Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Clin Cosmet Investig Dermatol ; 17: 1975-1979, 2024.
Article in English | MEDLINE | ID: mdl-39247135

ABSTRACT

Tjalma's syndrome is a benign combination of ascites, pleural effusion, and elevated CA-125 occurring in patients with systemic lupus erythematosus. Reports of Tjalma's syndrome are scarce. An elevated CA-125 level often suggests the possibility of the presence of a malignant tumor. We report a case of generalised erythema and blisters with pruritus, massive unilateral pleural effusion and elevated CA-125. This patient was finally diagnosed with bullous systemic lupus erythematosus after exclusion of tumour and other maculopapular disorders. We hope that this particular case may provide a more comprehensive and novel diagnostic idea of systemic lupus erythematosus and pleural effusion, avoiding unnecessary anxiety, laboratory tests and surgical interventions.

2.
SAGE Open Med Case Rep ; 12: 2050313X241272534, 2024.
Article in English | MEDLINE | ID: mdl-39314218

ABSTRACT

Hereditary factors contribute to the pathogenesis of pediatric leukemia. However, few studies have reported gene mutation pathopoeias. This paper reports genetic mutations associated with hereditary acute lymphoblastic leukemia. We reported a case of siblings diagnosed with acute lymphoblastic leukemia when aged 3 and 7 years, both siblings are alive after chemotherapy, and whole exome sequencing analysis was performed on the siblings and their parents. It was observed that both siblings had diheterozygous mutations in PML gene (PML, NM_033250, exon7, c.2170A>G, p.S724G; PML, NM_033250, exon7, c.2195G>T, p.G732V), and their parents had heterozygous mutations in one mutation site of PML gene, respectively, suggesting that the diheterozygous mutations of PML gene might be causal genetic genes for the occurrence of acute lymphoblastic leukemia.

3.
Angew Chem Int Ed Engl ; : e202412890, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39148428

ABSTRACT

The design of three-dimensional covalent organic frameworks (3D COFs) using linear and trigonal linkers remains challenging due to the difficulty in achieving a specific non-planar spatial arrangement with low-connectivity building units. Here, we report the novel 3D COFs with linear and trigonal linkers, termed TMB-COFs, exhibiting srs topology. The steric hindrance provides an additional force to alter the torsion angles of peripheral triangular units, guiding the linear unit to connect with the trigonal unit into 3D srs frameworks, rather than the more commonly observed two-dimensional (2D) hcb structures. Furthermore, we comprehensively examined the hydrogen peroxide photocatalytic production capacity of the TMB-COFs in comparison with analogous 2D COFs. The experimental results and DFT calculations demonstrate a significant enhancement in photocatalytic hydrogen peroxide production efficacy through framework regulation. This work emphasizes the steric configuration using low connectivity building units, offering a fresh perspective on the design and application of 3D COFs.

4.
Nat Commun ; 15(1): 7150, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168967

ABSTRACT

Despite the prevalent of hexagonal, tetragonal, and triangular pore structures in two-dimensional covalent organic frameworks (2D COFs), the pentagonal pores remain conspicuously absent. We herein present the Cairo pentagonal tessellated COFs, achieved through precisely chosen geometry and metrics of the linkers, resulting in unprecedented mcm topology. In each pentagonal structure, porphyrin units create four uniform sides around 15.5 Å with 90° angles, while tetrabiphenyl unit establish a bottom edge about 11.6 Å with 120° angles, aligning precisely with the criteria of Cairo Pentagon. According to the narrow bandgap and strong near-infrared (NIR) absorbance, as-synthesized COFs exhibit the efficient singlet oxygen (1O2) generation and photothermal conversion, resulting in NIR photothermal combined photodynamic therapy to guide cancer cell apoptosis. Mechanistic studies reveal that the good 1O2 production capability upregulates intracellular lipid peroxidation, leading to glutathione depletion, low expression of glutathione peroxidase 4, and induction of ferroptosis. The implementation of pentagonal Cairo tessellations in this work provides a promising strategy for diversifying COFs with new topologies, along with multimodal NIR phototherapy.


Subject(s)
Apoptosis , Infrared Rays , Photochemotherapy , Singlet Oxygen , Humans , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , Lipid Peroxidation , Cell Line, Tumor , Ferroptosis , Phototherapy/methods , Mice , Glutathione/chemistry , Glutathione/metabolism , Photosensitizing Agents/chemistry , Neoplasms/therapy , Neoplasms/metabolism
5.
Front Plant Sci ; 15: 1419508, 2024.
Article in English | MEDLINE | ID: mdl-38933465

ABSTRACT

Brassica napus is one of the most important oil crops in the world. Breeding oilseed rape with colorful flowers can greatly enhance the ornamental value of B. napus and thus improve the economic benefits of planting. As water-soluble flavonoid secondary metabolites, anthocyanins are very important for the synthesis and accumulation of pigments in the petals of plants, giving them a wide range of bright colors. Despite the documentation of over 60 distinct flower shades in B. napus, the intricacies underlying flower color variation remain elusive. Particularly, the mechanisms driving color development across varying flower color backgrounds necessitate further comprehensive investigation. This research undertook a comprehensive exploration through the integration of transcriptome and metabolome analyses to pinpoint pivotal genes and metabolites underpinning an array of flower colors, including beige, beige-red, yellow, orange-red, deep orange-red, white, light-purple, and purple. First, we used a two-way BLAST search to find 275 genes in the reference genome of B. napus Darmor v10 that were involved in making anthocyanins. The subsequent scrutiny of RNA-seq outcomes underscored notable upregulation in the structural genes F3H and UGT, alongside the MYB75, GL3, and TTG1 transcriptional regulators within petals, showing anthocyanin accumulation. By synergizing this data with a weighted gene co-expression network analysis, we identified CHS, F3H, MYB75, MYB12, and MYB111 as the key players driving anthocyanin synthesis in beige-red, orange-red, deep orange-red, light-purple, and purple petals. By integrating transcriptome and weighted gene co-expression network analysis findings with anthocyanin metabolism data, it is hypothesized that the upregulation of MYB75, which, in turn, enhances F3H expression, plays a pivotal role in the development of pigmented oilseed rape flowers. These findings help to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provide valuable genetic resources for breeding B. napus varieties with novel flower colors.

6.
Chem Sci ; 15(22): 8422-8429, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38846403

ABSTRACT

Designing artificial photocatalysts for CO2 reduction is challenging, mainly due to the intrinsic difficulty of making multiple functional units cooperate efficiently. Herein, three-dimensional metal covalent organic frameworks (3D MCOFs) were employed as an innovative platform to integrate a strong Ru(ii) light-harvesting unit, an active Re(i) catalytic center, and an efficient charge separation configuration for photocatalysis. The photosensitive moiety was precisely stabilized into the covalent skeleton by using a rational-designed Ru(ii) complex as one of the building units, while the Re(i) center was linked via a shared bridging ligand with an Ru(ii) center, opening an effective pathway for their electronic interaction. Remarkably, the as-synthesized MCOF exhibited impressive CO2 photoreduction activity with a CO generation rate as high as 1840 µmol g-1 h-1 and 97.7% selectivity. The femtosecond transient absorption spectroscopy combined with theoretical calculations uncovered the fast charge-transfer dynamics occurring between the photoactive and catalytic centers, providing a comprehensive understanding of the photocatalytic mechanism. This work offers in-depth insight into the design of MCOF-based photocatalysts for solar energy utilization.

8.
ACS Appl Mater Interfaces ; 16(19): 24831-24839, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691148

ABSTRACT

Constructing artificial photocatalysts with panchromatic solar energy utilization remains an appealing challenge. Herein, two complementary photosensitizers, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) and porphyrin dyes, have been cosensitized in metal covalent organic frameworks (MCOFs), resulting in the MCOFs with strong light absorption covering the full visible spectrum. Under panchromatic light irradiation, the cosensitized MCOFs exhibited remarkable photocatalytic H2 evolution with an optimum rate of up to 33.02 mmol g-1 h-1. Even when exposed to deep-red light (λ = 700 ± 10 nm), a commendable H2 production (0.79 mmol g-1 h-1) was still obtained. Theoretical calculation demonstrated that the [Ru(bpy)3]2+ and porphyrin modules in our MCOFs have a synergistic effect to trigger an interesting dual-channel photosensitization pathway for efficient light-harvesting and energy conversion. This work highlights the potential of combining multiple PSs in MCOFs for panchromatic photocatalysis.

9.
Stem Cells Int ; 2024: 5388064, 2024.
Article in English | MEDLINE | ID: mdl-38633381

ABSTRACT

Objectives: Traditional Chinese medicine Cortex Eucommiae has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from Cortex Eucommiae, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. Materials and Methods: The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the in vivo effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. Results: In the present study, Aucubin was found to significantly promote osteogenic differentiation in vitro and stimulated bone formation in vivo. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/ß-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/ß-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/ß-catenin signaling through promoting H19 expression. Conclusion: Our results demonstrated that Aucubin promoted osteogenesis in vitro and facilitated fracture healing in vivo through the H19-Wnt/ß-catenin regulatory axis.

10.
Inorg Chem ; 63(18): 8342-8350, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38640494

ABSTRACT

The design and synthesis of high-performance sensors are very important but remain great challenges. In this work, a new aggregation-induced-emission (AIE) molecule 4,4'-(((9H-fluoren-9-ylidene)methylene)bis(4,1-phenylene))dipyridine (L) was successfully synthesized and first developed as a functional ligand to construct two isomorphic metal-organic frameworks (MOFs) [M(L)(OBBA)]n [M2+ = Cd2+ (1), Co2+ (2); H2OBBA = 4,4'-oxybisbenzoic acid]. They adopt [M2(COO)4] flywheel clusters, OBBA2- bridges, and terminal L ligands as building units to form isomorphic 2-D networks with Lewis base active cites (uncoordinated pyridyl N). Both 1 and 2 exhibit excellent water, pH, and thermal stabilities and extremely efficient Fe3+ sensing abilities in the water environment. The quenching constants and detection limits reach the best levels reported so far. The sensing mechanism of 1 and 2 toward Fe3+ is studied in depth, and the difference in their sensing performance is also explained.

SELECTION OF CITATIONS
SEARCH DETAIL