Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 807
Filter
1.
Free Radic Biol Med ; 220: 167-178, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38718952

ABSTRACT

Many studies show either the absence, or very low levels of, SARS-CoV-2 viral RNA and/or antigen in the brain of COVID-19 patients. Reports consistently indicate an abortive infection phenomenon in nervous cells despite the fact that they contain the SARS-CoV-2 receptor, ACE2. Dopamine levels in different brain regions are in the range of micromolar to millimolar concentrations. We have shown that sub-micromolar to low micromolar concentrations of dopamine or its precursor (levodopa) time- and dose-dependently inhibit the activity of SARS-CoV-2 main protease (Mpro), which is vital for the viral life cycle, by forming a quinoprotein. Thiol detection coupled with the assessment of Mpro activity suggests that among the 12 cysteinyl thiols, the active site, Cys145-SH, is preferentially conjugated to the quinone derived from the oxidation of dopamine or levodopa. LC-MS/MS analyses show that the Cys145-SH is covalently conjugated by dopamine- or levodopa-o-quinone. These findings help explain why SARS-CoV-2 causes inefficient replication in many nerve cell lines. It is well recognized that inhaled pulmonary drug delivery is the most robust therapy pathway for lung diseases. CVT-301 (orally inhaled levodopa) was approved by the FDA as a drug for Parkinson's patients prior to the outbreak of COVID-19 in 2018. Based on the fact that SARS-CoV-2 causes inefficient replication in the CNS with abundant endogenous Mpro inhibitor in addition to the current finding that levodopa has an Mpro-inhibitory effect somewhat stronger than dopamine, we should urgently investigate the use of CVT-301 as a lung-targeting, COVID-19, Mpro inhibitor.

2.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732874

ABSTRACT

Point cloud registration is an important task in computer vision and robotics which is widely used in 3D reconstruction, target recognition, and other fields. At present, many registration methods based on deep learning have better registration accuracy in complete point cloud registration, but partial registration accuracy is poor. Therefore, a partial point cloud registration network, HALNet, is proposed. Firstly, a feature extraction network consisting mainly of adaptive graph convolution (AGConv), two-dimensional convolution, and convolution block attention (CBAM) is used to learn the features of the initial point cloud. Then the overlapping estimation is used to remove the non-overlapping points of the two point clouds, and the hybrid attention mechanism composed of self-attention and cross-attention is used to fuse the geometric information of the two point clouds. Finally, the rigid transformation is obtained by using the fully connected layer. Five methods with excellent registration performance were selected for comparison. Compared with SCANet, which has the best registration performance among the five methods, the RMSE(R) and MAE(R) of HALNet are reduced by 10.67% and 12.05%. In addition, the results of the ablation experiment verify that the hybrid attention mechanism and fully connected layer are conducive to improving registration performance.

3.
Langmuir ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775311

ABSTRACT

224Ra (T1/2 = 3.63 d), an α-emitting radionuclide, holds significant promise in cancer endoradiotherapy. Current 224Ra-related therapy is still scarce because of the lack of reliable radionuclide supply. The 228Th-224Ra radionuclide generator can undoubtedly introduce continuous and sustainable availability of 224Ra for advanced nuclear medicine. However, conventional metal oxides for such radionuclide generators manifest suboptimal adsorption capacities for the parent nuclide, primarily attributable to their limited surface area. In this work, core-shell SiO2@TiO2 microspheres were proposed to develop as column materials for the construction of a 228Th-224Ra generator. SiO2@TiO2 microspheres were well prepared and systematically characterized, which has also been demonstrated to have good adsorption capacity to 228Th and very weak binding affinity toward 224Ra via simulated chemical separation. Upon introducing 228Th-containing solution onto the SiO2@TiO2 functional column, a 228Th-224Ra generator with excellent retention of the parent radionuclide and ideal elution efficiency of daughter radionuclide was obtained. The prepared 228Th-224Ra generator can produce 224Ra with high purity and medical usability in good elution efficiency (98.72%) even over five cycles. To the best of our knowledge, this is the first time that the core-shell mesoporous materials have been applied in a radionuclide generator, which can offer valuable insights for materials chemistry, radiochemical separation, and biological medicine.

7.
Nat Commun ; 15(1): 3399, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649376

ABSTRACT

The van der Waals antiferromagnetic topological insulator MnBi2Te4 represents a promising platform for exploring the layer-dependent magnetism and topological states of matter. Recently observed discrepancies between magnetic and transport properties have aroused controversies concerning the topological nature of MnBi2Te4 in the ground state. In this article, we demonstrate that fabrication can induce mismatched even-odd layer dependent magnetotransport in few-layer MnBi2Te4. We perform a comprehensive study of the magnetotransport properties in 6- and 7-septuple-layer MnBi2Te4, and reveal that both even- and odd-number-layer device can show zero Hall plateau phenomena in zero magnetic field. Importantly, a statistical survey of the optical contrast in more than 200 MnBi2Te4 flakes reveals that the zero Hall plateau in odd-number-layer devices arises from the reduction of the effective thickness during the fabrication, a factor that was rarely noticed in previous studies of 2D materials. Our finding not only provides an explanation to the controversies regarding the discrepancy of the even-odd layer dependent magnetotransport in MnBi2Te4, but also highlights the critical issues concerning the fabrication and characterization of 2D material devices.

8.
Anal Chim Acta ; 1302: 342514, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38580408

ABSTRACT

Monkeypox (mpox) is spreading around the world, and its rapid diagnosis is of great significance. In the present study, a rapid and sensitive fluorescent chromatography assisted with cloud system was developed for point-of-care diagnosis of mpox. To screen high affinity antibodies, nanoparticle antigen AaLS-A29 was generated by conjugating A29 onto scaffold AaLS. Immunization with AaLS-A29 induced significantly higher antibody titers and monoclonal antibodies were generated with the immunized mice. A pair of monoclonal antibodies, MXV 14 and MXV 15, were selected for fluorescence chromatography development. The Time-Resolved Fluorescence Immunoassay (TRFIA) was used to develop the chromatography assay. After optimization of the label and concentration of antibodies, a sensitive TRFIA assay with detection limit of 20 pg/mL and good repeatability was developed. The detection of the surrogate Vaccinia virus (VACA) strain Tian Tan showed that the TRFIA assay was more sensitive than the SYBR green I based quantitative PCR. In real samples, the detection result of this assay were highly consistent with the judgement of Quantitative Real-Time PCR (Concordance Rate = 90.48%) as well as the clinical diagnosis (Kappa Value = 0.844, P < 0.001). By combining the portable detection and online cloud system, the detection results could be uploaded and shared, making this detection system an ideal system for point-of-care diagnosis of mpox both in field laboratory and outbreak investigation.


Subject(s)
Mpox (monkeypox) , Animals , Mice , Point-of-Care Systems , Fluoroimmunoassay/methods , Antibodies, Monoclonal
9.
BMC Med Educ ; 24(1): 229, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439054

ABSTRACT

BACKGROUND: To characterize the current state of emergency medicine (EM) and the requirements for advancing EM clinical practice, education and research in China. METHODS: An anonymous electronic survey was conducted by Chinese Society of Emergency Medicine during September to October 2021. The survey contained 30 questions divided into 2 sections: the current state of EM development and the requirements for EM growth. RESULTS: 722 hospitals were included, of 487 were Level III and 235 were Level II hospitals. We found that after 40 years of development, EM had established a mature disciplinary system and refined sub-specialties including critical care, cardiopulmonary resuscitation, toxicology, disaster and emergency rescue. In Level III hospitals, 70.8% of EDs were standardized training centers for EM residents, but master's degree program, Doctor Degree program and post-doctoral degree program was approved in only 37.8%, 8.4% and 2.9% of EDs respectively and postgraduate curriculum was available in 1/4 of EDs. Only 8% have national or provincial key laboratories. In addition to advance clinical practice, there was also a high demand to improve teaching and research capacities, mainly focusing on literature review, research design and delivery, paper writing, residency training. CONCLUSIONS: EM has built a mature discipline system and refined sub-specialties in China. Teaching and research developed parallel with clinical practice. However, there was still a lack of EM master's and doctoral programs and research capacities need to be improved. More outstanding clinical and academic training should be provided to promote the rapid growth of EM in China.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medicine , China , Educational Status
11.
New Phytol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509454

ABSTRACT

Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.

12.
World J Emerg Med ; 15(2): 98-104, 2024.
Article in English | MEDLINE | ID: mdl-38476534

ABSTRACT

BACKGROUND: In clinical practice, some patients might not be able or unwilling to provide a thorough history of medication and poison exposure. The aim of this study was to use toxicological analysis to examine the clinical characteristics of patients with acute poisoning whose exposure history was uncertain from a toxicological analysis perspective. METHODS: This was a retrospective and descriptive study from an institute of poisoning. Patient registration information and test reports spanning the period from April 1, 2020 to March 31, 2022, were obtained. Patients with uncertain exposure histories and who underwent toxicological analysis were included. Clinical manifestations and categories of toxics were analyzed. RESULTS: Among the 195 patients with positive toxicological analysis results, the main causes of uncertain exposure history was disturbance of consciousness (62.6%), unawareness (23.6%) and unwillingness or lack of cooperation (13.8%). The predominant clinical manifestations were disturbed consciousness (62.6%), followed by vomiting and nausea (14.4%) and liver function abnormalities (8.7%). A comparison of clinical manifestations between patients with positive and negative (n=99) toxicological analyses results revealed significantly different proportions of disturbances in consciousness (63% vs. 21%), dizziness (1.5% vs. 5.1%), multi-organ failure (1.5% vs. 7.1%), and local pain (0 vs 4%). The main categories of substances involved were psychiatric medications (23.1%), sedatives (20.5%), insecticides (13.8%), and herbicides (12.8%). CONCLUSION: The clinical manifestations of acute poisoning in patients with an uncertain exposure history are diverse and nonspecific, and toxicological analysis plays a pivotal role in the diagnosis and differential diagnosis of such patients.

13.
Pestic Biochem Physiol ; 199: 105805, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458670

ABSTRACT

Diquat (DQ) poisoning has garnered attention in recent years, primarily due to the rising incidence of cases worldwide, coupled with the absence of a viable antidote for its treatment. Despite the fact that diquat monopyridone (DQ-M) has been identified as a significant metabolite of DQ, the enzyme responsible for its formation remains unknown. In this study, we have identified aldehyde oxidase (AOX) as a vital enzyme involved in DQ oxidative metabolism. The metabolism of DQ to DQ-M was significantly inhibited by AOX inhibitors including raloxifene and hydralazine. The source of oxygen incorporated into DQ-M was proved to be from water through a H218O incubation experiment which further corroborated DQ-M formation via AOX metabolism. The product of DQ-M in vitro generated by fresh rat tissues co-incubation was consistent with its AOX expression. The result of the molecular docking analysis of DQ and AOX protein showed that DQ is capable of binding to AOX. Furthermore, the cytotoxicity of DQ was significantly higher than DQ-M at the same concentration tested in six cell types. This work is the first to uncover the involvement of aldehyde oxidase, a non-cytochrome P450 enzyme, in the oxidative metabolic pathway of diquat, thus providing a potential target for the development of detoxification treatment.


Subject(s)
Aldehyde Oxidase , Diquat , Rats , Animals , Diquat/pharmacology , Aldehyde Oxidase/chemistry , Aldehyde Oxidase/metabolism , Molecular Docking Simulation , Oxidative Stress , Metabolic Networks and Pathways , Cytochrome P-450 Enzyme System/metabolism
14.
Ying Yong Sheng Tai Xue Bao ; 35(2): 347-353, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523091

ABSTRACT

In recent years, PM2.5 pollution has become a most important source of air pollution. Prolonged exposure to high PM2.5 concentrations can give rise to severe health issues. Negative air ion (NAI) is an important indicator for measuring air quality, which is collectively known as the 'air vitamin'. However, the intricate and fluctuating meteorological conditions and vegetation types result in numerous uncertainties in the correlation between PM2.5 and NAI. In this study, we collected data on NAI, PM2.5, and meteorological elements through positioning observation during the period of June to September in 2019 and 2020 under the condition of relatively constant leaf area in Quercus variabilis forest, a typical forest in warm temperate zones. We investigated the spatiotemporal variation of PM2.5 and NAI under consistent meteorological conditions, established the correlation between PM2.5 and NAI, and explicated the impact mechanism of PM2.5 on NAI in natural conditions. The results showed that NAI decreased exponentially with the increases in natural PM2.5, with a significant negative correlation (y=1148.79x-0.123). The decrease rates of NAI in PM2.5 concentrations of 0-20, 20-40, 40-80, 80-100 and 100-120 µg·m-3 were 40.1%, 36.2%, 9.4%, 2.4%, 5.1% and 6.8%, respectively. Results of the sensitivity analysis showed that the PM2.5 concentration range of 0-40 µg·m-3 was the sensitive range that affected NAI. Our findings could provide a scientific basis for better understanding the response mechanisms of NAI to environmental factors.


Subject(s)
Air Pollutants , Air Pollution , Quercus , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , Forests , Environmental Monitoring/methods , China
15.
Adv Healthc Mater ; 13(13): e2303619, 2024 May.
Article in English | MEDLINE | ID: mdl-38340040

ABSTRACT

The convergence strategies of antigenic subunits and synthetic nanoparticle scaffold platform improve the vaccine production efficiency and enhance vaccine-induced immunogenicity. Selecting the appropriate nanoparticle scaffold is crucial to controlling target antigens immunologically. Lumazine synthase (LS) is an attractive candidate for a vaccine display system due to its thermostability, modification tolerance, and morphological plasticity. Here, the first development of a multivalent thermostable scaffold, LS-SUMO (SUMO, small ubiquitin-likemodifier), and a divalent nanovaccine covalently conjugated with Chikungunya virus E2 and Zika virus EDIII antigens, is reported. Compared with antigen monomers, LS-SUMO nanoparticle vaccines elicit a higher humoral response and neutralizing antibodies against both antigen targets in mouse sera. Mice immunized with LS-SUMO conjugates produce CD4+ T cell-mediated Th2-biased responses and promote humoral immunity. Importantly, LS-SUMO conjugates possess equivalent humoral immunogenicity after heat treatment. Taken together, LS-SUMO is a powerful biotargeting nanoplatform with high-yield production, thermal stability and opens a new avenue for multivalent presentation of various antigens.


Subject(s)
Chikungunya virus , Zika Virus , Animals , Mice , Chikungunya virus/immunology , Zika Virus/immunology , Nanoparticles/chemistry , Viral Vaccines/immunology , Viral Vaccines/chemistry , Mice, Inbred BALB C , Female , Chikungunya Fever/immunology , Chikungunya Fever/prevention & control , Immunity, Humoral/drug effects , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Antigens, Viral/chemistry , Nanovaccines , Multienzyme Complexes
16.
Biotechnol J ; 19(2): e2300174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403399

ABSTRACT

Mesenchymal stem cells (MSCs) and their produced exosomes have demonstrated inherent capabilities of inflammation-guided targeting and inflammatory modulation, inspiring their potential applications as biologic agents for inflammatory treatments. However, the clinical applications of stem cell therapies are currently restricted by several challenges, and one of them is the mass production of stem cells to satisfy the therapeutic demands in the clinical bench. Herein, a production of human amnion-derived MSCs (hMSCs) at a scale of over 1 × 109 cells per batch was reported using a three-dimensional (3D) culture technology based on microcarriers coupled with a spinner bioreactor system. The present study revealed that this large-scale production technology improved the inflammation-guided migration and the inflammatory suppression of hMSCs, without altering their major properties as stem cells. Moreover, these large-scale produced hMSCs showed an efficient treatment against the lipopolysaccharide (LPS)-induced lung inflammation in mice models. Notably, exosomes collected from these large-scale produced hMSCs were observed to inherit the efficient inflammatory suppression capability of hMSCs. The present study showed that 3D culture technology using microcarriers coupled with a spinner bioreactor system can be a promising strategy for the large-scale expansion of hMSCs with improved anti-inflammation capability, as well as their secreted exosomes.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Pneumonia , Humans , Animals , Mice , Stem Cells , Pneumonia/therapy , Inflammation/therapy
17.
Sci Rep ; 14(1): 3279, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332202

ABSTRACT

The TRIZ theory was used to accurately discover the problems to be solved in the design of roadway surrounding rock control technology. This paper tried to solve the complex issue of surrounding rock control in deep roadways from a new perspective. Based on the functional component analysis and causal axis analysis of the problem's primary reason, simultaneously, the surrounding rock control technology was optimized through technical contradiction analysis, physical contradiction analysis, and substance and field model analysis. As a result, a fully enclosed wire-shell support technology was proposed. Finally, taking the typical soft rock roadway engineering of Pansan Coal Mine in Huainan Mining Area, Anhui Province, China, as the engineering background, the engineering application and effect evaluation were completed. This paper provides a reference for controlling the instability of deep soft rock roadways in coal mines. A new idea of optimizing roadway support engineering based on TRIZ theory was proposed.

18.
Medicine (Baltimore) ; 103(8): e37302, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394528

ABSTRACT

RATIONALE: Melanoma is one of a common cutaneous malignancy. Currently, metastatic malignant melanoma is difficult to be diagnosed through imaging examinations. Furthermore, the incidence of metastatic melanoma affecting the gallbladder and ureter is exceptionally rare. PATIENT CONCERNS: A 54-year-old female was admitted to the hospital with a half-month history of left lower back pain. Correlative examination revealed an occupying lesion in the mid-left ureter and the neck of the gallbladder. DIAGNOSES: The patient was initially diagnosed with gallbladder cancer and left ureteral carcinoma based on imaging. Following 2 operations, immunohistochemical staining confirmed the presence of metastatic melanoma involving both the gallbladder and ureter. INTERVENTION: After multidisciplinary consultation and obtaining consent from the patient and her family, the patient underwent left radical nephroureterectomy, radical cholecystectomy, laparoscopic partial hepatectomy (Hep IV, Hep V), and lymph node dissection of hepatoduodenal ligament. OUTCOMES: One month after treatment, the patient imaging showed no disease progression, and at 6 months of follow-up, the patient was still alive. LESSONS: It is difficult to distinguish metastatic melanoma from carcinoma in situ by imaging. In addition, metastatic malignant melanoma lacks specific clinical manifestations and is prone to misdiagnosis, which emphasizes the highly aggressive nature of malignant melanoma.


Subject(s)
Gallbladder Neoplasms , Melanoma , Skin Neoplasms , Ureter , Humans , Female , Middle Aged , Melanoma/diagnosis , Melanoma/surgery , Melanoma/pathology , Ureter/pathology , Skin Neoplasms/pathology , Gallbladder Neoplasms/diagnosis , Gallbladder Neoplasms/surgery , Gallbladder Neoplasms/pathology
19.
ACS Appl Bio Mater ; 7(3): 1547-1557, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38346262

ABSTRACT

African swine fever is an acute and highly contagious infectious disease with a mortality rate of up to 100%. The lack of commercial vaccines and drugs is a serious economic threat to the global pig industry. Cell-mediated immunity plays an essential role in protection against viral infection. We previously reported the rational design of a T-cell-activating thermostable scaffold (RPT) for antigen delivery and improved cellular immunity. We conjugated antigens P30, P54, P72, CD2 V, and CP312R to RPT, using a SpyCatcher/SpyTag covalent attachment strategy to construct nanovaccines (multiantigens-RPT). Multiantigens-RPT exhibited significantly higher thermal, storage, and freeze-thaw stability. The specific antibodies IgG and IgG2a of the multiantigen-RPT-immunized were higher than the antigens cocktail-immunized by approximately 10-100 times. ELISpot demonstrated that more IFN-γ-secreting cells were produced by the multiantigen-RPT-immunized than by the antigens cocktail-immunized. Delivery of the multiantigen nanovaccine by a T-cell-activating scaffold induced strong humoral and cellular immune responses in mice and pigs and is a potentially useful candidate vaccine for the African swine fever virus.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Mice , African Swine Fever/prevention & control , T-Lymphocytes , Nanovaccines , Adjuvants, Immunologic
20.
Vaccine ; 42(8): 2072-2080, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38423815

ABSTRACT

Monkeypox (mpox) is a zoonotic disease caused by monkeypox virus (MPXV) of the orthopoxvirus genus. The emergence and global spread of mpox in 2022 was declared as a public health emergency by World Health Organization. This mpox pandemic alarmed us that mpox still threaten global public health. Live vaccines could be used for immunization for this disease with side effects. New alternative vaccines are urgently needed for this re-emerging disease. Specific antibody responses play key roles for protection against MPXV, therefore, vaccines that induce high humoral immunity will be ideal candidates. In the present study, we developed thermostable nanovaccine candidates for mpox by conjugating MPXV antigens with thermostable nanoscafolds. Three MPXV protective antigens, L1, A29, and A33, and the thermostable Aquafex aeolicus lumazine synthase (AaLS), were expressed in E. coli and purified by Ni-NTA methods. The nanovaccines were generated by conjugation of the antigens with AaLS. Thermal stability test results showed that the nanovaccines remained unchanged after one week storage under 37℃ and only partial degradation under 60℃, indicating high thermostability. Very interesting, one dose immunization with the nanovaccine could induce high potent antibody responses, and two dose induced 2-month high titers of antibodes. In vitro virus neutralization test showed that nanovaccine candidates induced significantly higher levels of neutralization antibodies than monomers. These results indicated that the AaLS conjugation nanovaccines of MPXV antigens are highly thermostable in terms of storage and antigenic, being good alternative vaccine candidates for this re-emerging disease.


Subject(s)
Complementary Therapies , Mpox (monkeypox) , Humans , Nanovaccines , Escherichia coli , Adjuvants, Immunologic , Antibodies , Antigens, Viral , Monkeypox virus
SELECTION OF CITATIONS
SEARCH DETAIL
...