Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Langmuir ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848479

ABSTRACT

Understanding the microscopic electronic structure determines the macroscopic properties of the materials. Sufficient sampling has the same foundational importance in understanding the interactions. The NO2/MoS2 interaction is well known, but there are still many inconsistencies in the basic data, and the source of the NO2 direct dissociation activity has not been revealed. Based on a large-scale sampling density functional theory (DFT) study, the optimal adsorption of the NO2/MoS2 monolayer system is determined. The impurity state on the top of the valence band of the S-vacancy monolayer (MoS2-VS) was determined by cross-analysis of the band structure and density of states, which has been neglected for a long time. This provides a reasonable explanation for the direct dissociation of NO2 on the MoX2 monolayers. Further atomic structure analysis reveals that the impurity state originates from the not-fully occupied valence orbitals. This also corroborates the fact that the Mo material has dissociation activity, while the W material does not. There is no impurity state on the top of the valence band of the X-vacancy WS2 and WSe2 monolayers. Interestingly, NO2 dissociation did not occur in the MoTe2-VTe monolayer. This may be related to the 6s inert electron pair effect of the Te atom. The double-oriented adsorption behavior of NO2is also revealed. In contrast to the MoSe2 and MoTe2 monolayers, NO2-oriented adsorption on the MoS2 perfect monolayer deviates obviously, which is speculated to be related to space limitation and larger electronegativity of the S atom. The oriented adsorption ability of the MoX2 monolayers followed the order MoTe2 (64.4%) > MoSe2 (44.8%) > MoS2 (42.7%), according to the directed proportion. Renewed insights into the adsorption basic data and the understanding of the electronic structure of NO2/MoX2 (X = S, Se, Te) monolayer systems provide a basic understanding of the gas-surface interactions and various future surface-related advanced applications.

2.
Adv Healthc Mater ; : e2401078, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708719

ABSTRACT

Cuproptosis, as a newly identified form of programmed cell death, shows great promise in cancer treatment. Efficient Cu+ delivery while avoiding systemic toxicity and elimination of the resistance from over-expressed intracellular copper chelator glutathione (GSH) are critical for cuproptosis. Herein, this work innovatively constructs a biocompatible and defect-rich copper hydroxide nanowire (HCu nanowire) through a human serum albumin (HSA) mediated biomineralization method. This work finds that the morphology and size of HCu nanowires can be controlled adjusted by the feed ratio of HSA and Cu2+. Remarkably, except for outstanding biocompatibility, HSA coordination endows HCu nanowires abundant oxygen vacancies (OVs), and the defect-rich HCu nanowire possesses excellent GSH consumption efficiency. Density functional theory studies indicate that OVs change GSH absorption energy on defective HCu nanowires. In cancer cells, HCu nanowires deplete GSH and simultaneously produce sufficient free Cu+ for enhanced cuproptosis. Meanwhile, Cu+ can catalyze endogenous H2O2 into hydroxyl radicals (·OH) via a Fenton-like reaction. Thus, synergetic cuproptosis and ROS mediated apoptosis against tumor are achieved. The experimental results show that HCu nanowires have a better performance in both antitumor efficiency and safety compared with chemotherapeutic drug Dox at the same dose, demonstrating its great potential in clinical applications.

3.
Crit Rev Food Sci Nutr ; : 1-15, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795062

ABSTRACT

Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.

4.
J Clin Microbiol ; : e0015424, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809033

ABSTRACT

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.

5.
J Ethnopharmacol ; 329: 118165, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588984

ABSTRACT

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.


Subject(s)
AMP-Activated Protein Kinases , Diet, High-Fat , Drugs, Chinese Herbal , Lipid Metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , AMP-Activated Protein Kinases/metabolism , Male , Mice , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptors/metabolism , Disease Models, Animal
6.
Small ; 20(10): e2302943, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319020

ABSTRACT

Herein, an integrated solar-thermal-power protocol is presented at a micro-nanoscopic level to maximize the energy utilization efficiency involving utilization period and utilization patterns, and the nexus of freshwater production and nanogeneration is realized. This sophisticated vaporization device is constructed with the merits of thermally confined evaporation space in favor of recycling latent heat of condensation and optimizing light absorption based on the local sunlight angle of incidence. Inspired by a bird's nest, Sb2 WO6 /D-Fructose composites are prepared as photothermal absorbers to achieve a superior water evaporation rate of 2.78 kg m-2  h-1 in the Multi-stage evaporator. In addition, a synergistic tandem photo thermal-electric device with a combination of solar-driven water evaporation and further waterflow-driven hydrovoltaic generation, which can output a stable voltage of up to 360.8 mV with effective utilization of steam energy and a limited water source, is exploited. Such integrated configurations pave a pathway for clean water production and renewable power generation simultaneously toward energy issues.

7.
J Investig Med ; 72(1): 57-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804164

ABSTRACT

This study intended to delineate the mechanism and functional role of integrin α2 (ITGA2) in non-small-cell lung cancer (NSCLC) cell immune escape. Bioinformatics analysis was utilized to analyze ITGA2 expression in NSCLC tissues, and correlations between ITGA2 expression and patient survival time, ITGA2 expression and programmed cell death ligand 1 (PD-L1; CD274) expression, and ITGA2 expression and CD8+ T-cell infiltration. Quantitative real-time polymerase chain reaction detected ITGA2 expression. Transmission electron microscopy was applied to examine the morphology of exosomes, and western blot measured CD9, CD63, and PD-L1 levels. CCK-8 measured cell viability. Cell toxicity experiment measured the killing effect of CD8+ T cells on cancer cells. Enzyme-linked immunosorbent assay assessed secretion levels of interleukin-2, interferon-gamma, tumor necrosis factor-alpha, and PD-L1 expression in exosomes. Immunohistochemistry detected ITGA2, CD8, and PD-L1 expression in patient tissue samples. ITGA2 was highly expressed in NSCLC, and Pearson correlation analysis showed a negative correlation of ITGA2 with CD8+ T-cell infiltration and a positive correlation of ITGA2 with PD-L1 expression. Cell experiments showed that silencing ITGA2 hindered NSCLC cell progression and increased levels of CD8+ T-cell secretory factors. Further mechanism studies found that ITGA2 reduced CD8+ T-cell-mediated antitumor immunity via the increase in PD-L1 expression. Clinical sample testing unveiled that ITGA2 was upregulated in NSCLC tissues. PD-L1 upregulation was seen in exosomes separated from patient blood, and correlation analysis showed a positive correlation of exosomal PD-L1 expression in blood with ITGA2 expression in tissues. This study displays a novel mechanism and role of ITGA2 in NSCLC immune escape, providing directions for the clinical therapy of NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Tumor Escape , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Exosomes/metabolism , Integrin alpha2/metabolism , Integrin alpha2/therapeutic use , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Tumor Escape/genetics
8.
Front Cell Infect Microbiol ; 13: 1267288, 2023.
Article in English | MEDLINE | ID: mdl-37842005

ABSTRACT

Aim: This study established a high-throughput multiplex genetic detection assay (HMGA) for rapid identification, semi-quantification and virulence analysis of Helicobacter pylori directly from the clinical non-invasive oral samples. Methods: The gastric mucosa and oral samples were collected from 242 patients in Shanghai from 2021 to 2022. All the samples were detected by routine clinical tests for H. pylori and Sanger sequenced for inconsistent results. A new multiplex PCR assay providing results within 4 hours was designed and optimized involving fluorescent dye-labeled specific primers targeted 16S rRNA gene, semi-quantitative gene ureC and 10 virulence genes of H. pylori. Semi-quantification was carried out by simulating the serial 10-fold dilutions of positive oral samples, and the H. pylori loads in different clinical samples were further compared. The mixed plasmids of virulence genes vacA s1, vacA m1 and vacA m2 were used to evaluate the performance on different genotypes. The consistency of 10 virulence genes in gastric mucosa, saliva, mouthwash and dental plaque of H. pylori-positive patients was compared. Results: The non-invasive HMGA was highly specific for detection of all 12 targets of H. pylori and human internal reference gene ß-globin, and the sensitivity to all target genes could reach 10 copies/µL. Compared with routine clinical tests and sequencing, non-invasive HMGA has a high level (>0.98) of sensitivity, specificity, accuracy, PPV, NPV and kappa coefficient for direct detection of H. pylori in oral samples. Moreover, by detecting peak area levels of ureC, it was confirmed that the H. pylori loads in gastric mucosa were significantly higher than those of the three kinds of oral samples (p<0.05). We also found that 45.0% (91/202) of patients had different H. pylori virulence genes in different oral samples. The concordance of positive detection rates of each virulence gene between saliva and gastric mucosa was more than 78% (p<0.05). Conclusion: The non-invasive HMGA proved to be a reliable method for the rapid H. pylori identification, semi-quantification and detection of 10 virulence genes directly in oral samples, providing a new idea for non-invasive detection of H. pylori.


Subject(s)
HMGA Proteins , Helicobacter Infections , Helicobacter pylori , Humans , Bacterial Proteins/genetics , Virulence/genetics , Genotype , RNA, Ribosomal, 16S/genetics , China , HMGA Proteins/genetics , Helicobacter Infections/diagnosis , Antigens, Bacterial/genetics
9.
Diagnostics (Basel) ; 13(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37627971

ABSTRACT

Gallstone disease (GD) is one of the most common gastrointestinal diseases worldwide. Nowadays, intestinal microbiota are thought to play important roles in the formation of gallstones. In our study, human fecal samples were extracted for metagenomic next-generation sequencing (mNGS) on the Illumina HiSeq platform, followed by bioinformatics analyses. Our results showed that there was a particular intestinal micro-ecosystem in GD patients. In contrast to healthy people, the sequences of Bacteroidetes, Bacteroides and Thetaiotaomicron were obviously more abundant in GD patients at phylum, genus and species levels, respectively. On the other hand, the glycan metabolism and drug resistance, especially for the ß-lactams, were the most profound functions of gut microbes in GD patients compared to those in normal subjects. Furthermore, a correlation analysis drew out that there existed a significant relationship between the serum levels of biochemical indicators and abundances of intestinal microbes in GD patients. Our results illuminate both the composition and functions of intestinal microbiota in GD patients. All in all, our study can broaden the insight into the potential mechanism of how gut microbes affect the progression of gallstones to some extent, which may provide potential targets for the prevention, diagnosis or treatment of GD.

10.
J Inflamm Res ; 16: 1595-1610, 2023.
Article in English | MEDLINE | ID: mdl-37092126

ABSTRACT

Background and Purpose: Current pharmacological approaches to prevent hepatic ischemia/reperfusion injury (IRI) are limited. To mitigate hepatic injury, more research is needed to improve the understanding of hepatic IRI. Depending on traditional Chinese medicine (TCM) theory, acupuncture therapy has been used for the treatment of ischemic diseases with good efficacy. However, the efficacy and mechanism of acupuncture for hepatic IRI are still unclear. Methods: Blood provided to the left and middle lobe of mice livers was blocked with a non-invasive clamp and then the clamps were removed for reperfusion to establish a liver IRI model. Quantitative proteomics approach was used to evaluate the impact of EA pretreatment on liver tissue proteome in the IRI group. Serum biochemistry was used to detect liver injury, inflammation, and oxidative stress levels. H&E staining and TUNEL staining were used to detect hepatocyte injury and apoptosis. Immunohistochemistry and ELISA were used to detect the degree of inflammatory cell infiltration and the level of inflammation. The anti-inflammatory and antioxidant capacities were detected by Quantitative RT-PCR and Western blotting. Results: We found that EA at Zusanli (ST36) has a protective effect on hepatic IRI in mice by alleviating oxidative stress, hepatocyte death, and inflammation response. Nuclear factor E2-related factor 2 (Nrf2) as a crucial target was regulated by EA and was then successfully validated. The Nrf2 inhibitor ML385 and cervical vagotomy eliminated the protective effect in the EA treatment group. Conclusion: This study firstly demonstrated that EA pretreatment at ST36 significantly ameliorates hepatic IRI in mice by inhibiting oxidative stress via activating the Nrf2 signal pathway, which was vagus nerve-dependent.

11.
Sensors (Basel) ; 23(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904571

ABSTRACT

This study investigated the dynamic characteristics of thermocouples by using double-pulse laser excitation for dynamic temperature calibration under extreme conditions. An experimental device was constructed for double-pulse laser calibration; the device uses a digital pulse delay trigger to precisely control the double-pulse laser to achieve sub-microsecond dual temperature excitation with adjustable time intervals. The time constants of thermocouples under single-pulse laser excitation and double-pulse laser excitation were evaluated. In addition, the variation trends of thermocouple time constants under different double-pulse laser time intervals were analyzed. The experimental results indicated that the time constant increases and then decreases with the decrease in the time interval of the double-pulse laser. A method for dynamic temperature calibration was established for the evaluation of the dynamic characteristics of temperature sensors.

12.
Food Chem ; 416: 135726, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36893635

ABSTRACT

The investigation of intermolecular interactions has become increasingly important in many studies, mainly by combining different analytical approaches to reveal the molecular mechanisms behind specific experimental phenomena. From spectroscopic analysis to sophisticated molecular simulation techniques like molecular docking, molecular dynamics (MD) simulation, and quantum chemical calculations (QCC), the mechanisms of intermolecular interactions are gradually being characterized more clearly and accurately, leading to revolutionary advances. This article aims to review the progression in the main techniques involving intermolecular interactions in food research and the corresponding experimental results. Finally, we discuss the significant impact that cutting-edge molecular simulation technologies may have on the future of conducting deeper exploration. Applications of molecular simulation technology may revolutionize the food research, making it possible to design new future foods with precise nutrition and desired properties.


Subject(s)
Molecular Dynamics Simulation , Molecular Docking Simulation
13.
J Environ Public Health ; 2022: 8024700, 2022.
Article in English | MEDLINE | ID: mdl-36531335

ABSTRACT

Objective: Since the inefficient cancer management is caused by inaccurate diagnoses, there is a need for minimally invasive method to improve the diagnostic accuracy of non-small-cell lung (NSCLC). This study intended to detect miR-340 and miR-450b-5p levels in plasma from NSCLC patients and to assess the potential values for the prediction of tumor development and prognosis. Methods: A GSE64591 dataset included 200 samples (100 early-stage NSCLC patients and 100 noncancer control) aimed to identify a panel of circulating miRNAs in plasma. The levels of miR-340 and miR-450b-5p in plasma from NSCLC patients (n = 120) and healthy controls (n = 120) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic value of plasma miR-340 and miR-450b-5p were performed using receiver operating curves (ROC), Kaplan-Meier method, and Cox regression analysis. Results: miR-450b-5p and miR-340 in plasma was significant difference between early-stage NSCLC patients and noncancer control by searching the GSE64591 dataset. When compared with the healthy controls, the plasma miR-340 was decreased in the NSCLC patients, but the plasma miR-450b-5p was increased. NSCLC patients could be distinguished accurately from healthy controls by the circulating miR-340 and miR-450b-5p with the AUC of 0.740 (95% CI: 0.677~0.804) and of 0.808 (95% CI: 0.754~0.861), respectively. With these two markers, the specificity and sensitivity were 78.33% and 77.5% with the AUC of 0.862. Patients with advanced T, N, and TNM stage demonstrated lower plasma miR-340 and higher plasma miR-450b-5p, and both of them were correlated with the prognosis of NSCLC patients. Furthermore, plasma miR-340 was also negatively correlated with tumor grade. All clinicopathological variables significantly associated to prognosis were T stage, N stage, TNM stage, tumor grade, and plasma levels of miR-340 and miR-450b-5p in univariate Cox regression analysis. The variables that retained their significance in the multivariate model were T stage, plasma miR-340, and plasma miR-450b-5p. Conclusion: The plasma levels of miR-340 combined with miR-450b-5p potentially define core biomarker signatures for improving the accuracy of NSCLC diagnosis. Moreover, circulating miR-340 and miR-450b-5p are independent biomarkers of survival in nonmetastatic NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Biomarkers, Tumor , Lung/pathology , ROC Curve
14.
BMC Infect Dis ; 22(1): 823, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348318

ABSTRACT

BACKGROUND: Bloodstream infection (BSI) is a life-threatening condition with high morbidity and mortality rates worldwide. Early diagnosis of BSI is critical to avoid the unnecessary application of antimicrobial agents and for proper treatment. However, the current standard methods based on blood culture are time-consuming, thus failing to provide a timely etiological diagnosis of BSI, and common PCR-based detection might be inhibited by matrix components. METHODS: The current study explored an integrated pre-analytical treatment protocol for whole blood samples, wherein pathogens are enriched and purified by incubation and concentration, and inhibitors are inactivated and removed. Further, this study developed and evaluated a novel high-throughput multiplex genetic detection system (HMGS) to detect 24 of the most clinically prevalent BSI pathogens in blood culture samples and pre-treated whole blood samples. The specificity and sensitivity were evaluated using related reference strains and quantified bacterial/fungal suspensions. The clinical utility of BSI-HMGS combined with the pre-analytical treatment protocol was verified using blood cultures and whole blood samples. RESULTS: The combined pre-treatment protocol and BSI-HMGS was highly specific for target pathogens and possessed a low detection limit for clinical whole blood samples. The pre-treatment protocol could deplete the PCR inhibitors effectively. For blood culture samples, the current method showed 100.0% negative percent agreements and > 87.5% positive percent agreements compared to the reference results based on blood culture findings. For whole blood samples, the current method showed 100.0% negative percent agreements and > 80.0% positive percent agreements compared to the reference results for most pathogens. The turnaround time was ≤ 8 h, and all the procedures could be conducted in a general clinical laboratory. CONCLUSION: The BSI-HMGS combined with the pre-treatment protocol was a practical and promising method for early and precise detection of BSIs, especially for areas without access to advanced medical facilities.


Subject(s)
Bacteremia , Communicable Diseases , Sepsis , Humans , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/microbiology , Sepsis/diagnosis , Blood Culture , Bacteria/genetics , Clinical Protocols
15.
Front Endocrinol (Lausanne) ; 13: 1000727, 2022.
Article in English | MEDLINE | ID: mdl-36204095

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a global health problem, and its prevalence has been on the rise in recent years. Traditional Chinese Medicine (TCM) contains a wealth of therapeutic resources and has been in use for thousands of years regarding the prevention of liver disease and has been shown to be effective in the treatment of NAFLD in China. but the molecular mechanisms behind it have not been elucidated. In this article, we have updated and summarized the research and evidence concerning herbs and their active ingredients for the treatment in vivo and vitro models of NAFLD or NASH, by searching PubMed, Web of Science and SciFinder databases. In particular, we have found that most of the herbs and active ingredients reported so far have the effect of clearing heat and dispelling dampness, which is consistent with the concept of dampness-heat syndrome, in TCM theory. we have attempted to establish the TCM theory and modern pharmacological mechanisms links between herbs and monomers according to their TCM efficacy, experiment models, targets of modulation and amelioration of NAFLD pathology. Thus, we provide ideas and perspectives for further exploration of the pathogenesis of NAFLD and herbal therapy, helping to further the scientific connotation of TCM theories and promote the modernization of TCM.


Subject(s)
Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , China , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional , Non-alcoholic Fatty Liver Disease/drug therapy , Phytotherapy
16.
Int J Biol Sci ; 18(15): 5698-5712, 2022.
Article in English | MEDLINE | ID: mdl-36263164

ABSTRACT

Background: Cholangiocarcinoma (CCA) is a type of hepatobiliary cancer characterized by uncontrolled cell proliferation, with a poor prognosis and high mortality. Nobiletin (NBT) is a promising anti-tumor compound derived from the peels of oranges and other citrus plants, citrus plant. But the effect of NBT on CCA remains unknown. Results: Our data showed that NBT suppressed CCA cell proliferation in vitro and in vivo. Colony formation and Edu assay indicated that NBT inhibited cell proliferation. Cell cycle analysis showed that NBT arrested the cell cycle in G0/G1 phase. Target prediction showed that GSK3ß was a direct target. Western blot and immunofluorescence confirmed that NBT reduced the phosphorylation of GSK3ß. The antiproliferative effect of NBT was intercepted in GSK3ß knockdown CCA cells. The cellular thermal shift assay (CETSA) showed NBT directly bound to GSK3ß. Finally, NBT showed an anti-proliferative effect in tumor-bearing mice with no hepatotoxicity. Conclusion: NBT could inhibit CCA proliferation, and the pharmacological activity of NBT in CCA was attributed to its direct binding to GSK3ß. We suggested that NBT might be a potential natural medicine in CCA treatment.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Mice , Animals , Glycogen Synthase Kinase 3 beta , Cell Line, Tumor , Cholangiocarcinoma/metabolism , Cell Proliferation , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Apoptosis
17.
Front Genet ; 13: 929035, 2022.
Article in English | MEDLINE | ID: mdl-36081998

ABSTRACT

Background: Hepatocellular carcinoma (HCC) remains the most prevalent gastrointestinal malignancy worldwide, with robust drug resistance to therapy. N7-methylguanosine (m7G) mRNA modification has been significantly related to massive human diseases. Considering the effect of m7G-modified long non-coding RNAs (lncRNAs) in HCC progression is unknown, the study aims at investigating a prognostic signature to improve clinical outcomes for patients with HCC. Methods: Two independent databases (TCGA and ICGC) were used to analyze RNAseq data of HCC patients. First, co-expression analysis was applied to obtain the m7G-related lncRNAs. Moreover, consensus clustering analysis was employed to divide HCC patients into clusters. Then, using least absolute shrinkage and selection operator-Cox regression analysis, the m7G-related lncRNA prognostic signature (m7G-LPS) was first tested in the training set and then confirmed in both the testing and ICGC sets. The expression levels of the nine lncRNAs were further confirmed via real-time PCR in cell lines, principal component analysis, and receiver operating characteristic curve. The m7G-LPS could divide HCC patients into two different risk groups with the optimal risk score. Then, Kaplan-Meier curves, tumor mutation burden (TMB), therapeutic effects of chemotherapy agents, and expressions of immune checkpoints were performed to further enhance the availability of immunotherapeutic treatments for HCC patients. Results: A total of 1465 lncRNAs associated with the m7G genes were finally selected from the TCGA database, and through the univariate Cox regression, the expression levels of 22 m7G-related lncRNAs were concerning HCC patients' overall survival (OS). Then, the whole patients were grouped into two subgroups, and the OS in Cluster 1 was longer than that of patients in Cluster 2. Furthermore, nine prognostic m7G-related lncRNAs were identified to conduct the m7G-LPS, which were further verified. A prognostic nomogram combined age, gender, HCC grade, stage, and m7G-LPS showed strong reliability and accuracy in predicting OS in HCC patients. Finally, immune checkpoint expression, TMB, and several chemotherapy agents were remarkably associated with risk scores. More importantly, the OS of the TMB-high patients was the worst among the four groups. Conclusion: The prognostic model we established was validated by abundant algorithms, which provided a new perspective on HCC tumorigenesis and thus improved individualized treatments for patients.

18.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35618286

ABSTRACT

BACKGROUND: Immunotherapy for hepatocellular carcinoma (HCC) exhibits limited clinical efficacy due to immunosuppressive tumor microenvironment (TME). Tumor-infiltrating macrophages (TIMs) account for the major component in the TME, and the dominance of M2 phenotype over M1 phenotype in the TIMs plays the pivotal role in sustaining the immunosuppressive character. We thus investigate the effect of bufalin on promoting TIMs polarization toward M1 phenotype to improve HCC immunotherapy. METHODS: The impact of bufalin on evoking antitumor immune response was evaluated in the immunocompetent mouse HCC model. The expression profiling of macrophage-associated genes, surface markers and cytokines on bufalin treatment in vitro and in vivo were detected using flow cytometry, immunofluorescence, western blot analysis, ELISA and RT-qPCR. Cell signaling involved in M1 macrophage polarization was identified via the analysis of gene sequencing, and bufalin-governed target was explored by immunoprecipitation, western blot analysis and gain-and-loss of antitumor immune response. The combination of bufalin and antiprogrammed cell death protein 1 (anti-PD-1) antibody was also assessed in orthotopic HCC mouse model. RESULTS: In this study, we showed that bufalin can function as an antitumor immune modulator that governs the polarization of TIMs from tumor-promoting M2 toward tumor-inhibitory M1, which induces HCC suppression through the activation of effector T cell immune response. Mechanistically, bufalin inhibits overexpression of p50 nuclear factor kappa B (NF-κB) factor, leading to the predominance of p65-p50 heterodimers over p50 homodimers in the nuclei. The accumulation of p65-p50 heterodimers activates NF-κB signaling, which is responsible for the production of immunostimulatory cytokines, thus resulting in the activation of antitumor T cell immune response. Moreover, bufalin enhances the antitumor activity of anti-PD-1 antibody, and the combination exerts synergistic effect on HCC suppression. CONCLUSIONS: These data expound a novel antitumor mechanism of bufalin, and facilitate exploitation of a new potential macrophage-based HCC immunotherapeutic modality.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Bufanolides , Cell Line, Tumor , Cytokines/metabolism , Humans , Immunity , Macrophages , Mice , NF-kappa B/metabolism , Phenotype , Tumor Microenvironment
19.
Article in English | MEDLINE | ID: mdl-35368769

ABSTRACT

Background: Bushen Jianpi formula (BSJPF, also known as Lingmao formula) is a traditional Chinese medicine for chronic hepatitis B (CHB). The previous study has suggested that the treatment combination of BSJPF and entecavir (ETV) can achieve a significant loss of hepatitis B e antigen (HBeAg) and a significant decrease in serum level of hepatitis B virus (HBV) DNA in HBeAg-positive CHB patients with mildly elevated alanine aminotransferase. Objective: This study aimed to evaluate the efficacy and safety of BSJPF combined with ETV for treating HBeAg-negative CHB patients. Methods: A total of 640 patients were assigned randomly to the treatment group (receiving BSJPF combined with ETV for 96 weeks) or the control group (receiving a placebo combined with ETV for 96 weeks) in a 1 : 1 ratio. The primary endpoints are the rate of loss of hepatitis B surface antigen (HBsAg). The secondary outcomes included the rate of decrease in the HBsAg concentration to ≥1 lg·IU/mL, the HBV DNA suppression, the decline of the level of covalently closed circular DNA (cccDNA) in the liver, histological improvements, and the rate of ALT normalization. Results: The rate of HBsAg loss in the treatment group was significantly higher than that of the control group (5.5% versus 1.8%, P=0.031). There were 11.1% of patients in the treatment group who recorded a reduction in HBsAg ≥1 lg·IU/mL, which is better than 5.9% of patients in the control group (P=0.043). There was no significant difference between the two groups with regard to the rate of HBV DNA clearance, the reduction in intrahepatic cccDNA, and the rate of ALT normalization (P > 0.05). The rate of liver fibrosis improvement in the treatment group was better than that of the control group (35.5% versus 11.8%, P=0.031), but there was no difference in necroinflammatory improvement (P > 0.05). The adverse events (AEs) were similar between the two groups, except for the abnormal kidney function, with 2.2% in the control group and 0.0% in the treatment group (P=0.028). Conclusion: The combination of BSJPF and ETV can increase the rate of HBsAg loss and the rate of histological fibrosis improvement without serious adverse events in CHB patients. Trial Registration. This trial is registered with ChiCTR-IOR-16009880 on November 16, 2016-retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=16836.

20.
Microbiol Spectr ; 10(2): e0198721, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35234510

ABSTRACT

Helicobacter pylori is a human pathogen competent for natural transformation. Intrinsic and acquired antibiotic resistance contribute to the survival and multiplication of H. pylori under antibiotics. While drug-resistance dissemination by natural transformation (NT)-mediated horizontal gene transfer remains poorly understood in H. pylori. The purpose of the study was to investigate the role of H. pylori porins (HopA, HopB, HopC, HopD, and HopE) in the intrinsic antibiotic resistance and to preliminarily reveal the potential effect of HopE and HopD porins in streptomycin resistance acquisition after NT in the presence of antibiotics. Using traditional antibiotic susceptibility tests and growth curve analysis, we found the MIC values of metronidazole, clarithromycin, levofloxacin, tetracycline, rifampin, and streptomycin in mutants lacking HopE and/or HopD were significantly elevated compare to those in wild-type strain. The quantitative analysis of the tetramethyl rhodamine isothiocyanate (TRITC)-labeled streptomycin accumulation at the single-cell level showed reduced streptomycin intracellular fluorescence in ΔhopE and ΔhopD mutant cells. Furthermore, in the presence of translation-inhibiting antibiotic streptomycin, the resistance acquisition frequency was decreased in the wild-type strain, which could be reversed by mutants lacking HopE and HopD that restored relatively high resistance acquisition frequencies. By transforming a pUC19-rpsLmut-sfgfp linear plasmid carrying a streptomycin conferring mutation, we observed that the impaired ability of rpsLmut synthesis in the wild-type strain was restored in the ΔhopE and ΔhopD mutant transformants. Our study revealed that in the presence of streptomycin, resistance acquisition at least partially relied on the deletion of the hopE and hopD genes, because their loss reduced streptomycin concentration in the cell and thus restored the expression of the resistance-conferring gene, which was inhibited by streptomycin in wild-type strain. The loss of HopE and HopD influx activity may also preserve resistance acquisition by transformation in the presence of antibiotics with other modes of action. IMPORTANCE Helicobacter pylori is constitutively competent for natural transformation (NT) and possesses an efficient system for homologous recombination, which could be utilized to study the NT-mediated horizontal gene transfer induced antibiotic resistance acquisition. Bacterial porins have drawn renewed attention because of their crucial role in antibiotic susceptibility. From the perspective of porin-mediated influx in H. pylori, our study preliminarily revealed the important role of HopE and HopD porins not only in preserving the intrinsic susceptibility to specific antibiotic but also in evading acquired antibiotic resistance by NT in the presence of translation-inhibiting antimicrobial. Therefore, the loss of HopE or HopD porin in H. pylori genomes, combined with the large number of secreted or cell-free genetic elements carrying mutations conferring antibiotic resistance, may raise the possibility that this mechanism plays a potential role in the propagation of antibiotic resistance within H. pylori communities.


Subject(s)
Anti-Infective Agents , Helicobacter Infections , Helicobacter pylori , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial/genetics , Helicobacter pylori/genetics , Humans , Microbial Sensitivity Tests , Porins/genetics , Porins/pharmacology , Streptomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...