Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
1.
Theriogenology ; 226: 308-318, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959841

ABSTRACT

Dielectric barrier discharge (DBD) plasma regulates the levels of reactive oxygen species (ROS), which are critical for sperm quality. MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which regulate post-transcriptional gene expression in animals. At present, it is unknown whether DBD plasma can regulate sperm ROS levels through miRNAs. To further understand the regulatory mechanism of DBD plasma on sperm ROS levels, miRNAs in fresh boar spermatozoa were detected using Illumina deep sequencing technology. We found that 25 known miRNAs and 50 novel miRNAs were significantly upregulated, and 14 known miRNAs and 74 novel miRNAs were significantly downregulated in DBD plasma-treated spermatozoa. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of differentially expressed miRNAs were involved in many activities and pathways associated with antioxidants. We verified that DBD plasma significantly increased boar sperm quality and reduced ROS levels. These results suggest that DBD plasma can improve sperm quality by regulating ROS levels via miRNAs. Our findings provide a potential strategy to improve sperm quality through miRNA-targeted regulation of ROS, which helps to increase male reproduction and protect cryopreserved semen in clinical practice.


Subject(s)
MicroRNAs , Reactive Oxygen Species , Spermatozoa , Animals , Male , MicroRNAs/metabolism , MicroRNAs/genetics , Spermatozoa/physiology , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism , Swine/physiology , Semen Analysis/veterinary , Plasma Gases/pharmacology , Gene Expression Regulation/physiology , Semen Preservation/veterinary
2.
Article in English | MEDLINE | ID: mdl-39022811

ABSTRACT

In response to growing concerns about public safety and environmental conservation, it is essential to develop a precise identification method for trace explosives. To improve the stability and detection sensitivity of perovskite quantum dots (PQDs) and address the issue of low porosity in traditional polymer-based photonic crystals (PhCs), this study proposed a PQD photoluminescence (PL) enhancement strategy based on the slow light effect of ZIF-8 PhCs for highly sensitive, selective, and convenient detection of 2,4,6-trinitrophenol (TNP). The slow light effect at the photonic band gap edge is the basis of amplifying the PL signal. PhCs were fabricated by the evaporation-induced self-assembly method. The diffraction wavelength overlapping the whole visible region was designed to match the emission wavelength of PQDs. Results showed that PhCs matching the PBG edge with PQDs' emission peak amplified the PL signal 11.3 times, significantly improving sensitivity for trace TNP detection with a limit as low as 2.52 nM. Moreover, there was a 13.3-fold enhancement of PQDs' fluorescence lifetime when the emission wavelength fell in the PBG range. The hydrophobic surface of ZIF-8 PhCs enhanced the PQDs' stability and moisture resistance. Furthermore, the selective quenching mechanism of TNP by the sensor was photoinduced electron transfer (PET) verified by DFT calculations and time-resolved PL decay dynamics measurements. This study demonstrated great potential for manipulating light emission enhancement by PhCs in developing efficient fluorescent sensors for trace environmental pollutant detection.

3.
Light Sci Appl ; 13(1): 151, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956018

ABSTRACT

Spin glass theory, as a paradigm for describing disordered magnetic systems, constitutes a prominent subject of study within statistical physics. Replica symmetry breaking (RSB), as one of the pivotal concepts for the understanding of spin glass theory, means that under identical conditions, disordered systems can yield distinct states with nontrivial correlations. Random fiber laser (RFL) based on Rayleigh scattering (RS) is a complex disordered system, owing to the disorder and stochasticity of RS. In this work, for the first time, a precise theoretical model is elaborated for studying the photonic phase transition via the platform of RS-based RFL, in which we clearly reveal that, apart from the pump power, the photon phase variation in RFL is also an analogy to the temperature term in spin-glass phase transition, leading to a novel insight into the intrinsic mechanisms of photonic phase transition. In addition, based on this model and real-time high-fidelity detection spectral evolution, we theoretically predict and experimentally observe the mode-asymmetric characteristics of photonic phase transition in RS-based RFL. This finding contributes to a deeper understanding of the photonic RSB regime and the dynamics of RS-based RFL.

4.
Foods ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891011

ABSTRACT

The fermentation process of Chinese Baijiu's fermented grains involves the intricate succession and metabolism of microbial communities, collectively shaping the Baijiu's quality. Understanding the composition and succession of these living microbial communities within fermented grains is crucial for comprehending fermentation and flavor formation mechanisms. However, conducting high-throughput analysis of living microbial communities within the complex microbial system of fermented grains poses significant challenges. Thus, this study addressed this challenge by devising a high-throughput analysis framework using light-flavor Baijiu as a model. This framework combined propidium monoazide (PMA) pretreatment technology with amplicon sequencing techniques. Optimal PMA treatment parameters, including a concentration of 50 µM and incubation in darkness for 5 min followed by an exposure incubation period of 5 min, were identified. Utilizing this protocol, viable microorganism biomass ranging from 8.71 × 106 to 1.47 × 108 copies/µL was successfully detected in fermented grain samples. Subsequent amplicon sequencing analysis revealed distinct microbial community structures between untreated and PMA-treated groups, with notable differences in relative abundance compositions, particularly in dominant species such as Lactobacillus, Bacillus, Pediococcus, Saccharomycopsis, Issatchenkia and Pichia, as identified by LEfSe analysis. The results of this study confirmed the efficacy of PMA-amplicon sequencing technology for analyzing living microbial communities in fermented grains and furnished a methodological framework for investigating living microbial communities in diverse traditional fermented foods. This technical framework holds considerable significance for advancing our understanding of the fermentation mechanisms intrinsic to traditional fermented foods.

5.
Nat Commun ; 15(1): 5238, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898098

ABSTRACT

While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.


Subject(s)
Benzophenanthridines , Isoquinolines , Metabolic Engineering , Saccharomyces cerevisiae , Temperature , Isoquinolines/metabolism , Isoquinolines/chemistry , Benzophenanthridines/metabolism , Benzophenanthridines/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Metabolic Engineering/methods , Halogenation , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics
6.
Front Immunol ; 15: 1380229, 2024.
Article in English | MEDLINE | ID: mdl-38911867

ABSTRACT

Background: Vitamin E, which is also known as tocopherol, is a compound with a polyphenol structure. Its esterified derivative, Vitamin E succinate (VES), exhibits unique anticancer and healthcare functions as well as immunomodulatory effects. Natural polysaccharides are proved to be a promising material for nano-drug delivery systems, which show excellent biodegradability and biocompatibility. In this study, we employed a novel bletilla striata polysaccharide-vitamin E succinate polymer (BSP-VES) micelles to enhance the tumor targeting and anti-colon cancer effect of andrographolide (AG). Methods: BSP-VES polymer was synthesized through esterification and its structure was confirmed using 1H NMR. AG@BSP-VES was prepared via the dialysis method and the drug loading, entrapment efficiency, stability, and safety were assessed. Furthermore, the tumor targeting ability of AG@BSP-VES was evaluated through targeted cell uptake and in vivo imaging. The antitumor activity of AG@BSP-VES was measured in vitro using MTT assay, Live&Dead cell staining, and cell scratch test. Results: In this study, we successfully loaded AG into BSP-VES micelles (AG@BSP-VES), which exhibited good stability, biosafety and sustained release effect. In addition, AG@BSP-VES also showed excellent internalization capability into CT26 cells compared with NCM460 cells in vitro. Meanwhile, the specific delivery of AG@BSP-VES micelles into subcutaneous and in-situ colon tumors was observed compared with normal colon tissues in vivo during the whole experiment process (1-24 h). What's more, AG@BSP-VES micelles exhibited significant antitumor activities than BSP-VES micelles and free AG. Conclusion: The study provides a meaningful new idea and method for application in drug delivery system and targeted treatment of colon cancer based on natural polysaccharides.


Subject(s)
Colonic Neoplasms , Diterpenes , Micelles , Polysaccharides , Animals , Colonic Neoplasms/drug therapy , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/administration & dosage , Humans , Mice , Cell Line, Tumor , Polysaccharides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Delivery Systems , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Nanoparticles/chemistry , Nanoparticle Drug Delivery System/chemistry , Mice, Nude , Mice, Inbred BALB C
7.
J Cancer ; 15(11): 3381-3393, 2024.
Article in English | MEDLINE | ID: mdl-38817872

ABSTRACT

The prognostic roles of apoptosis-related genes (ARGs) in lung adenocarcinoma (LUAD) have not been fully elucidated. In this study, differentially expressed genes (DEGs) associated with apoptosis and the hub genes were further identified. The prognostic values of the ARGs were evaluated using the LASSO Cox regression method. Prognostic values were determined using Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves in the TCGA and GEO datasets. The correlations, mutation data, and protein expression of the 10 ARGs predictive models were also analyzed. We identified 130 differentially expressed ARGs. DEGs were used to split LUAD cases into two subtypes whose overall survival (OS) were significantly different (P = 0.025). We developed a novel 10-gene signature using LASSO Cox regression. In both TCGA and GEO datasets, the results of the K-M curve and log-rank test showed significant difference in the survival rate of patients in the high-risk group and low-risk group (P < 0.0001). According to the GO and KEGG analyses, ARGs were enriched in cancer-related terms. In both cohorts, the immune status of the high-risk group was significantly lower than that of the low-risk group. Based on the differential expression of the ARGs, we established a new risk model to predict the prognosis of patients with LUAD.

8.
Nanomaterials (Basel) ; 14(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38727391

ABSTRACT

Nanomaterials, with unique physical, chemical, and biocompatible properties, have attracted significant attention as an emerging active platform in cancer diagnosis and treatment. Amongst them, metal-organic framework (MOF) nanostructures are particularly promising as a nanomedicine due to their exceptional surface functionalities, adsorption properties, and organo-inorganic hybrid characteristics. Furthermore, when bioactive substances are integrated into the structure of MOFs, these materials can be used as anti-tumor agents with superior performance compared to traditional nanomaterials. In this review, we highlight the most recent advances in MOFs-based materials for tumor therapy, including their application in cancer treatment and the underlying mechanisms.

9.
Theriogenology ; 223: 1-10, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38642435

ABSTRACT

Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 µM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 µM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.


Subject(s)
Antioxidants , Apoptosis , Glutamic Acid , Heat-Shock Response , Proto-Oncogene Proteins c-akt , Sertoli Cells , Signal Transduction , Animals , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Male , Apoptosis/drug effects , Glutamic Acid/metabolism , Antioxidants/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Heat-Shock Response/drug effects , Signal Transduction/drug effects , Swine , Thioredoxins/metabolism , Cells, Cultured
10.
Chem Commun (Camb) ; 60(33): 4463-4466, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38563776

ABSTRACT

Magnetostrictive CoFe2O4 (CFO) nanoparticles were encapsulated within a UiO-66 metal-organic-framework layer to form a CFO@UiO-66 nanohybrid. The deforming of CFO, in response to a high-frequency AC magnetic field, initiates the piezocatalytic property of UiO-66 to generate ˙OH radicals, which can kill cancer cells buried in thick tissues, showcasing bright potential for deep-seated tumor treatment.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Phthalic Acids , Humans , Magnetic Fields
12.
Food Chem ; 450: 139392, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640546

ABSTRACT

The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.


Subject(s)
Arginine , Monophenol Monooxygenase , Pyrones , Solanum tuberosum , Pyrones/pharmacology , Pyrones/chemistry , Arginine/chemistry , Arginine/analogs & derivatives , Arginine/pharmacology , Solanum tuberosum/chemistry , Solanum tuberosum/growth & development , Monophenol Monooxygenase/metabolism , Food Preservation/methods , Catechol Oxidase/metabolism , Food Preservatives/pharmacology , Food Preservatives/chemistry , Bacteria/drug effects , Bacteria/genetics
13.
ACS Omega ; 9(13): 15030-15039, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585117

ABSTRACT

A series of novel titanium complexes (2a-2e) bearing [N, P] aniline-chlorodiphenylphosphine ligands (1a-1e) featuring CH3 and F substituents have been synthesized and characterized. Surprisingly, in the presence of polar additive, the complexes (2a-2e) all displayed high catalytic activities (up to 1.04 × 106 gPolymer (mol·Ti)-1·h-1 and produced copolymer with the ultrahigh molecular weight up to 1.37 × 106 g/mol. The catalytic activities are significantly enhanced by introducing electron-withdrawing group (F) into the aniline aromatic ring. Especially, the increase in activity based on different complexes followed the order of 2e > 2d > 2c > 2b > 2a. Simultaneously, density functional theory (DFT) calculations have been performed to probe the polymerization mechanism as well as the electronic and steric effects of various substituents on the catalyst backbone. DFT computation revealed that the polymerization behaviors could be adjusted by the electronic effect of ligand substituents; however, it has little to do with the steric hindrance of the substituents. Furthermore, theoretical calculation results keep well in accordance with experimental measurement results. The article provided an appealing design method that the employment of fluorine atom as electron-withdrawing to be studied is the promotive effect of transition-metal coordination polymerization.

14.
Open Forum Infect Dis ; 11(4): ofae163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38585185

ABSTRACT

Background: The aim of this study was to investigate the changes of epidemic characteristics of influenza activity pre- and post-coronavirus disease 2019 (COVID-19) in Beijing, China. Methods: Epidemiologic data were collected from the influenza surveillance system in Beijing. We compared epidemic intensity, epidemic onset and duration, and influenza transmissibility during the 2022-2023 season with pre-COVID-19 seasons from 2014 to 2020. Results: The overall incidence rate of influenza in the 2022-2023 season was significantly higher than that of the pre-COVID-19 period, with the record-high level of epidemic intensity in Beijing. The onset and duration of the influenza epidemic period in 2022-2023 season was notably later and shorter than that of the 2014-2020 seasons. Maximum daily instantaneous reproduction number (Rt) of the 2022-2023 season (Rt = 2.31) was much higher than that of the pre-COVID-19 period (Rt = 1.49). The incidence of influenza A(H1N1) and A(H3N2) were the highest among children aged 0-4 years and 5-14 years, respectively, in the 2022-2023 season. Conclusions: A late, intense, and short-term peak influenza activity was observed in the 2022-2023 season in Beijing. Children <15 years old were impacted the most by the interruption of influenza circulation during the COVID-19 pandemic. Maintaining continuous surveillance and developing targeted public health strategies of influenza is necessary.

15.
Comput Struct Biotechnol J ; 23: 1547-1561, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38645433

ABSTRACT

Neuroblastoma (NB) is the most prevalent extracranial solid tumor in pediatric patients, and its treatment failure often associated with metastasis. In this study, LASSO, SVM-RFE, and random forest tree algorithms, was used to identify the pivotal gene involved in NB metastasis. NB cell lines (SK-N-AS and SK-N-BE2), in conjunction with NB tissue were used for further study. ABLIM3 was identified as the hub gene and can be an independent prognostic factor for patients with NB. The immunohistochemical analysis revealed that ABLIM3 is negatively correlated with the metastasis of NB. Patients with low expression of ABLIM3 had a poor prognosis. High ABLIM3 expression correlated with APC co-stimulation and Type1 IFN response, and TIDE analysis indicated that patients with low ABLIM3 expression exhibited enhanced responses to immunotherapy. Downregulation of ABLIM3 by shRNA transfection increased the migration and invasion ability of NB cells. Gene Set Enrichment Analysis (GSEA) revealed that genes associated with ABLIM3 were primarily enriched in the cell adhesion molecules (CAMs) pathway. RT-qPCR and western blot analyses demonstrated that downregulation of ABLIM3 led to decreased expression of ITGA3, ITGA8, and KRT19, the key components of CAMs. This study indicated that ABLIM3 can be an independent prognostic factor for NB patients, and CAMs may mediate the effect of ABLIM3 on the metastasis of NB, suggesting that ABLIM3 is a potential therapeutic target for NB metastasis, which provides a novel strategy for future research and treatment strategies for NB patients.

16.
Environ Sci Technol ; 58(13): 6039-6048, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507701

ABSTRACT

Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.


Subject(s)
Volatile Organic Compounds , Water Purification , Distillation , Hydrogels , Membranes, Artificial , Phenol
17.
Food Chem X ; 22: 101297, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38544930

ABSTRACT

Natural bioactive compounds and plant constituents are considered to have a positive anti-inflammatory effect. This study aimed to establish a screening technique for anti-inflammatory function in foods based on label-free Raman imaging. A visible anti-inflammatory analysis method based on coherent anti-Stokes Raman scattering (CARS) was established with an LPS-induced RAW264.7 cell model. Dynamic changes in proteins and lipids were determined at laser pump light wavelengths of 2956 cm-1 and 2856 cm-1, respectively. The method was applied to a plant-based formula (JC) with anti-inflammatory activity. Q-TOF-MS and HPLC analyses revealed the main active constituents of JC as quercetin, kaempferol, l-glutamine, and sodium copper chlorophyllin. In in vitro and in vivo verification experiments, JC showed significant anti-inflammatory activity by regulating the TLR4/NF-κB pathway. In conclusion, this study successfully established a label-free and visible method for screening anti-inflammatory constituents in plant-based food products, which will facilitate the evaluation of functional foods.

18.
Mol Pharm ; 21(5): 2298-2314, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38527915

ABSTRACT

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.


Subject(s)
Cicatrix, Hypertrophic , Emulsions , Gels , Salvia miltiorrhiza , Skin Absorption , Rabbits , Animals , Cicatrix, Hypertrophic/drug therapy , Salvia miltiorrhiza/chemistry , Skin Absorption/drug effects , Emulsions/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Disease Models, Animal , Skin/drug effects , Skin/pathology , Skin/metabolism , Administration, Cutaneous , Particle Size , Male , Nanoparticles/chemistry , Medicine, Chinese Traditional/methods , Ear/pathology , Drug Delivery Systems/methods
19.
Adv Sci (Weinh) ; 11(15): e2306229, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342602

ABSTRACT

Splicing factor polyglutamine binding protein-1 (PQBP1) is abundantly expressed in the central nervous system during development, and mutations in the gene cause intellectual disability. However, the roles of PQBP1 in cancer progression remain largely unknown. Here, it is shown that PQBP1 overexpression promotes tumor progression and indicates worse prognosis in ovarian cancer. Integrative analysis of spyCLIP-seq and RNA-seq data reveals that PQBP1 preferentially binds to exon regions and modulates exon skipping. Mechanistically, it is shown that PQBP1 regulates the splicing of genes related to the apoptotic signaling pathway, including BAX. PQBP1 promotes BAX exon 2 skipping to generate a truncated isoform that undergoes degradation by nonsense-mediated mRNA decay, thus making cancer cells resistant to apoptosis. In contrast, PQBP1 depletion or splice-switching antisense oligonucleotides promote exon 2 inclusion and thus increase BAX expression, leading to inhibition of tumor growth. Together, the results demonstrate an oncogenic role of PQBP1 in ovarian cancer and suggest that targeting the aberrant splicing mediated by PQBP1 has therapeutic potential in cancer treatment.


Subject(s)
Intellectual Disability , Ovarian Neoplasms , Female , Humans , bcl-2-Associated X Protein/genetics , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Ovarian Neoplasms/genetics , RNA Splicing/genetics , RNA Splicing Factors/genetics
20.
Water Res ; 253: 121329, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387269

ABSTRACT

Membrane fouling induced by oily substances significantly constrains membrane distillation performance in treating hypersaline oily wastewater. Overcoming this challenge necessitates a heightened fundamental understanding of the oil fouling phenomenon. Herein, the adsorption and penetration mechanism of oil droplets on hydrophobic membranes in membrane distillation process was investigated at the molecular level. Our results demonstrated that the adsorption and penetration of oil droplets were divided into four stages, including the free stage, contact stage, spreading stage, and equilibrium stage. Due to the extensive non-polar surface distribution of the polytetrafluoroethylene (PTFE) membrane (comprising 95.41 %), the interaction between oil molecules and PTFE was primarily governed by van der Waals interaction. Continuous oil droplet membrane fouling model revealed that the new oil droplet molecules preferred to penetrate into membrane pores where oil droplets already existed. The penetration of resin (a component of medium-quality oil droplets) onto PTFE membrane pores required the "pre-paving" of light crude oil. Finally, the ΔE quantitative structure-activity relationships (QSAR) models were developed to evaluate the penetration mechanism of pollutant molecules on the PTFE membrane. This research provides new insights for improving sustainable membrane distillation technologies in treating saline oily wastewater.


Subject(s)
Wastewater , Water Purification , Adsorption , Distillation , Membranes, Artificial , Water Purification/methods , Polytetrafluoroethylene
SELECTION OF CITATIONS
SEARCH DETAIL