Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Plant Physiol Biochem ; 210: 108630, 2024 May.
Article in English | MEDLINE | ID: mdl-38657548

ABSTRACT

WRKY transcription factors (TFs), originating in green algae, regulate flowering time and responses to environmental changes in plants. However, the molecular mechanisms underlying the role of WRKY TFs in the correlation between flowering time and environmental changes remain unclear. Therefore, this review summarizes the association of WRKY TFs with flowering pathways to accelerate or delay flowering. WRKY TFs are implicated in phytohormone pathways, such as ethylene, auxin, and abscisic acid pathways, to modulate flowering time. WRKY TFs can modulate salt tolerance by regulating flowering time. WRKY TFs exhibit functional divergence in modulating environmental changes and flowering time. In summary, WRKY TFs are involved in complex pathways and modulate response to environmental changes, thus regulating flowering time.


Subject(s)
Flowers , Plant Proteins , Transcription Factors , Flowers/genetics , Flowers/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism
2.
Neurobiol Dis ; 195: 106499, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38588753

ABSTRACT

The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.


Subject(s)
Brain-Gut Axis , Brain , Sepsis-Associated Encephalopathy , Humans , Brain-Gut Axis/physiology , Sepsis-Associated Encephalopathy/physiopathology , Sepsis-Associated Encephalopathy/metabolism , Animals , Brain/physiopathology , Brain/metabolism , Gastrointestinal Microbiome/physiology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/physiopathology , Pituitary-Adrenal System/metabolism , Sepsis/physiopathology , Sepsis/complications
3.
PLoS One ; 19(4): e0301823, 2024.
Article in English | MEDLINE | ID: mdl-38578766

ABSTRACT

BACKGROUND: According to epidemiological studies, particulate matter 2.5 (PM2.5) is a significant contributor to cardiovascular disease (CVD). However, making causal inferences is difficult due to the methodological constraints of observational studies. In this study, we used two-sample Mendelian randomization (MR) to examine the causal relationship between PM 2.5 and the risk of CVD. METHODS: Genome-wide association study (GWAS) statistics for PM2.5 and CVD were collected from the FinnGen and UK Biobanks. Mendelian randomization analyses were applied to explore the causal effects of PM2.5 on CVD by selecting single-nucleotide polymorphisms(SNP) as instrumental variables. RESULTS: The results revealed that a causal effect was observed between PM2.5 and coronary artery disease(IVW: OR 2.06, 95% CI 1.35, 3.14), and hypertension(IVW: OR 1.07, 95% CI 1.03, 1.12). On the contrary, no causal effect was observed between PM2.5 and myocardial infarction(IVW: OR 0.73, 95% CI 0.44, 1.22), heart failure(IVW: OR 1.54, 95% CI 0.96, 2.47), atrial fibrillation(IVW: OR 1.03, 95% CI 0.71, 1.48), and ischemic stroke (IS)(IVW: OR 0.98, 95% CI 0.54, 1.77). CONCLUSION: We discovered that there is a causal link between PM2.5 and coronary artery disease and hypertension in the European population, using MR methods. Our discovery may have the significance of public hygiene to improve the understanding of air quality and CVD risk.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Hypertension , Humans , Cardiovascular Diseases/etiology , Cardiovascular Diseases/genetics , Coronary Artery Disease/etiology , Coronary Artery Disease/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Particulate Matter/adverse effects
4.
Biomaterials ; 308: 122569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626556

ABSTRACT

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , Aluminum Oxide , Dendritic Cells , Hepatitis B Surface Antigens , Nanoparticles , Oligodeoxyribonucleotides , Adjuvants, Immunologic/pharmacology , Animals , Nanoparticles/chemistry , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , Hepatitis B Surface Antigens/immunology , Hepatitis B Surface Antigens/metabolism , Aluminum Hydroxide/chemistry , Aluminum Hydroxide/pharmacology , Mice , Mice, Inbred C57BL , Female , Cytokines/metabolism , Alum Compounds/chemistry , Alum Compounds/pharmacology
5.
ACS Appl Mater Interfaces ; 16(13): 16612-16621, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38509757

ABSTRACT

Developing excellent electromagnetic interference (EMI) shielding materials with robust EMI shielding efficiency (SE), high mechanical performance, and multifunctionality is imperative. Carbon materials are well recognized as promising alternatives for high-performance EMI shielding, but their high brittleness greatly hampers their applications. In this work, a cellulose nanofiber/reduced graphene oxide-glucose carbon aerogel (C-CNFs/rGO-glu) with high compression, elasticity, and excellent EMI shielding performance was fabricated by directional freeze-drying followed by carbonization. Specifically, the height and stress retention are 88% and 90.9%, respectively, after 100 cycles of compression release at a high strain of 70%. The electromagnetic shielding effectiveness of the aerogels reached 67.5 dB and presented an absorption-dominant shielding mechanism with a 97.5% absorption loss ratio. Further, the carbon aerogel could capture subtle electrical signals to monitor different human behaviors and showed excellent heat insulation and infrared stealth performance.

6.
Heliyon ; 10(4): e26563, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434075

ABSTRACT

Background: This study aimed to retrospectively investigate the early predictive value of inflammation-related parameters in-hospital mortality of septic patients. Methods: We retrospectively recruited 606 patients from Wuhan Union Hospital from January 2009 to October 2022. The inflammation-related parameters including neutrophil-to-lymphocyte ratio (NLR), neutrophil percentage (NE%), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) in survivals and non-survivals on day 1, 2, 3 and 7 after hospitalization were collected and analyzed. Results: NLR and NE% in non-survivals (n = 185) were significantly higher than those in survivals (n = 421). The area under the receiver operating characteristic curve (AUC) of NLR or NE% was 0.880 or 0.852 on day 1, 0.770 or 0.790 on day 2, 0.784 or 0.777 on day 3, and 0.732 or 0.741 on day 7. The optimal cut-off values of NLR or NE% for predicting in-hospital mortality were 10.769 or 87.70% on day 1, 17.544 or 90.69% on day 2, 14.395 or 85.00% on day 3, and 9.105 or 83.93% on day 7. The day 1, 2 and 3 NLR and NE% were significant predictors of in-hospital mortality in the Cox proportional hazards models. Conclusions: NLR ≥10.769 and NE% ≥ 87.70% could be used early biomarkers for predicting in-hospital mortality of septic patients.

7.
Ear Nose Throat J ; : 1455613241237083, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470084

ABSTRACT

Lipoma of the tongue is a rare benign tumor that accounts for approximately 1% to 5% of all oral cavity tumors while 0.3% of tumors are of the tongue. Notably, it is rarer in children. In this article, we report the case of a 4-year-old girl with lipomas of the tongue. The lipomas were found at age 1 year by her parents, located on the tip, ventro, and dorsum of the tongue, and presenting with a trend to increase gradually. At the time of presentation to the hospital at age 4 years, the articulatory function of the patient was partially affected, and surgical excision was performed. The surgery was uneventful, and no evidence of recurrence was noted at 3 month follow-up.

8.
IEEE Trans Image Process ; 33: 2347-2360, 2024.
Article in English | MEDLINE | ID: mdl-38470592

ABSTRACT

Deep unrolling-based snapshot compressive imaging (SCI) methods, which employ iterative formulas to construct interpretable iterative frameworks and embedded learnable modules, have achieved remarkable success in reconstructing 3-dimensional (3D) hyperspectral images (HSIs) from 2D measurement induced by coded aperture snapshot spectral imaging (CASSI). However, the existing deep unrolling-based methods are limited by the residuals associated with Taylor approximations and the poor representation ability of single hand-craft priors. To address these issues, we propose a novel HSI construction method named residual completion unrolling with mixed priors (RCUMP). RCUMP exploits a residual completion branch to solve the residual problem and incorporates mixed priors composed of a novel deep sparse prior and mask prior to enhance the representation ability. Our proposed CNN-based model can significantly reduce memory cost, which is an obvious improvement over previous CNN methods, and achieves better performance compared with the state-of-the-art transformer and RNN methods. In this work, our method is compared with the 9 most recent baselines on 10 scenes. The results show that our method consistently outperforms all the other methods while decreasing memory consumption by up to 80%.

9.
Front Oncol ; 14: 1294745, 2024.
Article in English | MEDLINE | ID: mdl-38410098

ABSTRACT

Introduction: The risk that a large polyp (≥10 mm) evolves into high-grade dysplasia (HGD) is relatively high compared with that of a small/diminutive polyp (<10 mm). Recently, the detection of small and diminutive polyps has been substantially improved with the advancement of endoscopy. However, further research is needed on the role of the incidence of HGD caused by the co-occurrence of small and diminutive polyps in the progression of HGD. In this study, we aim to investigate whether and how the small and diminutive polyps correlate with the incidence of HGD in the population. Methods: The pooled data were deeply analyzed from four published randomized controlled trials (RCTs) regarding colon polyp detection. All polyps detected were examined and confirmed by pathologists. The primary outcome was the composition ratio of the HGD polyps in each polyp size category. Results: Among a total of 3,179 patients with 2,730 polyps identified, there were 83 HGD polyps confirmed, and 68 patients had at least one polyp with HGD. The risk of development of HGD was lower for a single small and diminutive polyp than for one large polyp (2.18% vs. 22.22%, P < 0.0001). On the contrary, the composition ratio for HGD from small and diminutive polyps was significantly higher than that from the large ones (68.67% vs. 31.33%, P < 0.0001). The combined number of HGD presented a trend negatively correlated to size. Conclusions: Our data demonstrated that the absolute number of HGD significantly derives more from small and diminutive polyps than from the large ones, and the collective number of small and diminutive polyps per patient is indicative of his/her HGD exposure. These findings positively provide novel perspectives on the management of polyps and may further optimize the prevention of colorectal cancer. Systematic Review Registration: http://www.chictr.org.cn, identifier ChiCTR1900025235, ChiCTR1800017675, ChiCTR1800018058, and ChiCTR1900023086.

10.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203792

ABSTRACT

Peanut Fusarium rot, which is widely observed in the main peanut-producing areas in China, has become a significant factor that has limited the yield and quality in recent years. It is highly urgent and significant to clarify the regulatory mechanism of peanuts in response to Fusarium oxysporum. In this study, transcriptome and proteome profiling were combined to provide new insights into the molecular mechanisms of peanut stems after F. oxysporums infection. A total of 3746 differentially expressed genes (DEGs) and 305 differentially expressed proteins (DEPs) were screened. The upregulated DEGs and DEPs were primarily enriched in flavonoid biosynthesis, circadian rhythm-plant, and plant-pathogen interaction pathways. Then, qRT-PCR analysis revealed that the expression levels of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and cinnamic acid-4-hydroxylase (C4H) genes increased after F. oxysporums infection. Moreover, the expressions of these genes varied in different peanut tissues. All the results revealed that many metabolic pathways in peanut were activated by improving key gene expressions and the contents of key enzymes, which play critical roles in preventing fungi infection. Importantly, this research provides the foundation of biological and chemical analysis for peanut disease resistance mechanisms.


Subject(s)
Arachis , Fusarium , Arachis/genetics , Proteomics , Gene Expression Profiling
11.
Heliyon ; 10(2): e24380, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293388

ABSTRACT

Cytokine release syndrome (CRS) can be induced by immune checkpoint inhibitors (ICIs). Although the incidence of CRS is low, it is often underreported. Here, we report two severe CRS cases and summarize and review 51 patients with ICI-induced CRS to explore the possible contributing factors to the disease prognosis and provide assistance for therapy. Our analysis found that the population with ICI-induced CRS consists mainly of male patients with an average age of 61.74 years. The primary malignant tumor type was lung cancer, and the clinical stage of most patients was stage IV. Notably, patients who experience a longer time to CRS onset, higher IL-6 levels, and lower platelet counts may be more likely to develop severe CRS. Cardiovascular, respiratory, neurological, and coagulation toxicities are more common in higher-grade CRS and may serve as markers for patient experiencing ICU admission, oxygen supplementation, hypotension, high-dose vasopressors usage, and intubation.

12.
Toxins (Basel) ; 16(1)2024 01 19.
Article in English | MEDLINE | ID: mdl-38276533

ABSTRACT

(1) Background: Safety problems associated with aflatoxin B1 (AFB1) contamination have always been a major threat to human health. Removing AFB1 through adsorption is considered an attractive remediation technique. (2) Methods: To produce an adsorbent with a high AFB1 adsorption efficiency, a magnetic reduced graphene oxide composite (Fe3O4@rGO) was synthesized using one-step hydrothermal fabrication. Then, the adsorbent was characterized using a series of techniques, such as SEM, TEM, XRD, FT-IR, VSM, and nitrogen adsorption-desorption analysis. Finally, the effects of this nanocomposite on the nutritional components of treated foods, such as vegetable oil and peanut milk, were also examined. (3) Results: The optimal synthesis conditions for Fe3O4@rGO were determined to be 200 °C for 6 h. The synthesis temperature significantly affected the adsorption properties of the prepared material due to its effect on the layered structure of graphene and the loading of Fe3O4 nanoparticles. The results of various characterizations illustrated that the surface of Fe3O4@rGO had a two-dimensional layered nanostructure with many folds and that Fe3O4 nanoparticles were distributed uniformly on the surface of the composite material. Moreover, the results of isotherm, kinetic, and thermodynamic analyses indicated that the adsorption of AFB1 by Fe3O4@rGO conformed to the Langmuir model, with a maximum adsorption capacity of 82.64 mg·g-1; the rapid and efficient adsorption of AFB1 occurred mainly through chemical adsorption via a spontaneous endothermic process. When applied to treat vegetable oil and peanut milk, the prepared material minimized the loss of nutrients and thus preserved food quality. (4) Conclusions: The above findings reveal a promising adsorbent, Fe3O4@rGO, with favorable properties for AFB1 adsorption and potential for food safety applications.


Subject(s)
Graphite , Nanocomposites , Water Pollutants, Chemical , Humans , Graphite/chemistry , Aflatoxin B1/chemistry , Spectroscopy, Fourier Transform Infrared , Adsorption , Plant Oils , Magnetic Phenomena , Nanocomposites/chemistry , Kinetics
13.
Health Inf Sci Syst ; 11(1): 53, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37974902

ABSTRACT

Patient representation learning aims to encode meaningful information about the patient's Electronic Health Records (EHR) in the form of a mathematical representation. Recent advances in deep learning have empowered Patient representation learning methods with greater representational power, allowing the learned representations to significantly improve the performance of disease prediction models. However, the inherent shortcomings of deep learning models, such as the need for massive amounts of labeled data and inexplicability, limit the performance of deep learning-based Patient representation learning methods to further improvements. In particular, learning robust patient representations is challenging when patient data is missing or insufficient. Although data augmentation techniques can tackle this deficiency, the complex data processing further weakens the inexplicability of patient representation learning models. To address the above challenges, this paper proposes an Explainable and Augmented Patient Representation Learning for disease prediction (EAPR). EAPR utilizes data augmentation controlled by confidence interval to enhance patient representation in the presence of limited patient data. Moreover, EAPR proposes to use two-stage gradient backpropagation to address the problem of unexplainable patient representation learning models due to the complex data enhancement process. The experimental results on real clinical data validate the effectiveness and explainability of the proposed approach.

14.
ACS Appl Mater Interfaces ; 15(42): 48871-48881, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37816068

ABSTRACT

Virus-like particle (VLP)-based vaccines are required to be associated with a suitable adjuvant to potentiate their immune responses. Herein, we report a novel, biodegradable, and biocompatible polyphosphoester-based amphiphilic cationic polymer, poly(ethylene glycol)-b-poly(aminoethyl ethylene phosphate) (PEG-PAEEP), as a Hepatitis B surface antigen (HBsAg)-VLP vaccine adjuvant. The polymer adjuvant effectively bound with HBsAg-VLP through electrostatic interactions to form a stable vaccine nanoformulation with a net positive surface charge. The nanoformulations exhibited enhanced cellular uptake by macrophages. HBsAg-VLP/PEG-PAEEP induced a significantly higher HBsAg-specific IgG titer in mice than HBsAg-VLP alone after second immunization, indicative of the antigen-dose sparing advantage of PEG-PAEEP. Furthermore, the nanoformulations exhibited a favorable biocompatibility and in vivo tolerability. This work presents the PEG-PAEEP copolymer as a promising vaccine adjuvant and as a potentially effective alternative to aluminum adjuvants.


Subject(s)
Hepatitis B Surface Antigens , Vaccines, Virus-Like Particle , Mice , Animals , Polymers , Adjuvants, Vaccine , Hepatitis B Vaccines , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Immunity, Cellular , Mice, Inbred BALB C
15.
Plant Physiol Biochem ; 204: 108131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37897893

ABSTRACT

WRKY transcription factors (TFs) play important roles in plant growth and development and responses to abiotic and biotic stresses. Since the initial isolation of a WRKY TF in Ipomoea batatas in 1994, WRKY TFs have been identified in plants, protozoa, and fungi. Peanut (Arachis hypogaea) is a key oil and protein crop for humans and a forage source for animal consumption. Several Arachis genomes have been sequenced and genome-wide WRKY TFs have been identified. In this review, we summarized WRKY TFs and their functions in A. hypogaea and its donors. We also standardized the nomenclature for Arachis WRKY TFs to ensure uniformity. We determined the evolutionary relationships between Arachis and Arabidopsis thaliana WRKY (AtWRKY) TFs using a phylogenetic analysis. Biological functions and regulatory networks of Arachis WRKY TFs were predicted using AtWRKY TFs. Thus, this review paves the way for studies of Arachis WRKY TFs.


Subject(s)
Arabidopsis , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Arachis/genetics , Arachis/metabolism , Phylogeny , Stress, Physiological , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Molecules ; 28(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687101

ABSTRACT

Chinese dwarf cherry (Cerasus humilis) is a wild fruit tree and medicinal plant endemic to China. Its fruits are rich in various bioactive compounds, such as flavonoids and carotenoids, which contribute greatly to their high antioxidant capacity. In this study, the contents of bioactive substances (chlorophyll, carotenoids, ascorbic acid, anthocyanin, total flavonoids, and total phenols), antioxidant capacities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS+) scavenging ability, and ferric-reducing antioxidant power (FRAP)) in differentially pigmented C. humilis fruits of four varieties were determined and compared. The results revealed that anthocyanin, total flavonoids and total phenols were the three main components responsible for the antioxidant activity of C. humilis fruits. 'Jinou No.1' fruits with dark red peel and red flesh had the highest contents of anthocyanin, total flavonoids, and total phenols, as well as the highest antioxidant capacities; 'Nongda No.5' fruits with yellow-green peel and yellow flesh had the highest contents of carotenoids and chlorophyll, while 'Nongda No.6' fruit had the highest ascorbic acid content. To further reveal the molecular mechanism underlying differences in the accumulation of carotenoids and flavonoids among differentially pigmented C. humilis fruits, the expression patterns of structural genes involved in the biosynthesis of the two compounds were investigated. Correlation analysis results revealed that the content of carotenoids in C. humilis fruits was very significantly positively correlated with the expression of the ChCHYB, ChZEP, ChVDE, ChNSY, ChCCD1, ChCCD4, ChNCED1, and ChNCED5 genes (p < 0.01) and significantly negatively correlated with the expression of ChZDS (p < 0.05). The anthocyanin content was very significantly positively correlated with ChCHS, ChFLS, and ChUFGT expression (p < 0.01). The total flavonoid content was very significantly positively correlated with the expression of ChCHS, ChUFGT, and ChC4H (p < 0.01) and significantly positively correlated with ChFLS expression (p < 0.05). This study can provide a basis for understanding the differences in the accumulation of bioactive substances, and is helpful for clarifying the mechanisms underlying the accumulation of various carotenoids and flavonoids among differentially pigmented C. humilis fruits.


Subject(s)
Antioxidants , Prunus , Antioxidants/pharmacology , Fruit , Anthocyanins , Carotenoids , Ascorbic Acid , Flavonoids , Chlorophyll , Phenols
17.
World J Emerg Surg ; 18(1): 46, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759264

ABSTRACT

BACKGROUND: Using self-expanding metal stents (SEMS) and decompression tubes (DT) as a bridge-to-surgery (BTS) treatment may avoid emergency operations for patients with colorectal cancer-caused obstructions. This study aimed to evaluate the efficacy and safety of the two approaches. METHODS: We systematically retrieved literature from January 1, 2000, to May 30, 2023, from the PubMed, Embase, Web of Science, SinoMed, Wanfang Data, Chinese National Knowledge Infrastructure, and Cochrane Central Register of Clinical Trials databases. Randomized controlled trials (RCTs) or cohort studies of SEMS versus DT as BTS in colorectal cancer obstruction were selected. Risks of bias were assessed for RCTs and cohort studies using the Cochrane Risk of Bias tool version 2 and Risk of Bias in Nonrandomized Studies of Interventions. Certainty of evidence was determined using the Graded Recommendation Assessment. Odds ratio (OR), mean difference (MD), and 95% confidence interval (95% CI) were used to analyze measurement data. RESULTS: We included eight RCTs and eighteen cohort studies involving 2,061 patients (SEMS, 1,044; DT, 1,017). Pooled RCT and cohort data indicated the SEMS group had a significantly higher clinical success rate than the DT group (OR = 1.99, 95% CI 1.04, 3.81, P = 0.04), but no significant difference regarding technical success (OR = 1.29, 95% CI 0.56, 2.96, P = 0.55). SEMS had a shorter postoperative length of hospital stays (MD = - 4.47, 95% CI - 6.26, - 2.69, P < 0.00001), a lower rates of operation-related abdominal pain (OR = 0.16, 95% CI 0.05, 0.50, P = 0.002), intraoperative bleeding (MD = - 37.67, 95% CI - 62.73, - 12.60, P = 0.003), stoma creation (OR = 0.41, 95% CI 0.23, 0.73, P = 0.002) and long-term tumor recurrence rate than DT (OR = 0.47, 95% CI 0.22, 0.99, P = 0.05). CONCLUSION: SEMS and DT are both safe as BTS to avoid emergency surgery for patients with colorectal cancer obstruction. SEMS is preferable because of higher clinical success rates, lower rates of operation-related abdominal pain, intraoperative bleeding, stoma creation, and long-term tumor recurrence, as well as a shorter postoperative length of hospital stays. Trial registration CRD42022365951 .


Subject(s)
Colorectal Neoplasms , Intestinal Obstruction , Humans , Colorectal Neoplasms/complications , Colorectal Neoplasms/surgery , Neoplasm Recurrence, Local/complications , Intestinal Obstruction/etiology , Intestinal Obstruction/surgery , Stents , Abdominal Pain , Decompression/adverse effects
18.
Front Pharmacol ; 14: 1139872, 2023.
Article in English | MEDLINE | ID: mdl-37576823

ABSTRACT

Background: Remimazolam besylate is a novel ultra-short-acting benzodiazepine that can potentially be a safe and effective sedative in intensive care units. This study aims to assess whether remimazolam besylate is not inferior to propofol in maintaining mild-to-moderate sedation in critically ill patients receiving long-term mechanical ventilation. Methods and analysis: This is a multicenter, randomized, single-blind, propofol-controlled, non-inferiority study. Eligible patients are randomly assigned to receive remimazolam besylate or propofol in a 1:1 ratio to maintain a Richmond Agitation-Sedation Scale score between -3 and 0. When patients are under-sedated, rescue sedation of dexmedetomidine is added. The primary outcome is the percentage of time in the target sedation range. The secondary outcomes are hours free from the invasive ventilator in 7 days, successful extubation in 7 days, and weaning time, the length of intensive care unit stay, the length of hospital stay, and mortality in 28 days. Modified intention-to-treat and safety analysis is performed. Clinical trial registration number: https://clinicaltrials.gov/ct2/show/NCT05555667.

19.
Front Oncol ; 13: 1169932, 2023.
Article in English | MEDLINE | ID: mdl-37441427

ABSTRACT

Background: Current expectations are that surgeons should be technically proficient in minimally invasive low anterior resection (LAR)-both laparoscopic and robotic-assisted surgery. However, methods to effectively train surgeons for both approaches are under-explored. We aimed to compare two different training programs for minimally invasive LAR, focusing on the learning curve and perioperative outcomes of two trainee surgeons. Methods: We reviewed 272 consecutive patients undergoing laparoscopic or robotic LAR by surgeons A and B, who were novices in conducting minimally invasive colorectal surgery. Surgeon A was trained by first operating on 80 cases by laparoscopy and then 56 cases by robotic-assisted surgery. Surgeon B was trained by simultaneously performing 80 cases by laparoscopy and 56 by robotic-assisted surgery. The cumulative sum (CUSUM) method was used to evaluate the learning curves of operative time and surgical failure. Results: For laparoscopic surgery, the CUSUM plots showed a longer learning process for surgeon A than surgeon B (47 vs. 32 cases) for operative time, but a similar trend in surgical failure (23 vs. 19 cases). For robotic surgery, the plots of the two surgeons showed similar trends for both operative times (23 vs. 25 cases) and surgical failure (17 vs. 19 cases). Therefore, the learning curves of surgeons A and B were respectively divided into two phases at the 47th and 32nd cases for laparoscopic surgery and at the 23rd and 25th cases for robotic surgery. The clinicopathological outcomes of the two surgeons were similar in each phase of the learning curve for each surgery. Conclusions: For surgeons with rich experience in open colorectal resections, simultaneous training for laparoscopic and robotic-assisted LAR of rectal cancer is safe, effective, and associated with accelerated learning curves.

20.
Plants (Basel) ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299092

ABSTRACT

Carotenoid cleavage oxygenases (CCOs) are key enzymes that function in degrading carotenoids into a variety of apocarotenoids and some other compounds. In this study, we performed genome-wide identification and characterization analysis of CCO genes in Cerasus humilis. Totally, nine CCO genes could be classified into six subfamilies, including carotenoid cleavage dioxygenase 1 (CCD1), CCD4, CCD7, CCD8, CCD-like and nine-cis-epoxycarotenoid dioxygenase (NCED), were identified. Results of gene expression analysis showed that ChCCOs exhibited diverse expression patterns in different organs and in fruits at different ripening stages. To investigate the roles of ChCCOs in carotenoids degradation, enzyme assays of the ChCCD1 and ChCCD4 were performed in Escerichia coli BL21(DE3) that can accumulate lycopene, ß-carotene and zeaxanthin. The prokaryotic expressed ChCCD1 resulted in obvious degradation of lycopene, ß-carotene and zeaxanthin, but ChCCD4 did not show similar functions. To further determine the cleaved volatile apocarotenoids of these two proteins, headspace gas chromatography/mass spectrometer analysis was performed. Results showed that ChCCD1 could cleave lycopene at 5, 6 and 5', 6' positions to produce 6-methy-5-hepten-2-one and could catalyze ß-carotene at 9, 10 and 9', 10' positions to generate ß-ionone. Our study will be helpful for clarifying the roles of CCO genes especially ChCCD1 in regulating carotenoid degradation and apocarotenoid production in C. humilis.

SELECTION OF CITATIONS
SEARCH DETAIL
...