLINE | ID: mdl-37841630

ABSTRACT

Pomegranate (Punica granatum L.), with its abundant phenolic substances and strong antioxidant activity, holds significant research and utilization potential across various organs. However, there have been few studies on the phenolic content and antioxidant activity of different parts of pomegranate, especially the placenta. This study investigated the phenolic content and antioxidant activity of fruits, flowers, and leaves of two pomegranate varieties, 'Tunisia' and 'Qingpi', throughout their growth and development. Results indicated significant variations in phenolic content among different organs, with petals exhibiting the highest total polyphenol content (TPC, 49.40 mg GAE/g FW) and total anthocyanin content (TMAC, 1938.54 nmol/g FW). Placenta contained the highest levels of total flavonoids (TFC, 173.58 mg RE/g FW) and punicalagin (109.30 mg/g FW). The peel had the highest content of total flavanols (TFAC, 19.42 mg CE/g FW). Over the course of pomegranate development, total polyphenols, total flavonoids, total flavanols, punicalagin, and antioxidant activity declined in different organs. Antioxidant activity followed the order: fruit > flower > leaf, with the placenta exhibiting the highest antioxidant activity among fruits. Antioxidant activity showed a significant positive correlation with total polyphenols (R2 = 0.77-1.00), total flavonoids (R2 = 0.71-0.99, except tegmens), and punicalagin (R2 = 0.71-1.00). This study provides a comparative analysis of the phenolic content and antioxidant activity in different organs of pomegranate, highlighting the placenta as the primary source of punicalagin. This study provides a theoretical basis for the development and utilization of pomegranate phenolic compounds.

9.
Plants (Basel) ; 12(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514325

ABSTRACT

Plums are good sources of various bioactive phytochemical compounds such as vitamins, anthocyanins, and carotenoids, whereby all of which are noted for multiple potential health benefits. However, knowledge regarding plum carotenoid profiles remains limited. Hence, the total and individual carotenoids in the edible parts (skin and flesh) of ten plum cultivars were determined using a spectrophotometer and high-performance liquid chromatography-diode array detection, respectively. Total and individual carotenoid contents in skin were significantly higher (p < 0.05) than those in flesh among all plum cultivars tested. The cultivars with the highest content of total carotenoids in skin were Naili (36.73 µg/g FW), followed by Yinhongli (21.81 µg/g FW) and Yuhuangli (19.70 µg/g FW), with the lowest in Angeleno (8.97 µg/g FW). Lutein, zeaxanthine, ß-cryptoxanthin, α-carotene, and ß-carotene were the major types of carotenoids detected, with lutein and ß-carotene being the predominant constituents of the skin and flesh tissues, respectively. Lutein, zeaxanthine, and total carotenoid contents were positively correlated with the expressions of PSY, LCYB, and LCYE, and negatively correlated with the expressions of PDS and CRTISO. Characterizing the carotenoid profiles and investigating variations in carotenoid biosynthetic gene expressions among plum cultivars are crucial for advancing genetic improvements in plums.

10.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445735

ABSTRACT

Sichuan is the China's leading producer of loquat, with the largest cultivation area and yield ranked first in China. Loquat is a seasonal fruit highly appreciated by consumers; however, the fruit is prone to browning and lignification after harvest, affecting its storage quality. The effects of L-Cysteine (L-Cys, 0.01, 0.05, 0.1, 0.2%) and γ-aminobutyric acid (GABA, 0.025, 0.05, 0.075, 0.1%) on the sensory quality and antioxidant activity of loquat fruit during cold storage at 4 °C for 35 days and simulated shelf life for 5 days were investigated. The results showed that after 40 days of storage, compared with the control, 0.05% L-Cys and 0.05% GABA treatment of 'Zaozhong No. 6' loquat fruit effectively reduced the weight loss rate, browning index, decay index, respiratory rate, firmness, and lignin content and slowed the decreases in total soluble solids, soluble sugar, titratable acidityand vitamin C contents. The application of 0.05% L-Cys and 0.05% GABA significantly increased the contents of total phenols, total flavonoids, flavanols, and carotenoids; delayed the increase of relative electric conductivity, MDA, POD, and PPO activities; and significantly enhanced the activities of SOD and CAT, DPPH free radical scavenging ability, and FRAP, thereby improving antioxidant capacity. In summary, 0.05% L-Cys and 0.05% GABA treatment promotes the quality of loquat fruit after 40 days of storage, and significantly enhances antioxidant capacity, thus delaying senescence after harvest.


Subject(s)
Antioxidants , Eriobotrya , Antioxidants/pharmacology , Antioxidants/analysis , Cysteine/analysis , Eriobotrya/chemistry , Fruit/chemistry , gamma-Aminobutyric Acid/pharmacology
11.
Transl Oncol ; 35: 101714, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37331103

ABSTRACT

Persistent human papillomavirus (HPV) infections is necessary for the development of cervical cancers. An increasing number of retrospective studies have found the depletion of Lactobacillus microbiota in the cervico-vagina facilitate HPV infection and might be involved in viral persistence and cancer development. However, there have been no reports confirming the immunomodulatory effects of Lactobacillus microbiota isolated from cervico-vaginal samples of HPV clearance in women. Using cervico-vaginal samples from HPV persistent infection and clearance in women, this study investigated the local immune properties in cervical mucosa. As expected, type I interferons, such as IFN-α and IFN-ß, and TLR3 globally downregulated in HPV+ persistence group. Luminex cytokine/chemokine panel analysis revealed that L. jannaschii LJV03, L. vaginalis LVV03, L. reuteri LRV03, and L. gasseri LGV03 isolated from cervicovaginal samples of HPV clearance in women altered the host's epithelial immune response, particularly L. gasseri LGV03. Furthermore, L. gasseri LGV03 enhanced the poly (I:C)-induced production of IFN by modulating the IRF3 pathway and attenuating poly (I:C)-induced production of proinflammatory mediators by regulating the NF-κB pathway in Ect1/E6E7 cells, indicating that L. gasseri LGV03 keeps the innate system alert to potential pathogens and reduces the inflammatory effects during persistent pathogen infection. L. gasseri LGV03 also markedly inhibited the proliferation of Ect1/E6E7 cells in a zebrafish xenograft model, which may be attributed to an increased immune response mediated by L. gasseri LGV03.

12.
Foods ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36900427

ABSTRACT

Loquats have gained increasing attention from consumers and growers for their essential nutrients and unusual phenology, which could help plug a gap period at market in early spring. Fruit acid is a critical contributor to fruit quality. The dynamic changes in organic acid (OA) during fruit development and ripening of common loquat (Dawuxing, DWX) and its interspecific hybrid (Chunhua, CH) were compared, as well as the corresponding enzyme activity and gene expression. At harvest, titratable acid was significantly lower (p ≤ 0.01) in CH (0.11%) than in DWX loquats (0.35%). As the predominant OA compound, malic acid accounted for 77.55% and 48.59% of the total acid of DWX and CH loquats at harvest, followed by succinic acid and tartaric acid, respectively. PEPC and NAD-MDH are key enzymes that participate in malic acid metabolism in loquat. The OA differences in DWX loquat and its interspecific hybrid could be attributed to the coordinated regulation of multiple genes and enzymes associated with OA biosynthesis, degradation, and transport. The data obtained in this work will serve as a fundamental and important basis for future loquat breeding programs and even for improvements in loquat cultural practices.

13.
Sci Data ; 10(1): 92, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788248

ABSTRACT

The most commercialized kiwifruit, Actinidia chinensis var. deliciosa (Acd), is an allohexaploid (2n = 6x = 174), making high-quality assemblage genome challenging. We previously discovered a rare naturally occurring diploid Acd plant. Here, chromosome-level de novo genome assembly for this diploid Acd was reported, reaching approximately 621.98 Mb in length with contig and scaffold N50 values of 10.08 and 21.09 Mb, respectively, 99.66% of the bases anchored to 29 pseudochromosomes, and 38,990 protein-coding genes and 42.29% repetitive elements annotated. The divergence time of A. chinensis cv. 'Red5' and 'Hongyang' (11.1-27.7 mya) was more recent compared with the divergence time of them and Acd (19.9-41.2 mya), with the divergence time of A. eriantha cv. 'White' being the earliest (22.9-45.7 mya) among that of the four Actinidia species. The 4DTv distance distribution highlighted three recent whole-genome duplication events in Acd. This is the first high-quality diploid Acd genome, which lays an important foundation for not only kiwifruit functional genomics studies but also further elucidating genome evolution of allohexaploid Acd.


Subject(s)
Actinidia , Genome, Plant , Actinidia/genetics , Diploidy , Fruit/genetics , Repetitive Sequences, Nucleic Acid , Chromosomes, Plant
14.
Foods ; 12(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36673402

ABSTRACT

Loquats have drawn much attention due to their essential nutrients and unusual phenology, which fills a market gap in early spring. Fruit firmness (FF) is one of the most important quality attributes. Dynamic changes in FF, cell wall (CW) polysaccharides, CW hydrolase activity, and expression of CW metabolism-related genes during the fruit development and ripening stages of two contrasting loquat cultivars were compared. Although the two cultivars possessed similar FF at the initial fruitlet stage, Dawuxing was significantly firmer than Ninghaibai at all subsequent time points. FF was positively correlated with the contents of covalent-soluble pectin and hemicellulose, activity of peroxidase, and gene expressions of PME, EG, CAD6, and POD; and negatively correlated with the contents of water-soluble pectin, activities of polygalacturonase, endo-glucanase, cellobiohydrolase, and xylanase, and gene expressions of PG, EG2, PAL1, PAL3, and CAD5. Identifying molecular mechanisms underlying the differences in FF is useful for fundamental research and crop improvement in future.

15.
Front Genet ; 14: 1333111, 2023.
Article in English | MEDLINE | ID: mdl-38192441

ABSTRACT

Background: Acute intermittent porphyria (AIP) is a rare metabolic disorder that results from mutations in the gene encoding hydroxymethylbilane synthase (HMBS), an enzyme involved in heme biosynthesis. AIP follows an autosomal dominant inheritance pattern, but most carriers are asymptomatic. The clinical manifestations of AIP include acute attacks of abdominal pain and neuropsychiatric disturbances. The pathogenicity of novel HMBS variants identified in Chinese patients has not been well established. Objective: The article aims to identify the pathogenic mutation in an AIP patient and prove its pathogenicity through in vitro experiments. Methods: A 22-year-old female diagnosed with AIP participated in the study. Variant screening of her HMBS gene was carried out through Sanger sequencing. To ascertain the consequences of the newly discovered variant, we conducted in vitro experimentation targeting HMBS gene expression and enzymatic function. Additionally, protein structure analysis was performed. Cycloheximide treatment and UPF1-specific siRNA knockdown were employed to assess the impact of the mutation on the mechanism of non-sense-mediated mRNA decay (NMD). Results: A novel splice site variant in the HMBS gene (c.648_651+1delCCAGG) was detected in the patient, which caused aberrant mRNA splicing. In vitro experiments demonstrated that this variant significantly decreased the expression of HMBS. Further investigation confirmed that this decrease was due to NMD. Additionally, structural analysis indicated that this variant would destabilize the HMBS protein and impair its catalytic activity. To gain a comprehensive understanding of HMBS mutations in the context of AIP, we conducted a literature search on PubMed using the keywords 'HMBS' and 'Acute intermittent porphyria' from 2013 to 2023. This search yielded 19 clinical case reports written in English, which collectively described 220 HMBS gene mutations worldwide. Conclusion: The study identified and proved the pathogenicity of a novel splice site HMBS variant for the first time. Our results elucidated the pathological mechanism by which this mutation causes AIP through reducing HMBS expression and activity. These findings provide theoretical guidance for the diagnosis, treatment and genetic counseling of AIP patients.

16.
J Inflamm Res ; 15: 6831-6842, 2022.
Article in English | MEDLINE | ID: mdl-36583132

ABSTRACT

Background: Deficiency vitamin D and hyperglycemia could be related to weakened innate immune response and aggravate the progression of tuberculosis (TB). This study hypothesized that DNA promoter methylation of the pivotal genes in the vitamin D metabolic pathway might be related to diabetes and tuberculosis co-morbidity (TB-DM) susceptibility. Methods: A total of 50 TB-DM and 50 healthy subjects (HS) were included in the present study. Targeted bisulfite sequencing was applied to detect the methylation of the promoter regions of candidate genes in the vitamin D metabolic pathway (CYP24A1, CYP27B1, CYP2R1, DHCR7, and VDR) in whole blood. Results: The overall methylation level of candidate genes in this study was lower in patients with TB-DM than HS, except for CYP2R1. The results of the ROC demonstrated the potential of CYP24A1, CYP27B1, DHCR7, and VDR promoter methylation as a biomarker for diagnosing TB-DM, with all the AUC above 0.7. In subgroup analysis, we found that lower circulating vitamin D is related to a low level of CYP24A1, CYP27B1, and DHCR7 promoter methylation in patients with TB-DM. With decreasing methylation level, risk of TB-DM was significantly increased (odds ratio, 95% CI 0.343, 0.144-0.821 for CYP24A1; 0.461, 0.275-0.773 for CYP27B1; 0.09, 0.015-0.530 for DHCR7; 0.006, 0.0003-0.115 for VDR). Besides, our results revealed that there was a significant correlation between DNA promoter methylation of selected genes in the vitamin D metabolic pathway and platelet indices in TB-DM. However, there was no correlation between DNA methylation of the four genes and fasting glucose and HbA1c. Conclusion: Our results could suggest that the selected genes in the vitamin D metabolic pathway may be involved in the pathological process of TB-DM, but independent of the process of hyperglycemia to impaired immune responses to Mtb.

17.
Cell Oncol (Dordr) ; 45(6): 1217-1236, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36374443

ABSTRACT

BACKGROUND: Centrosomal protein 55 (CEP55) is implicated in the tumorigenesis of bladder cancer (BC) but the detailed molecular mechanisms are unknown. We aim to develop a potential competing endogenous RNA (ceRNA) network related with CEP55 in BC. METHODS: We first extracted the expression profiles of RNAs from The Cancer Genome Atlas (TCGA) database and used bioinformatic analysis to establish ceRNAs in BC. Real-time quantity PCR (RT-qPCR) and immunohistochemical analysis were performed to measure CEP55 expression in different bladder cell lines and different grades of cancer. Bioinformatics analysis and luciferase assays were conducted to predict potential binding sites among miR-497-5p, CEP55, parathyroid hormone like hormone (PTHLH) and high mobility group A2 (HMGA2). Tumor xenograft model was used to show the effect of CEP55 3'-UTR on cisplatin therapy. Bioinformatics analysis, luciferase assays, and 5' rapid amplification of cDNA ends (5'RACE) were to explore the function of CEP55 3'-untranslated region (3'-UTR) on targeting miR-497-5p. Western blot and immunofluorescence assays were to detect the epithelial-mesenchymal transition (EMT) induction of CEP55 3'-UTR. RESULTS: CEP55 expression as well as the expression levels of the oncogenic proteins PTHLH and HMGA2 were upregulated in BC cells while miR-497-5p was downregulated. Low miR-497-5p expression and high CEP55 and HMGA2 expression levels were associated with more advanced tumor clinical stage and pathological grade. Overexpression of the CEP55 3'-UTR promoted the proliferation, migration, and invasion of the EJ cell line in vitro and accelerated EJ-derived tumor growth in nude mice, while inhibition of the CEP55 3'-UTR suppressed all of these oncogenic processes. In addition, CEP55 3'-UTR upregulation reduced the cisplatin sensitivity of BC cell lines and xenograft tumors. Bioinformatics analysis, luciferase assays, and 5'RACE suggested that the CEP55 3'-UTR functions as a ceRNA targeting miR-497-5p, leading to miR-497-5p downregulation and disinhibition of PTHLH and HMGA2 expression. Further, CEP55 downregulated miR-497-5p transcription by promoting NF-[Formula: see text]B signaling. In turn, CEP55 3'-UTR ultimately promotes EMT and tumorigenesis by activating P38MAPK and ERK 1/2 pathways. CONCLUSIONS: These results suggest that a ceRNA regulatory network involving CEP55 upregulates PTHLH and HMGA2 expression by suppressing endogenous miR-497-5p. We unveiled a novel mechanism of BC metastasis, and could become novel therapeutics targets in BC.


Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Mice , Animals , Humans , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Proliferation/genetics , Mice, Nude , Urinary Bladder/metabolism , Cisplatin/pharmacology , Cell Line, Tumor , Urinary Bladder Neoplasms/genetics , 3' Untranslated Regions/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Cell Cycle Proteins/metabolism
19.
J Phys Condens Matter ; 34(46)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36130607

ABSTRACT

The equations of state (EOS) of Iridium are, for the first time, obtained by solving the high-dimension integral of partition function based on a recently developed approach of ultrahigh efficiency and precision without any artificial parameter, and the deviation of 0.25% and 1.52% from the experiments was achieved respectively for the isobaric EOS in a temperature range of 300 K-2500 K and the isothermal EOS at 300 K up to 300 GPa. Specific comparisons show that the deviation of EOS based on harmonic approximation even including anharmonic effect, manifests worse than ours by several times or even one order of magnitude, indicating that ensemble theory is the very approach to understand the thermodynamic properties of condensed matter.

20.
Article in English | MEDLINE | ID: mdl-35899228

ABSTRACT

Purpose: Jiawei-Huang Lian-Gan Jiang decoction (JWHLGJD) was developed to treat and prevent the patients with colorectal adenomas (CRA) in China. This study is aimed to discover JWHLGJD's active compounds and demonstrate mechanisms of JWHLGJD against CRA through network pharmacology and molecular docking techniques. Methods: All the components of JWHLGJD were retrieved from the pharmacology database of Traditional Chinese Medicine Systems Pharmacology (TCMSP). The GeneCards database, the Online Mendelian Inheritance in Man database (OMIM), the DrugBank database, and PharmGKB were used to obtain the genes matching the targets. Cytoscape created the compound-target network. The network of target protein-protein interactions (PPI) was constructed using the STRING database. Gene Ontology (GO) functional and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways involved in the targets were analyzed by using the DAVID database. Cytoscape created the component-target-pathway (C-T-P) network. AutoDock Vina software was used to verify the molecular docking of JWHLGJD components and key targets. Core genes linked with survival and tumor microenvironment were analyzed through the Kaplan-Meier plotter and TIMER 2.0 databases, respectively. Results: Compound-target network mainly contained 38 compounds and 130 targets of the JWHLGJD associated with CRA. TP53, MAPK1, JUN, HSP90AA1, and AKT1 were identified as core targets by the PPI network. KEGG pathway shows that the pathways in cancer, lipids, and atherosclerosis, PI3K-Akt signaling pathway and MAPK signaling pathway, are the most relevant pathways to CRA. The C-T-P network suggests that the active component in JWHLGJD is capable of regulating target genes of these related pathways. The results of molecular docking showed that berberine and stigmasterol were the top two compounds of JWHLGJD, which had high affinity with TP53 and MAPK1, respectively. And, MAPK1 exerted a more significant effect on the prognosis of adenocarcinoma, for it was highly associated with various immune cells. Conclusion: Findings in this study provided light on JWHLGJD's active components, prospective targets, and molecular mechanism. It also gave a potential way to uncovering the scientific underpinning and therapeutic mechanism of traditional Chinese medicine (TCM) formulas.

SELECTION OF CITATIONS
SEARCH DETAIL
...