Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastroenterol ; 29(39): 5452-5470, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37900995

ABSTRACT

BACKGROUND: Oxaliplatin (Oxa) is the first-line chemotherapy drug for colorectal cancer (CRC), and Oxa resistance is crucial for treatment failure. Prostaglandin F2α synthase (PGF2α) (PGFS), an enzyme that catalyzes the production of PGF2α, is involved in the proliferation and growth of a variety of tumors. However, the role of PGFS in Oxa resistance in CRC remains unclear. AIM: To explore the role and related mechanisms of PGFS in mediating Oxa resistance in CRC. METHODS: The PGFS expression level was examined in 37 pairs of CRC tissues and paracancerous tissues at both the mRNA and protein levels. Overexpression or knockdown of PGFS was performed in CRC cell lines with acquired Oxa resistance (HCT116-OxR and HCT8-OxR) and their parental cell lines (HCT116 and HCT8) to assess its influence on cell proliferation, chemoresistance, apoptosis, and DNA damage. For determination of the underlying mechanisms, CRC cells were examined for platinum-DNA adducts and reactive oxygen species (ROS) levels in the presence of a PGFS inhibitor or its products. RESULTS: Both the protein and mRNA levels of PGFS were increased in the 37 examined CRC tissues compared to the adjacent normal tissues. Oxa induced PGFS expression in the parental HCT116 and HCT8 cells in a dose-dependent manner. Furthermore, overexpression of PGFS in parental CRC cells significantly attenuated Oxa-induced proliferative suppression, apoptosis, and DNA damage. In contrast, knockdown of PGFS in Oxa-resistant HCT116 and HCT8 cells (HCT116-OxR and HCT8-OxR) accentuated the effect of Oxa treatment in vitro and in vivo. The addition of the PGFS inhibitor indomethacin enhanced the cytotoxicity caused by Oxa. Treatment with the PGFS-catalyzed product PGF2α reversed the effect of PGFS knockdown on Oxa sensitivity. Interestingly, PGFS inhibited the formation of platinum-DNA adducts in a PGF2α-independent manner. PGF2α exerts its protective effect against DNA damage by reducing ROS levels. CONCLUSION: PGFS promotes resistance to Oxa in CRC via both PGF2α-dependent and PGF2α-independent mechanisms.


Subject(s)
Colorectal Neoplasms , Platinum , Humans , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Platinum/pharmacology , Platinum/therapeutic use , DNA Adducts/pharmacology , DNA Adducts/therapeutic use , Reactive Oxygen Species , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , RNA, Messenger/metabolism , Prostaglandins , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
2.
Open Med (Wars) ; 16(1): 1718-1727, 2021.
Article in English | MEDLINE | ID: mdl-34825063

ABSTRACT

Mitophagy affects the activation of hepatic stellate cells (HSCs). Mitochondria-targeted ubiquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces the production of intracellular reactive oxygen species (ROS). However, its relationship with mitophagy remains unclear. This study evaluated mitophagy during HSC activation and the effects of MitoQ on mitophagy in cell culture and in an animal model of the activation of HSCs. We found that MitoQ reduced the activation of HSCs and alleviated hepatic fibrosis. PINK1 (PTEN-induced putative kinase 1) is a putative serine/threonine kinase located in the mitochondria's outer membrane. While the activation of primary HSCs or LX-2 cells was associated with reduced PINK1/parkin-mediated mitophagy, MitoQ reduced intracellular ROS levels, enhanced PINK1/parkin-mediated mitophagy, and inhibited the activation of HSCs. After knocking down the key mitophagy-related protein, PINK1, in LX-2 cells to block mitophagy, MitoQ intervention failed to inhibit HSC activation. Our results showed that MitoQ inhibited the activation of HSCs and alleviated hepatic fibrosis by enhancing PINK1/parkin-mediated mitophagy.

3.
World J Gastroenterol ; 27(28): 4667-4686, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34366628

ABSTRACT

BACKGROUND: Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Y-box binding protein 1 (YB-1) is closely correlated with tumors and drug resistance. However, the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown. AIM: To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC. METHODS: The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues. Next, we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib. Then, we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling, flow cytometry and Western blotting assays. We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo. Moreover, we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing (DGE-seq). RESULTS: YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues. YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis. Consistently, the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down. Furthermore, KEGG pathway enrichment analysis of DGE-seq demonstrated that the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was essential for the sorafenib resistance induced by YB-1. Subsequently, YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway (Akt1 and PIK3R1) as shown by searching the BioGRID and HitPredict websites. Finally, YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib, and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance. CONCLUSION: Overall, we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene, which is of great significance for the application of sorafenib in advanced-stage HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carrier Proteins , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sorafenib/pharmacology , Y-Box-Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...