Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Environ Res ; 252(Pt 4): 119092, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729407

ABSTRACT

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.

2.
Heart Rhythm ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38604587

ABSTRACT

BACKGROUND: Different types of recurrent atrial tachycardia (AT) after Cox-maze procedures have been reported, whereas biatrial tachycardia (BiAT) has not been systematically analyzed. OBJECTIVE: In this study, we retrospectively investigated the electrophysiologic characteristics of BiAT after Cox-maze procedures by use of an ultrahigh-density mapping system. METHODS: Of a consecutive 76 patients who underwent catheter ablation of AT after Cox-maze procedures, 12 BiATs were identified. High-density activation mapping was performed in both the left atrium and right atrium in combination with entrainment pacing to confirm the circuit. RESULTS: We classified these BiATs into 2 groups. In group 1 (7 patients), the bidirectional block of maze linear lesions to prevent the macroreentrant AT was achieved; the posterior interatrial connections were involved in the circuit. In group 2 (5 patients), the bidirectional block of maze linear lesions was not blocked, and the most common gap was located at the end of the linear lesion near the annulus. In group 1, all the ATs were terminated by targeting the corresponding left atrium end of the posterior interatrial connections. In group 2, the ATs were terminated by targeting the gap near the annulus. CONCLUSION: The optimal ablation strategy for BiATs after the maze procedure should be based on detailed demonstration of the circuit by high-density mapping.

3.
Environ Int ; 186: 108632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583296

ABSTRACT

Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.


Subject(s)
Carbon Footprint , Plastics , Soil , Soil/chemistry , Carbon/analysis , Atmosphere/chemistry , Carbon Cycle , Ecosystem , Plants , Carbon Sequestration , Environmental Monitoring/methods
4.
J Agric Food Chem ; 72(14): 7727-7734, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530940

ABSTRACT

To discover novel transketolase (TKL, EC 2.2.1.1) inhibitors with potential herbicidal applications, a series of pyrazole acyl thiourea derivatives were designed based on a previously obtained pyrazolamide acyl lead compound, employing a scaffold hopping strategy. The compounds were synthesized, their structures were characterized, and they were evaluated for herbicidal activities. The results indicate that 7a exhibited exceptional herbicidal activity against Digitaria sanguinalis and Amaranthus retroflexus at a dosage of 90 g ai/ha, using the foliar spray method in a greenhouse. This performance is comparable to that of commercial products, such as nicosulfuron and mesotrione. Moreover, 7a showed moderate growth inhibitory activity against the young root and stem of A. retroflexus at 200 mg/L in the small cup method, similar to that of nicosulfuron and mesotrione. Subsequent mode-of-action verification experiments revealed that 7a and 7e inhibited Setaria viridis TKL (SvTKL) enzyme activity, with IC50 values of 0.740 and 0.474 mg/L, respectively. Furthermore, they exhibited inhibitory effects on the Brassica napus acetohydroxyacid synthase enzyme activity. Molecular docking predicted potential interactions between these (7a and 7e) and SvTKL. A greenhouse experiment demonstrated that 7a exhibited favorable crop safety at 150 g ai/ha. Therefore, 7a is a promising herbicidal candidate that is worthy of further development.


Subject(s)
Cyclohexanones , Herbicides , Pyridines , Sulfonylurea Compounds , Herbicides/pharmacology , Herbicides/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Skeleton , Pyrazoles/pharmacology , Pyrazoles/chemistry , Thiourea
5.
Ann Surg ; 279(4): 588-597, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38456278

ABSTRACT

OBJECTIVE: To compare the effect of low and standard pneumoperitoneal pressure (PP) on the occurrence of gas embolism during laparoscopic liver resection (LLR). BACKGROUND: LLR has an increased risk of gas embolism. Although animal studies have shown that low PP reduces the occurrence of gas embolism, clinical evidence is lacking. METHODS: This parallel, dual-arm, double-blind, randomized controlled trial included 141 patients undergoing elective LLR. Patients were randomized into standard ("S," 15 mm Hg; n = 70) or low ("L," 10 mm Hg; n = 71) PP groups. Severe gas embolism (≥ grade 3, based on the Schmandra microbubble method) was detected using transesophageal echocardiography and recorded as the primary outcome. Intraoperative vital signs and postoperative recovery profiles were also evaluated. RESULTS: Fewer severe gas embolism cases (n = 29, 40.8% vs n = 47, 67.1%, P = 0.003), fewer abrupt decreases in end-tidal carbon dioxide partial pressure, shorter severe gas embolism duration, less peripheral oxygen saturation reduction, and fewer increases in heart rate and lactate during gas embolization episodes was found in group L than in group S. Moreover, a higher arterial partial pressure of oxygen and peripheral oxygen saturation were observed, and fewer fluids and vasoactive drugs were administered in group L than in group S. In both groups, the distensibility index of the inferior vena cava negatively correlated with central venous pressure throughout LLR, and a comparable quality of recovery was observed. CONCLUSIONS: Low PP reduced the incidence and duration of severe gas embolism and achieved steadier hemodynamics and vital signs during LLR. Therefore, a low PP strategy can be considered a valuable choice for the future LLR.


Subject(s)
Embolism, Air , Laparoscopy , Animals , Humans , Carbon Dioxide/adverse effects , Embolism, Air/etiology , Embolism, Air/prevention & control , Embolism, Air/diagnosis , Laparoscopy/adverse effects , Laparoscopy/methods , Liver/surgery , Pneumoperitoneum, Artificial/adverse effects
6.
J Agric Food Chem ; 72(7): 3334-3341, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38346337

ABSTRACT

The design and synthesis of new herbicidal active compounds based on a new target are of great significance for the development of new herbicides. Transketolase (TK) plays a key role in the Calvin cycle of plant photosynthesis and has been confirmed as a potential candidate target to develop and discover new herbicides. To obtain compounds with ultraefficient targeting of TK, a series of pyrazole amide derivatives were designed and synthesized through structural optimization for lead compound 4u based on TK as the new target. The bioassay results showed that compounds 6ba and 6bj displayed a highly inhibitory effect with the root inhibition of about 90% against Digitaria sanguinalis (DS) and 80% against Amaranthus retroflexus (AR) and Setaria viridis (SV) by the small cup method, which was better than the positive control mesotrione and nicosulfuron. Furthermore, compounds 6ba and 6bj exhibited an excellent inhibitory effect with the inhibition of about 80% (against DS) and over 80% (against SV) at the dosage of 150 g of active ingredient/ha by the foliar spray method. The TK enzyme activity inhibition test showed that the inhibition effect of target compounds against TK was consistent with the results of herbicidal activities. Also, molecular docking analysis showed that compounds 6ba and 6bj went deep into the active cavity of TK, bound to TK by a strong interaction, and might act on the enzyme TK. Above of all, compounds 6ba and 6bj are promising herbicide lead compounds targeting TK. Hence, they could be developed into more efficient herbicides by further structural optimization.


Subject(s)
Herbicides , Herbicides/chemistry , Structure-Activity Relationship , Transketolase , Amides , Molecular Docking Simulation , Pyrazoles/pharmacology , Pyrazoles/chemistry , Enzyme Inhibitors/pharmacology
7.
Sci Total Environ ; 917: 170567, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38296098

ABSTRACT

Dicamba, a traditional highly effective and low toxicity herbicide, has gained new life with the development of dicamba-tolerant transgenic crops in recent years. However, dicamba is highly volatile and therefore easy to cause drift damage to sensitive crops. The development of efficient and sensitive detection methods is essential for monitoring of trace dicamba in the environment. Nanobody-based immunoassay plays an important role in on-site detection of pesticides. However, now rapid and sensitive immunoassay methods based on nanobody for dicamba detection were lacking. In this study, the nanobodies specifically recognizing dicamba were successfully obtained by immunising camels and phage display library construction, and then an indirect competitive immunoassay based on Nb-242 was constructed with IC50 of 0.93 µg/mL and a linear range of 0.11-8.01 µg/mL. Nb-242 had good specificity with no cross-reactivities against the dicamba analogs other than 2,3,6-trichlorobenzoic acid and the developed immnoassay had a good correlation with the standard HPLC in the spike-recovery studies. Finally, the key amino acid Ala 123, Tyr 55, Tyr 59 and Arg 72 of Nb-242 that specifically recognizing and binding with dicamba were identified by homologous modeling and molecular docking, laying an important foundation for further structural modification of Nb-242. This study has important guiding significance for constructing immunoassay method of dicamba based on nanobody and provides a sensitive, specific, and reliable detection method that is suitable for the detection of dicamba in the environment.


Subject(s)
Dicamba , Herbicides , Enzyme-Linked Immunosorbent Assay , Molecular Docking Simulation , Immunoassay/methods
8.
Sci Total Environ ; 914: 169858, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190900

ABSTRACT

Fomesafen belongs to the diphenyl ether herbicide, and is widely used in the control of broadleaf weeds in crop fields due to its high efficiency and good selectivity. The residual of fomesafen in soil has a toxic effect on subsequent sensitive crops and the microbial community structure because of its long residual period. Therefore, an efficient method for detecting fomesafen is critical to guide the correct and reasonable use of this herbicide. Rapid and sensitive immunoassay methods for fomesafen is unavailable due to the lack of specific antibody. In this study, a specific antibody for fomesafen was generated based on rational design of haptens and a sensitive immunoassay method was established. The half maximal inhibitory concentration (IC50) of the immunoassay was 39 ng/mL with a linear range (IC10-90) of 1.92-779.8 ng/mL. In addition, the developed assay had a good correlation with the standard UPLC-MS/MS both in the spike-recovery studies and in the detection of real soil samples. Overall, the developed indirect competitive enzyme immunoassay reported here is important for detecting and quantifying fomesafen contamination in soil and other environmental samples with good sensitivity and high reproducibility.


Subject(s)
Benzamides , Herbicides , Herbicides/analysis , Chromatography, Liquid , Reproducibility of Results , Tandem Mass Spectrometry , Antibodies , Immunoassay , Soil/chemistry
9.
Sci Total Environ ; 916: 170205, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38272075

ABSTRACT

Salinity poses a significant threat to plant growth and development. The root microbiota plays a key role in plant adaptation to saline environments. Nevertheless, it remains poorly understood whether and how perennial grass plants accumulate specific root-derived bacteria when exposed to salinity. Here, we systematically analyzed the composition and variation of rhizosphere and endophytic bacteria, as well as root exudates in perennial ryegrass differing in salt tolerance grown in unsterilized soils with and without salt. Both salt-sensitive (P1) and salt-tolerant (P2) perennial ryegrass genotypes grew better in unsterilized soils compared to sterilized soils under salt stress. The rhizosphere and endophytic bacteria of both P1 and P2 had lower alpha-diversity under salt treatment compared to control. The reduction of alpha-diversity was more pronounced for P1 than for P2. The specific root-derived bacteria, particularly the genus Pseudomonas, were enriched in rhizosphere and endophytic bacteria under salt stress. Changes in bacterial functionality induced by salt stress differed in P1 and P2. Additionally, more root exudates were altered under salt stress in P2 than in P1. The content of important root exudates, mainly including phenylpropanoids, benzenoids, organic acids, had a significantly positive correlation with the abundance of rhizosphere and endophytic bacteria under salt stress. The results indicate that the interactions between root-derived bacteria and root exudates are crucial for the salt tolerance of perennial ryegrass, which provides a potential strategy to manipulate root microbiome for improved stress tolerance of perennial grass species.


Subject(s)
Lolium , Salt Tolerance , Poaceae , Bacteria , Soil , Exudates and Transudates , Rhizosphere , Plant Roots/microbiology , Soil Microbiology
10.
J Chemother ; 36(1): 72-81, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37198946

ABSTRACT

Platinum-based chemotherapy is a common clinical treatment for esophageal squamous cell carcinoma (ESCC), and chemoresistance is a major leading reason for cancer treatment failure. MiR-302a-3p is involved in the development of many diseases. Here, we investigated the role of miR-302a-3p in the cisplatin resistance of ESCC cells and explored its potential mechanism via molecular techniques. The expression of miR-302a-3p was significantly reduced, while the expressions of EphA2 were increased in ESCC tumor tissues and cells. EphA2 was one target gene of miR-302a-3p, and was negatively regulated by miR-302a-3p. By regulating EphA2, miR-302a-3p reduced the viability and promoted the apoptosis of ECA109 cells treated with cisplatin, suggesting that miR-302a-3p could enhance the sensitivity of ECA109 cells to cisplatin treatment by targeting EphA2. MiR-302a-3p plays an important role in reducing cisplatin resistance by inhibiting EphA2, suggesting that it may be a promising therapeutic strategy for cisplatin resistance in ESCC in the future.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Cisplatin/therapeutic use , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement
12.
Front Cardiovasc Med ; 10: 1276317, 2023.
Article in English | MEDLINE | ID: mdl-38130690

ABSTRACT

Background: Increasing age is a significant risk factor for atrial fibrillation (AF) recurrence after catheter ablation (CA). We accomplished this study to evaluate the efficacy and safety of the vein of Marshall (VOM) ethanol infusion (VOM-EI) with CA in elderly patients with persistent AF (PsAF). Methods: This retrospective observational study included 360 consecutive adult patients with PsAF, of which 141 were in the Elder group (age ≥65 years) and 219 were in the Younger group (age <65 years), who underwent the VOM-EI and radiofrequency CA (RFCA) between May 2020 and April 2022. The efficacy endpoint was no recurrence of AF within one year after CA. Results: The VOM-EI was successfully performed in 90.8% of patients from the Elder and 88.6% from the Younger group. All patients achieved PVI; 97.9% of patients from the Elder and 98.6% from the Younger group reached LA roof block, and 93.6% of patients from the Elder and 95.9% from the Younger group achieved MI block. There was no significant difference in 1-year survival without recurrence of AF between the two groups (83.0% and 84.5%, respectively). The incidence of complications within 30 days after the procedure from the two groups was low and did not differ significantly. Conclusion: The VOM-EI combined with RFCA proved to be an effective and safe strategy for treating PsAF in elderly and younger patients.

13.
J Nanobiotechnology ; 21(1): 420, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37957632

ABSTRACT

Immune therapy that targets PD-L1 (programmed cell death-ligand 1) is attractive to augment immune response by breaking the programmed cell death-1 (PD-1)/PD-L1 axis. However, T cell exhaustion associated with insufficient T cells infiltration may diminish the efficacy of cancer therapy. Here, we report a novel delivery system of FEGCG/FPEI@siTOX composed of fluorinated EGCG (FEGCG) and fluorinated polyethyleneimine (FPEI) for delivery of small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) to treat tumor and metastasis. In this way, the reduction in PD-L1 expression by FEGCG can promote T-cell function, while inhibition of TOX expression with siTOX can alleviate T-cell exhaustion. FPEI are designed to deliver siRNA with high efficiency and low toxicity compared to classical PEI. Integrating FEGCG, FPEI and siTOX into such a novel system resulted in excellent anti-tumor and antimetastatic effects. It is a promising delivery system and potential strategy for the treatment of "cold" tumors.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Neoplasms/drug therapy , RNA, Small Interfering
14.
Int J Cardiol Heart Vasc ; 49: 101283, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37908623

ABSTRACT

Background: An electrical storm due to malignant ventricular tachycardia (VT) is a life-threatening condition that requires catheter ablation (CA). Most VT arrhythmias evolve over time after acute myocardial infarction, coronary artery bypass grafting, or chronic heart failure. Clinically, only radiofrequency ablation can identify and block all arrhythmia origin points. The procedure necessitates continuous VT induction in patients, resulting in hemodynamic instability; therefore, extracorporeal membrane oxygenation (ECMO) support is required. Earlier studies have reported substantial mortality rates; however, our results are significantly more favorable. In this study, we combined the minimally invasive extracorporeal circulation (MiECC) approach with ECMO to preserve an appropriate ECMO flow rate, thus reducing intraoperative left heart afterload. We report 21 cases illustrating the usefulness of modified veno-arterial (VA)-ECMO in this scenario. Methods: Data of 21 patients supported by the modified VA-ECMO system (MiECC approach combined with the ECMO system) during VT CA in the Wuhan Asia Heart Hospital between June 2020 and July 2021 were reviewed retrospectively. Results: Successful ablation was achieved in 20 out of 21 patients (95%). The median time for ECMO implantation was 206 min. Only two patients experienced complications post-treatment. All patients made complete recovery and were discharged. All patients were alive at the 1-year-follow-up. Conclusions: Our modified VA-ECMO system helped restore systemic circulation in patients experiencing an electrical storm, thus achieving greater electrical stability during VT CA. Pre-insertion of VA-ECMO can achieve even better results.

15.
Pacing Clin Electrophysiol ; 46(11): 1357-1365, 2023 11.
Article in English | MEDLINE | ID: mdl-37910563

ABSTRACT

Mapping and ablation of atrial tachycardia (AT) in patients who have had prior cardiac surgery can be a challenge for clinical electrophysiologists. High density mapping (HDM) technology has been widely used in these patients because it provides a better characterization of the substrate and the mechanisms with an unprecedented high resolution. In this review, we summarize how the latest HDM technologies can reveal the mechanism of AT in different types of patients post-cardiac surgery and guide a specifically tailored ablation strategy.


Subject(s)
Atrial Fibrillation , Cardiac Surgical Procedures , Catheter Ablation , Tachycardia, Supraventricular , Humans , Electrophysiologic Techniques, Cardiac , Catheter Ablation/adverse effects , Tachycardia, Supraventricular/diagnosis , Tachycardia, Supraventricular/surgery , Tachycardia, Supraventricular/etiology , Heart , Cardiac Surgical Procedures/adverse effects , Treatment Outcome , Atrial Fibrillation/surgery
16.
Sci Total Environ ; 900: 165814, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37517723

ABSTRACT

The primary utilization strategy for meadow grasslands on the Qinghai-Tibet Plateau (QTP) is livestock grazing. This practice is considered as one of the major drivers of plant-associated bacterial community construction and changes in soil properties. The species of Kobresia humilis is considered as the most dominant one in grasslands. However, how different grazing practices affect the phyllosphere and rhizosphere bacterial communities of K. humilis is unknown. To address this issue, the effects of the grazing enclosure (GE), single-species grazing (YG and SG, representing yak only and sheep only, respectively), and different ratios of grazing (ratio of yak to sheep is 1:2, 1:4, and 1:6, represented by MG1:2, MG1:4, and MG1:6, respectively) on the dominant plant of K. humilis, it's phyllosphere and rhizosphere bacteria, and soil properties were investigated using artificially controlled grazing and grazing enclosure. Our data showed that grazing enclosure enhanced vegetation coverage, and rhizosphere bacterial richness and diversity, while reduced plant number and bacterial network stability of K. humilis. The NO3--N, K+, and Cl- concentrations were lower under grazing compared to GE. SG reduced the concentration of NH4+-N, TN, K+, and Na+ compared to YG. Moderate grazing intensity had a lower relative abundance of the r-strategists (Bacteroidota and Gammaproteobacteria) with higher bacterial network stability. Yak and sheep grazing showed reversed impacts on the bacterial network stability between the phyllosphere and rhizosphere of K. humilis. Proteobacteria and Actinobacteriota were identified in the molecular ecological network analysis as keystone taxa in the phyllosphere and rhizosphere networks, respectively, under all treatments. This study explained why sheep grazing has more adverse effects on grazing-tolerant grass species, K. humilis, than yak grazing, and will contribute to a better understanding of the impacts of different grazing practices and grazing enclosure on alpine grassland ecosystems on the QTP.


Subject(s)
Carex Plant , Ecosystem , Animals , Sheep , Grassland , Rhizosphere , Tibet , Bacteria , Soil
17.
BMC Anesthesiol ; 23(1): 182, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237331

ABSTRACT

BACKGROUND: Remimazolam tosilate (RT) is a novel short-acting GABA (A) receptor agonist that has a rapid recovery from procedural sedation and can be fully reversed by flumazenil. To date, there have been relatively few articles comparing RT and propofol for general anesthesia. This study aimed to assess the efficacy and safety of RT with or without flumazenil compared with propofol in general anesthesia for day surgery. METHODS: 115 patients scheduled for day surgery were randomized into three groups: RT (n = 39), RT + flumazenil (n = 38) and propofol (n = 38). The primary endpoints were anesthesia induction time and time until fully alert. Anesthesia success rate, bispectral index (BIS) values, injection pain, opioid and vasopressor dosages, postoperative recovery profiles and perioperative inflammatory and cognitive changes were assessed. Any adverse events were recorded. RESULTS: Induction times were similar among the three groups (P = 0.437), but the median time until fully alert in patients treated with RT was longer than that of the propofol or RT + flumazenil groups (17.6 min vs. 12.3 min vs. 12.3 min, P < 0.001). The three groups had comparable postoperative recovery quality and inflammatory and cognitive state changes (P > 0.05). Smaller percentages of patients who received RT (26.3%) and RT + flumazenil (31.6%) developed hypotension during anesthesia maintenance compared with propofol (68.4%), and consequently less ephedrine (P < 0.001) and phenylephrine (P = 0.015) were needed in the RT group. Furthermore, serum triglyceride levels were lower (P < 0.001) and injection pain was much less frequent in the RT with or without flumazenil groups compared with the propofol group (5.3% vs. 0% vs. 18.4%). CONCLUSION: RT permits rapid induction and comparable recovery profile compared with propofol in general anesthesia for day surgery, but has a prolonged recovery time without flumazenil. The safety profile of RT was superior to propofol in terms of hypotension and injection pain. TRIAL REGISTRATION: The study was registered at Chinese Clinical Trial Registry http://www.chictr.org.cn/ (Registration date: 19/7/2021; Trial ID: ChiCTR2100048904).


Subject(s)
Ambulatory Surgical Procedures , Anesthesia, General , Benzodiazepines , Propofol , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Anesthesia, General/adverse effects , Benzodiazepines/administration & dosage , Flumazenil , GABA Agonists/therapeutic use , Propofol/administration & dosage , Prospective Studies , Hypotension/chemically induced
18.
Materials (Basel) ; 16(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37049041

ABSTRACT

Here, 2% Cu + 2% Ni co-doped ZnO nanoparticles were synthesized using the hydrothermal method and were used as particle reinforcements of Cu-Ni nanocomposite coatings prepared by electroplating technology. The effects of the added (Cu, Ni) co-doped ZnO nanoparticles (2-8 g/L) on the phase structure, surface morphology, thickness, microhardness, corrosion resistance, and photocatalytic properties of the coatings were investigated. The nanocomposite coatings have obvious diffraction peaks on the crystal planes of (111), (200), and (220), showing a wurtzite structure. The surface of the nanocomposite coatings is cauliflower-like, and becomes smoother and denser with the increase in the addition of nanoparticles. The grain size, thickness, microhardness, corrosion resistance, and photocatalytic properties of the nanocomposite coating reach a peak value when the added (Cu, Ni) co-doped ZnO nanoparticles are 6 g/L. At this concentration, the mean crystallite size of the coating reaches a minimum of 15.31 nm, and the deposition efficiency of the coating is the highest. The (Cu, Ni) co-doped ZnO nanoparticle reinforcement makes the microhardness reach up to 658 HV. The addition of nanoparticles significantly improves the corrosion resistance and photocatalytic properties of nanocomposite coatings. The minimum corrosion current density is 2.36 × 10-6 A/cm2, the maximum corrosion potential is -0.301 V, and the highest decolorization rate of Rhodamine B is 28.73% after UV irradiation for 5 h.

19.
Disaster Med Public Health Prep ; 17: e393, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37039438

ABSTRACT

According to the public data collected from the Health Commission of Gansu Province, China, regarding the COVID-19 pandemic during the summer epidemic cycle in 2022, the epidemiological analysis showed that the pandemic spread stability and the symptom rate (the number of confirmed cases divided by the sum of the number of asymptomatic cases and the number of confirmed cases) of COVID-19 were different among 3 main epidemic regions, Lanzhou, Linxia, and Gannan; both the symptom rate and the daily instantaneous symptom rate (daily number of confirmed cases divided by the sum of daily number of asymptomatic cases and daily number of confirmed cases) in Lanzhou were substantially higher than those in Linxia and Gannan. The difference in the food sources due to the high difference of the population ethnic composition in the 3 regions was probably the main driver for the difference of the symptom rates among the 3 regions. This work provides potential values for prevention and control of COVID-19 in different regions.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , China/epidemiology
20.
Microbiol Res ; 272: 127375, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37058784

ABSTRACT

Phosphorus (P), an essential macronutrient for all life on Earth, has been shown to be a vital limiting nutrient element for plant growth and yield. P deficiency is a common phenomenon in terrestrial ecosystems across the world. Chemical phosphate fertilizer has traditionally been employed to solve the problem of P deficiency in agricultural production, but its application has been limited by the non-renewability of raw materials and the adverse influence on the ecological health of the environment. Therefore, it is imperative to develop efficient, economical, environmentally friendly and highly stable alternative strategies to meet the plant P demand. Phosphate-solubilizing bacteria (PSB) are able to improve plant productivity by increasing P nutrition. Pathways to fully and effectively use PSB to mobilize unavailable forms of soil P for plants has become a hot research topic in the fields of plant nutrition and ecology. Here, the biogeochemical P cycling in soil systems are summarized, how to make full use of soil legacy P via PSB to alleviate the global P resource shortage are reviewed. We highlight the advances in multi-omics technologies that are helpful for exploring the dynamics of nutrient turnover and the genetic potential of PSB-centered microbial communities. Furthermore, the multiple roles of PSB inoculants in sustainable agricultural practices are analyzed. Finally, we project that new ideas and techniques will be continuously infused into fundamental and applied research to achieve a more integrated understanding of the interactive mechanisms of PSB and rhizosphere microbiota/plant to maximize the efficacy of PSB as P activators.


Subject(s)
Phosphates , Phosphorus , Phosphates/metabolism , Phosphorus/metabolism , Ecosystem , Soil , Bacteria/genetics , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...