Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Sci Data ; 11(1): 364, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605113

ABSTRACT

Peanut (Arachis hypogaea) showcases geocarpic behavior, transitioning from aerial flowering to subterranean seed development. We recently obtained an atavistic variant of this species, capable of producing aerial and subterranean pods on a single plant. Notably, although these pod types share similar vigor levels, they exhibit distinct differences in their physical aspects, such as pod size, color, and shell thickness. We constructed 63 RNA-sequencing datasets, comprising three biological replicates for each of 21 distinct tissues spanning six developmental stages for both pod types, providing a rich tapestry of the pod development process. This comprehensive analysis yielded an impressive 409.36 Gb of clean bases, facilitating the detection of 42,401 expressed genes. By comparing the transcriptomic data of the aerial and subterranean pods, we identified many differentially expressed genes (DEGs), highlighting their distinct developmental pathways. By providing a detailed workflow from the initial sampling to the final DEGs, this study serves as an important resource, paving the way for future research into peanut pod development and aiding transcriptome-based expression profiling and candidate gene identification.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Transcriptome , Arachis/genetics , Arachis/growth & development , Gene Expression Profiling , Seeds/genetics , Seeds/growth & development
2.
Endocrine ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386167

ABSTRACT

BACKGROUND: There have been few studies on the role of autophagy in pancreatic neuroendocrine tumours (PNETs). SQSTM1/p62 (also called Sequestosome 1) is a potential autophagy regulator, and its biological roles and clinical significance in PNETs remain poorly understood. PURPOSE: The purpose of this study was to evaluate the clinical significance of SQSTM1/p62 in human PNET specimens and to evaluate its potential value as a therapeutic target by studying its biological function in PNET cell lines. METHODS: SQSTM1/p62 protein expression was assessed in 106 PNET patient specimens by immunohistochemistry, and the relationship between SQSTM1/p62 protein expression and the clinicopathological features of PNETs in patients was analysed. The proliferation, invasion and apoptosis of SQSTM1/p62-knockdown QGP-1 and INS-1 cells were assessed by the MTT assay, a Transwell assay and flow cytometry. Cell autophagy was assessed by western blotting and mCherry-GFP-LC3B. RESULTS: The protein expression of SQSTM1/p62 in PNET patient specimens was significantly correlated with tumour recurrence (p = 0.005) and worse prognosis (log rank p = 0.020). Downregulation of the SQSTM1/p62 gene inhibited tumour cell proliferation and migration and induced PNET cell death. Downregulation of SQSTM1/p62 activated autophagy in PNET cell lines but blocked autophagic flow. Knockdown of the SQSTM1/p62 gene inhibited mTOR phosphorylation. CONCLUSION: The SQSTM1/P62 protein could be an independent prognostic marker for PNET patients. Downregulating SQSTM1/P62 can inhibit PNET progression, inhibit mTOR phosphorylation and block autophagic flow.

3.
Plant Physiol Biochem ; 206: 108311, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38169227

ABSTRACT

The grain yield of crops is determined by the synergistic interaction between source activity and sink capacity. However, source-sink interactions are far from being fully understood of peanut. Therefore, a 2-year field study (2018-2019) was conducted to compare differences in photosynthetic characteristics, carbon and nitrogen metabolism, and yield and quality of different source-sink peanut varieties. Four representative source-sink types were examined: JH5 (source-sink coordination type), SH9 (sufficient source-large sink type), ZH24 (sufficient source-few sink type), and HY36 (large source-few sink type). The results showed that the photosynthetic potential of HY36 was higher than that of the other varieties after flowering because of a large source (leaves), whereas the chlorophyll content and net photosynthetic rate of HY36 were significantly lower than those of JH5 and ZH24. Proportions of dry matter transferred to pods were significantly different among four source-sink peanut varieties. From 50 days after flowering, the dry matter distribution ratio of pods exceeded that of stems and leaves in JH5, significantly earlier than other varieties, which prolong the duration of pod-filling period, followed by SH9 and ZH24. The activities of nitrate reductase, glutamine synthetase, glutamate dehydrogenase, and glutamate synthase in JH5 were the highest among the varieties, and thus, the highest protein content was also in JH5. The activities of sucrose synthase and sucrose phosphate synthase in ZH24 were significantly higher than those in HY36. The highest oil content was also in ZH24. Among pod sink characteristics and yield, SH9 had the longest flowering period and the highest gynophore formation rate but the lowest pod-bearing rate, and the effective proportion and pod fullness were also lower than those of other varieties. The highest pod rate was in ZH24. The effective proportion and pod fullness of JH5 were higher than those of the other varieties, and its yield was also the highest, followed by SH9 and ZH24, with the lowest yield in HY36. The obtained results indicate that the source-sink coordinated variety had high Pn and chlorophyll content in the late growth stage, a long functional period of leaves, and a high proportion of assimilates transported to pods, thus promoting effective proportions and pod fullness to improve peanut yield and protein content, suggesting that different cultivation and management measures should select for different peanut varieties to best coordinate the relationship between the source and sink.


Subject(s)
Arachis , Carbon , Arachis/metabolism , Photosynthesis/physiology , Chlorophyll/metabolism , Nitrogen
4.
Small ; 20(10): e2303966, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37907423

ABSTRACT

Multispectral/hyperspectral technologies can easily detect man-made objects in vegetation by subtle spectral differences between the object and vegetation, and powerful reconnaissance increases the demand for camouflage materials closely resembling vegetation spectra. However, previous biomimetic materials have only presented static colors that cannot change color, and camouflage in multiple bands is difficult to achieve. To address this challenge, inspiration is drawn from the color change of foliage, and a color-change model is proposed with active and static pigments embedded in a matrix medium. The color of a composite material is dominated by the colored active pigment, which conceals the color of the static pigments and the color is revealed when the active pigment fades. A color-changing biomimetic material (CCBM) is developed with a solution casting method by adopting microcapsuled thermochromic pigments and chrome titanate yellow pigments as fillers in a base film with polyvinyl alcohol and lithium chloride. A Kubelka-Munk four-flux model is constructed to optimize the component proportions of the CCBM. The material has a reversible color change, closely resembles the foliage spectrum in UV-vis-NIR ranges, and imitates the thermal behavior of natural foliage in the mid-infrared regime. These results provide a novel approach to multispectral and hyperspectral camouflage.

5.
Plants (Basel) ; 12(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140481

ABSTRACT

Short-term drought events occur more frequently and more intensively under global climate change. Biochar amendment has been documented to ameliorate the negative effects of water deficits on plant performance. Moreover, biochar can alter the soil microbial community, soil properties and soil metabolome, resulting in changes in soil functioning. We aim to reveal the extent of biochar addition on soil nutrients and the soil microbial community structure and how this improves the tolerance of legume crops (peanuts) to short-term extreme drought. We measured plant performances under different contents of biochar, set as a gradient of 2%, 3% and 4%, after an extreme experimental drought. In addition, we investigated how soil bacteria and fungi respond to biochar additions and how the soil metabolome changes in response to biochar amendments, with combined growth experiments, high-throughput sequencing and soil omics. The results indicated that biochar increased nitrites and available phosphorus. Biochar was found to influence the soil bacterial community structure more intensively than the soil fungal community. Additionally, the fungal community showed a higher randomness under biochar addition when experiencing short-term extreme drought compared to the bacterial community. Soil bacteria may be more strongly related to soil nutrient cycling in peanut agricultural systems. Although the soil metabolome has been documented to be influenced by biochar addition independent of soil moisture, we found more differential metabolites with a higher biochar content. We suggest that biochar enhances the resistance of plants and soil microbes to short-term extreme drought by indirectly modifying soil functioning probably due to direct changes in soil moisture and soil pH.

6.
Exp Aging Res ; : 1-15, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37990880

ABSTRACT

BACKGROUND: Vitamin D (VD) is a neuroactive steroid involved in many brain functions, such as neurotrophic, neuroimmune control and neurotransmission, which affects the growth and function of the brain. The purpose of this study is to explore the effect of VD on motor and cognitive function of aged mice after sevoflurane anesthesia. METHOD: We established sevoflurane anesthesia model and VD(-) and VD(+) mice model. The VD concentration of mice in each group was determined by enzyme-linked immunosorbent assay (ELISA). An open-field test was used to evaluate the mice's capacity for movement and exploration. A Y-maze test was used to gauge the mice's short-term memory. The primary purpose of the water-maze experiment was to examine mice's long-term spatial memory. RESULTS: The ELISA results showed that the model was successfully constructed. In the open-field test, VD increased the exercise distance of mice (P < .05). In the Y-maze experiment, VD improved short-term memory impairment in mice (P < .05). In the water-maze test, VD increased the activity time and platform crossing number of mice in the target quadrant. (P < .05). CONCLUSION: Sevoflurane anesthesia caused cognitive dysfunction in aged mice, including reduced learning ability, memory loss, lower motor and exploratory abilities and depression, and VD deficiency aggravated these impairments. By supplementing with VD, learning ability and long-term memory were enhanced, motor and exploratory abilities were improved, and depression levels were reduced. Anxiety was also improved.

7.
Plants (Basel) ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836166

ABSTRACT

Peanut (Arachis hypogaea L.) is an important oil and cash crop. An efficient utilization of saline-alkali soil resources, the development of peanut planting in saline-alkali soil, and obtaining high and stable yield have become urgent needs to ensure peanut production. Arbuscular mycorrhizal fungi (AMF) have been reported to develop the potential productivity of host plants and improve their salt resistance and tolerance. However, there is still limited research on promoting the growth and morphology of peanut roots. Therefore, in this study, seeds of salt-tolerant peanut variety "HY 25" were coated with commercial AMF inoculant before being planted in saline-alkali and normal soils to investigate the effects of AMF on peanut root growth and rhizosphere soil. The results showed that root morphological characteristics were significantly increased by the use of AMF at the podding stage in saline-alkali soil and from the flowering and pegging stage to the maturity stage in normal soil. Of note, the total root volume of peanut inoculated with AMF significantly increased by 31.57% during the podding stage in saline-alkali soil. Meanwhile, AMF significantly increased the phosphatase and invertase activities in the peanut rhizosphere of saline-alkali soil from the flowering stage to maturity stage and soil CAT activity at the maturity stage (41.16~48.82%). In normal soil, soil phosphatase and urease activities were enhanced by AMF at the flowering stage and the podding stage, respectively. AMF also increased the contents of soil organic matter, available phosphorus, and hydrolysable nitrogen, but decreased soil EC in saline-alkali soil. In addition to the significant increase in soil available phosphorus content, AMF had no significant effect on the physical and chemical properties of the soil and other soil nutrients in normal soil. AMF significantly increased pod biomass and yield in saline-alkali soil and normal soil, and improved their agronomic characteristics. In conclusion, peanut seeds coated with AMF improved the root morphological characteristics of peanuts and improved the physical and chemical properties in peanut rhizosphere, especially in saline-alkali soil. The process of rhizosphere soil nutrient transformation was also enhanced. Finally, AMF improved plant agronomic traits to increase the pod yield (16.5~21.9%). This study provides the theoretical basis and technical support for the application of AMF in peanut production in saline-alkali soil.

8.
BMC Genomics ; 24(1): 637, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875812

ABSTRACT

BACKGROUND: Polyadenylation is a crucial process that terminates mRNA molecules at their 3'-ends. It has been observed that alternative polyadenylation (APA) can generate multiple transcripts from a single gene locus, each with different polyadenylation sites (PASs). This leads to the formation of several 3' untranslated regions (UTRs) that vary in length and composition. APA has a significant impact on approximately 60-70% of eukaryotic genes and has far-reaching implications for cell proliferation, differentiation, and tumorigenesis. RESULTS: In this study, we conducted long-read, single-molecule sequencing of mRNA from peanut seeds. Our findings revealed that over half of all peanut genes possess over two PASs, with older developing seeds containing more PASs. This suggesting that the PAS exhibits high tissue specificity and plays a crucial role in peanut seed maturation. For the peanut acetyl-CoA carboxylase A1 (AhACCA1) gene, we discovered four 3' UTRs referred to UTR1-4. RT-PCR analysis showed that UTR1-containing transcripts are predominantly expressed in roots, leaves, and early developing seeds. Transcripts containing UTR2/3 accumulated mainly in roots, flowers, and seeds, while those carrying UTR4 were constitutively expressed. In Nicotiana benthamiana leaves, we transiently expressed all four UTRs, revealing that each UTR impacted protein abundance but not subcellular location. For functional validation, we introduced each UTR into yeast cells and found UTR2 enhanced AhACCA1 expression compared to a yeast transcription terminator, whereas UTR3 did not. Furthermore, we determined ACC gene structures in seven plant species and identified 51 PASs for 15 ACC genes across four plant species, confirming that APA of the ACC gene family is universal phenomenon in plants. CONCLUSION: Our data demonstrate that APA is widespread in peanut seeds and plays vital roles in peanut seed maturation. We have identified four 3' UTRs for AhACCA1 gene, each showing distinct tissue-specific expression patterns. Through subcellular location experiment and yeast transformation test, we have determined that UTR2 has a stronger impact on gene expression regulation compared to the other three UTRs.


Subject(s)
Acetyl-CoA Carboxylase , Arachis , Arachis/genetics , Arachis/metabolism , Acetyl-CoA Carboxylase/genetics , Saccharomyces cerevisiae/genetics , 3' Untranslated Regions , Polyadenylation , RNA, Messenger/metabolism
9.
Water Sci Technol ; 88(5): 1246-1268, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37771225

ABSTRACT

To explore the key factors and specific thresholds of water resources limiting economic development, and to provide technical support for water resources management in cities dominated by agriculture similar to Zhangjiakou. We used the Tapio elastic decoupling method to quantitatively evaluate the decoupling relationship between the water resources ecological footprint (WEF) and economic growth. Then the logarithmic mean Divisia index (LMDI) and mathematical statistics are used to identify the key factors and threshold effects. The results show a significant decreasing trend in the WEF and obvious spatial differences in Zhangjiakou between 2006 and 2015, with agricultural ecological footprint dominating all districts and counties (77.54 ± 14.35%). The changes in technological effect are a contributing factor to the decoupling between the WEF and the economy in Zhangjiakou, while the economic effect is the main restricting factor. In particular, there is a high correlation between the WEF and the number of water-saving irrigation machines and the total power of agricultural machinery. According to the findings, for water-scarce cities such as Zhangjiakou, where agriculture is the primary focus, it is suggested that increasing the number of agricultural machinery can effectively alleviate the problem of water scarcity constraining economic development.


Subject(s)
Economic Development , Water Resources , Cities , Water , Agriculture , China
10.
Plants (Basel) ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631114

ABSTRACT

Long-term excessive application of chemical fertilizers can cause many problems, such as soil degradation and environmental pollution. Therefore, we reduced conventional nitrogen fertilization and added organic fertilizers in some cases to investigate the response of photosynthetic characteristics, root nodules and yield on reduced nitrogen fertilization. Compared to conventional nitrogen fertilization, the 25% and 35% nitrogen reduction treatments reduced the leaf area index, net photosynthetic rate, 100-fruit weight, 100-kernel weight and the yield of peanut, but had no significant effect on the kernel rate. With constant N fertilizer, adding organic fertilization alone increased leaf area index, chlorophyll, net photosynthetic rate and yield of peanut. In compounded treatments of nitrogen and organic fertilizer, the highest yields were achieved in the 25% N reduction with the 3000 kg/hm-2 organic fertilizer treatment (T3) and the 4500 kg/hm-2 organic fertilizer treatment (T4); furthermore, the net photosynthetic rate, leaf area index, yield and fertilizer contribution were significantly higher in these two treatments than in the conventional fertilizer treatments. Nitrogen fertilizer had significant effects on the quantity and fresh weight of root nodules. Concretely, nitrogen reduction increased the quantity and fresh weight of root nodules of peanut in the early stage of fertility but decreased them in the harvest stage. Nitrogen reduction with an additional organic fertilizer in the late stage of fertility increased the quantity and fresh weight of root nodules of peanut. Considering the property of root nodules was significantly positively correlated with net photosynthetic rate and yield, the arguments above may be the mechanism of the highest yields found in T3 and T4. This work can provide empirical and instructional support for a balanced fertilization strategy in peanut agriculture and high-yielding and efficient cultivation of peanut.

11.
Heliyon ; 9(1): e12878, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36711321

ABSTRACT

Triacylglycerols is the major storage lipid in most crop seeds. As the key enzyme catalyzing the final step of triacylglycerols biosynthesis, the activity of diacylglycerol acyltransferases directly related to oil content. It has been shown that certain amino acids are very important for enzyme activity, one amino acid variation will greatly change the enzyme activity. In this study, we identified three amino acid point mutations that affect the Arachis hypogaea diacylglycerol acyltransferase 2 enzyme activity, T107M, K251R and L316P. According to the three amino acid variations, three single-nucleotide-mutant sequences of Arachis hypogaea diacylglycerol acyltransferase 2a were constructed and transformed into yeast strain H1246 for function verification. Results showed that T107M and K251R could change the fatty acid content and composition of the transformed yeast strains, whereas L316P led to the loss of enzyme activity. By analyzing the 2D and 3D structures of the three variants, we found that the changes of spatial structure of T107M, K251R and L316P caused the changes of the enzyme activity. Our study could provide a theoretical basis for changing the enzyme activity of DGAT by genetic engineering, and provide a new idea for increasing the oil content of the crops.

12.
J Sci Food Agric ; 103(7): 3558-3568, 2023 May.
Article in English | MEDLINE | ID: mdl-36719269

ABSTRACT

BACKGROUND: Yanghe Watershed has low annual rainfall, uneven spatial and temporal distribution, extreme shortage of water resources in some areas. The contradiction between supply and demand of water for agricultural production is prominent and the expected production value cannot be achieved. Therefore, it is necessary to investigate the supply and demand of agricultural water resources and the impact of green water on agricultural crops in Yanghe Watershed. RESULTS: This article proposes a new crop economic model for increasing the green-water footprint to blue-water footprint ratio (GWF:BWF) in accordance with the regional characteristics, alleviating agricultural water shortage in irrigation areas, optimizing water resource allocation, and achieving sustainable agricultural development. The proposition is based on a study of five crops in eight districts and counties in the Yanghe River watershed. By combining the economic model F with a crop water production function, we achieved 89.3%, 88.9%, 97.1%, 81.5%, and 87.0% of the optimal water demands of the five crops, respectively, and effectively improved the underground irrigation of crops and the water resource utilization efficiency. CONCLUSION: The GWF:BWF threshold interval was subsequently selected based on the temporal changes in the BWF and GWF in the study area. This enabled significant reduction of the planting area of blue-water crops and increase in the proportion of green-water crops, while also improving the agricultural economy of the Yanghe Watershed. The proposed model promises to afford enhanced management of agricultural irrigation areas that experience rainfall shortage. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Water Resources , Water , Water/analysis , Agriculture , Agricultural Irrigation , Crops, Agricultural , China , Water Supply
13.
J Adv Res ; 42: 237-248, 2022 12.
Article in English | MEDLINE | ID: mdl-36513415

ABSTRACT

INTRODUCTION: Cultivated peanut (Arachis hypogaea L.) is an important oil crop for human nutrition and is cultivated in >100 countries. However, the present knowledge of its genomic diversity, evolution, and loci related to the seed traits is limited. OBJECTIVES: Our study intended to (1) uncover the population structure and the demographic history of peanuts, (2) identify signatures of selection that occurred during peanut improvement breeding, and (3) detect and verify the functions of candidate genes associated with seed traits. METHODS: We explored the population relationship and the evolution of peanuts using a largescale single nucleotide polymorphism dataset generated from the genome-wide resequencing of 203 cultivated peanuts. Genetic diversity and genomic scan analyses were applied to identify selective loci for genomic-selection breeding. Genome-wide association studies, transgenic experiments, and RNA-seq were employed to identify the candidate genes associated with seed traits. RESULTS: Our study revealed that the 203 resequenced accessions were divided into four genetic groups, consistent with their botanical classification. Moreover, the var. peruviana and var. fastigiata subpopulations have diverged to a greater extent than the others, and var. peruviana may be the earliest variant in the evolution from tetraploid ancestors. A recent dramatic expansion in the effective population size of the cultivated peanuts ca. 300-500 years ago was also noted. Selective sweeps underlying quantitative trait loci and genes of seed size, plant architecture, and disease resistance coincide with the major goals of improved peanut breeding compared with the landrace and cultivar populations. Genome-wide association testing with functional analysis led to the identification of two genes involved in seed weight and seed length regulation. CONCLUSION: Our study provides valuable information for understanding the genomic diversity and the evolution of peanuts and serves as a genomic basis for improving peanut cultivars.


Subject(s)
Arachis , Genome-Wide Association Study , Arachis/genetics , Chromosome Mapping , Genome, Plant , Genomics , Plant Breeding , Seeds/genetics
14.
Polymers (Basel) ; 14(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501475

ABSTRACT

In order to understand the ablation behaviors of CFRP laminates in an atmospheric environment irradiated by continuous wave laser, CFRP laminates were subjected to a 1080-nm continuous wave laser (6-mm laser spot diameter), with different laser power densities carried out in this paper. The internal delamination damage in CFRP laminates was investigated by C-Scan. The rear- and front-face temperature of CFRP laminates were monitored using the FLIR A 655 sc infrared camera, and the rear-face temperature was monitored by K type thermocouples. The morphology of ablation damage, the area size of the damaged heat affected zone (HAZ), crater depth, thermal ablation rate, mass ablation rate, line ablation rate, etc., of CFRP laminates were determined and correlated to the irradiation parameters. It is found that the area size of the damage HAZ, mass ablation rate, line ablation rate, etc., increased as the laser power densities. The dimensionless area size of the damaged HAZ decreased gradually along the thickness direction of the laser irradiation surface.

15.
Hum Exp Toxicol ; 41: 9603271221133547, 2022.
Article in English | MEDLINE | ID: mdl-36214461

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a cognitive impairment caused by sepsis, associated with increased morbidity and death. And acetaminophen (APAP) is a promising therapeutic medicine for SAE treatment. This research was designed to determine whether APAP alleviates SAE by attenuating ferroptosis and mediating the glutathione peroxidase (GPX4) pathway. The cecal ligation and puncture (CLP) approach was used to establish septic mouse models. The survival rates for 7 days were determined. The Morris water maze (MWM) was utilized to assess cognitive function. Hematoxylin and eosin (HE) staining identified histopathologic alterations in hippocampal tissue. Mitochondrial damage was discovered in hippocampal tissue using transmission electron microscopy (TEM). The reactive oxygen (ROS) levels in hippocampal tissue were measured using commercial assays. Septic cell models were produced using HT22 cells grown with 1 µg/ml lipopolysaccharide (LPS). ROS were quantified using immunofluorescence. Ferroptosis-related protein expression levels in hippocampal tissue and HT22 cells were measured using western blotting. To evaluate the iron content of hippocampal tissue and HT22 cells, commercial kits were employed. According to the findings, APAP improved survival rates, lowered hippocampal and mitochondrial damage, and improve cognitive impairment. In both animal and cell studies, APAP reduced iron content, ROS, glutamate antiporter (xCT), 4-hydroxy-2-nonenal (4-HNE) levels but increased GPX4 expression. However, RSL3, a GPX4 inhibitor that acts as a ferroptosis activator, decreased the protective properties of APAP in vitro. Our findings suggest that APAP reduces sepsis-induced cognitive impairment by reducing ferroptosis, which is mediated by the GPX4 signaling pathway.


Subject(s)
Ferroptosis , Sepsis-Associated Encephalopathy , Sepsis , Acetaminophen/pharmacology , Animals , Antiporters , Eosine Yellowish-(YS) , Glutamates , Glutathione Peroxidase/metabolism , Hematoxylin , Iron/metabolism , Lipopolysaccharides , Mice , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/pathology , Sepsis-Associated Encephalopathy/complications , Sepsis-Associated Encephalopathy/drug therapy
16.
Front Cell Infect Microbiol ; 12: 953027, 2022.
Article in English | MEDLINE | ID: mdl-36061868

ABSTRACT

Quick differentiation of the circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmission. However, the widely used gene sequencing method is time-consuming and costly when facing the viral recombinant variants, because partial or whole genome sequencing is required. Allele-specific real time RT-PCR (qRT-PCR) represents a quick and cost-effective method in SNP genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 3 multiplex allele-specific qRT-PCR assays targeting 12 key differential mutations for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2). Two parallel multiplex qRT-PCR reactions were designed to separately target the protype allele and the mutated allele of the four mutations in each allele-specific qRT-PCR assay. The variation of Cp values (ΔCp) between the two multiplex qRT-PCR reactions was applied for mutation determination. The developed multiplex allele-specific qRT-PCR assays exhibited outstanding analytical sensitivities (with limits of detection [LoDs] of 2.97-27.43 copies per reaction), wide linear detection ranges (107-100 copies per reaction), good amplification efficiencies (82% to 95%), good reproducibility (Coefficient of Variations (CVs) < 5% in both intra-assay and inter-assay tests) and clinical performances (99.5%-100% consistency with Sanger sequencing). The developed multiplex allele-specific qRT-PCR assays in this study provide an alternative tool for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2).


Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
17.
Front Aging Neurosci ; 14: 940106, 2022.
Article in English | MEDLINE | ID: mdl-35754958

ABSTRACT

Although the biological relationship between vitamin D (VD) deficiency and cognitive function has been recognized by many scholars, the theoretical mechanisms involved are still not well-understood. In this study, we demonstrated the role of VD in alleviating the cognitive dysfunction in aged mice caused by sevoflurane anesthesia. Forty female C57BL/6 mice aged 12 months were selected for the experiment. VD (-) and VD (+) mouse models and sevoflurane anesthesia models were established. Mice were randomly divided into normal elderly group (NC group), normal aged mice + sevoflurane anesthesia treatment group (NS group), aged VD (-) mice + sevoflurane anesthesia treatment group [VD (-) group], and aged VD (+) + sevoflurane anesthesia treatment group [VD (+) group]. To compare the emergence time after sevoflurane anesthesia in aged mice with different levels of VD and to test the cognitive function of four groups through the water maze. Inflammatory factor expression and cholinergic activity in hippocampus tissue of all mice were measured at the end of behavioral tests. These data show that, low levels of VD aggravated the delayed emergence and cognitive dysfunction in aged mice caused by sevoflurane anesthesia, while higher levels of VD mitigated this impairment by enhancing cholinergic activity and reducing inflammatory factor expression in the hippocampus.

18.
Support Care Cancer ; 30(10): 7983-7989, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35759048

ABSTRACT

OBJECTIVES: The purpose of this study was to explore the clinical application value of phase angle (PA) of six parts in the nutritional evaluation and construct a prediction model for diagnosing malnutrition of tumor patients. METHODS: A total of 1129 patients with malignant tumors were analyzed retrospectively. The age, sex, tumor location and body mass index (BMI) of the patients were collected, and PA of six parts was measured. The Patient Subjective Global Assessment (PG-SGA) was used to evaluate the nutritional status of each patient. RESULTS: According to the PG-SGA, 66.5% (n = 750) of the patients were evaluated as malnourished. Patients under the age of 65 had higher PA values. The PA value of men was higher than that of women (except PA-RL). In different disease groups, the PA-RA and PA-TR values were significantly different. In our study, PA value increases with BMI and decreases with PG-SGA (except PG-SGA 0-1 group). Multivariate regression analysis indicates that the age (HR = 1.051, 95% CI 1.037-1.066, P < 0.001), BMI (HR = 0.885, 95% CI 0.849-0.924, P < 0.001), and PA-WB (HR = 0.615, 95% CI 0.546-0.692, P < 0.001) were independent significant predictors associated with malnutrition. The AUC of the prediction model is 0.7631 (p < 0.001), indicating that the model including age, BMI, and PA-WB has certain diagnostic value for the diagnosis of malnutrition. CONCLUSION: The PA-WB is an independent prognostic factor of malnutrition. The prediction model constructed by age, BMI, and PA-WB can be used as a useful tool for nutritional evaluation of tumor patients. TRIAL REGISTRATION: Clinical Trial No.: ChiCTR2100047858.


Subject(s)
Malnutrition , Neoplasms , Female , Humans , Male , Malnutrition/diagnosis , Malnutrition/etiology , Neoplasms/complications , Nutrition Assessment , Nutritional Status , Retrospective Studies
19.
Front Psychiatry ; 13: 893309, 2022.
Article in English | MEDLINE | ID: mdl-35492737

ABSTRACT

Purpose: Vitamin D prevents hypocalcaemia, osteoporosis, and infections, among other problems, and is involved in the prevention and treatment of cardiovascular and neurological diseases. Recently, vitamin D was shown to improve cognitive dysfunction caused by Alzheimer's disease and vascular dementia. This study aims to explore the correlation between preoperative serum vitamin D and postoperative cognitive disorder (POCD) occurrence in elderly patients with gastrointestinal tumors to guide perioperative medication use and promote early patient recovery. Methods: This study recruited 238 elderly patients (65 ≤ age ≤ 85) who underwent gastrointestinal tumor surgery; 117 cases were enrolled, and 55 controls of the same age and education level as the cases were included. Blood samples were taken preoperatively and at 7, 15, 30, and 90 days postoperatively, and plasma vitamin D (25OH-D3) and glutathione (GSH) was measured. Different from the previous diagnosis of POCD was obtained by telephone interview through Cognitive Status Modified Telephone Interview (TICS-m), mainly for memory impairment, a series of neuropsychological tests was used to evaluate cognitive function, Picture Recollect Test, Stroop Color-word Test, and Digit Symbol Substitution Test were used to comprehensively evaluate the three domains of cognitive function of patients, namely memory, attention and information processing ability. All neuropsychiatric assessments were performed at the bedside and completed face-to-face by the assessment staff and the patient. Results: A total of 65.8% (77/117) of elderly patients undergoing gastrointestinal tumor surgery had preoperative vitamin D deficiency (serum 25OH-D concentration < 12 ng/ml), of whom 46.7% (36/77, 7 days after surgery), 31.2% (24/77, 15 days after surgery), 15.6% (12/77, 30 days after surgery), and 9% (7/77, 90 days after surgery) of patients developed POCD; 7.5% (3/40) of patients without vitamin D deficiency developed PNDs, which was detected only on the 7th day after surgery. Conclusions: Vitamin D deficiency can increase neurocognitive disorder risk in elderly patients during the perioperative period, possibly because low vitamin D levels cannot effectively inhibit the postoperative oxidative stress increase. Trial Registration: This experiment was approved and registered by the China Clinical Trial Registration Center, registration number ChiCTR2100046900 (30/05/2021).

20.
Clin Nutr ; 41(6): 1320-1327, 2022 06.
Article in English | MEDLINE | ID: mdl-35576844

ABSTRACT

BACKGROUND & AIMS: Malnutrition in cancer patients is a common but under-diagnosed condition that has negative effects on clinical outcomes. The development of an easy and reliable malnutrition assessment tool is thus critical for identification and nutritional support. We aimed to develop a phase angle (PA)-based prediction model of malnutrition and evaluate it in patient prognosis. METHODS: A retrospective cohort of data consisting of demographic, clinical parameter and PA test from 702 adult hospitalized cancer patients between June 2020 to February 2021 was analysed. PAs for 6 body sites were measured by a body composition analyser. Patient-generated subjective global assessment (PG-SGA) scale was used as the diagnostic standard of nutritional status (PG-SGA ≥ 4 points defined as malnutrition). Decision tree, mean decrease accuracy of random forest, stepAIC strategy and test of generalized likelihood ratio were employed to select important variables and develop models for predicting PG-SGA binary classification (PG-SGA < 4 or ≥ 4 as a split). Survival curves were plotted by using the Kaplan-Meier method. RESULTS: In all, 490 (69.8%) patients were malnourished according to their actual PG-SGA scores. Except for age, tumor type and body mass index (BMI), PA of the left arm was found to influence malnutrition classification and incorporated in the final predictive model. The model achieved good performance with an AUC of 0.813, 75.9% sensitivity and 73.3% specificity. The actual and predicted survival curves were almost overlapped. CONCLUSION: This study provides a simple nutritional assessment tool which may be used to facilitate oncology physicians to identify cancer patients at nutritional risk and potentially implement nutritional support. CLINICAL TRIAL NO: ChiCTR2100047858.


Subject(s)
Malnutrition , Neoplasms , Adult , Humans , Malnutrition/diagnosis , Neoplasms/complications , Nutrition Assessment , Nutritional Status , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...