Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(9): e2308434, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37897665

ABSTRACT

The strength and toughness of thermoset epoxy resins are generally mutually exclusive, as are the high performance and rapid recyclability. Experimentally determined mechanical strength values are usually much lower than their theoretical values. The preparation of thermoset epoxy resins with high modulus, high toughness, ultrastrong strength, and highly efficient recyclability is still a challenge. Here, novel hyperbranched epoxy resins (Bn, n = 6, 12, 24) with imide structures by a thiol-ene click reaction. Bn shows an excellent comprehensive function in simultaneously improving the strength, modulus, toughness, low-temperature resistance, and degradability of diglycidyl ether of bisphenol-A (DGEBA). All the mechanical properties first increase and then decrease with minimization of the free volume properties. The improvement is attributable to uniform molecular holes or free volume by a molecular mixture of linear and hyperbranched topological structures. The precise measurement and controllability of the molecular free volume properties of epoxy resins is first discovered, as well as the imide structure degradation of crosslinked epoxy resins. The two conflicts are successfully resolved between strength and toughness and between high performance during service and high efficiency during degradation. These findings provide a route for designing ultrastrong, tough, and recyclable thermoset epoxy resins.

2.
ACS Macro Lett ; 10(9): 1113-1118, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35549086

ABSTRACT

Currently, only 5% of thermoset carbon fiber reinforced polymer composites (CFRPs) are recycled into lower-value secondary products. Highly efficient closed-loop recycling of both thermoset resin and carbon fiber is a major challenge. Here, we report a sustainable approach for the closed-loop recycling of the resin and fiber from CFRPs. Thiol-functionalized carbon fiber (TCF) obtained by functionalization with a thiol-ended hyperbranched polymer, and then an epoxy-ended degradable hyperbranched polymer (HT3) are used to prepare HT3/TCF composites, which show considerable acid resistance and mechanical performance. The cured composites are controllably depolymerized into monomers and oligomers with high recyclability (89%), which can be utilized to prepare HT3 and the precursor of cross-linked HT3. A total of 100% of the carbon fibers are recovered and reused to fabricate composites without deterioration of performance. The results provide a method for designing high-performance composites and a pathway for high efficiency closed-loop recycling.

3.
J Food Prot ; 82(10): 1697-1705, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31536422

ABSTRACT

Tartary buckwheat peptides (TBPs), produced from tartary buckwheat through solid-state fermentation, were used as a dip treatment solution to preserve tilapia fillets. Fillets were dip treated with different concentrations of TBPs (0.5, 1, and 2% [v/v]) and stored at 4°C for 12 days. The effect of TBPs on thiobarbituric acid, total volatile base nitrogen, surface color, texture profile analysis, total viable counts, and changes in sensory properties of tilapia fillets during storage was investigated. Compared with the control group, the groups treated with TBPs displayed reduced rates of quality deterioration in physicochemical, bacteriological, and sensory characteristics. Based on total volatile base nitrogen content, total viable counts, and sensory scores, the shelf life of control tilapia fillets was 4 days and that for TBP-treated fillets was 8 days, twice as long as that of the control group. Thus, TBPs can be used as preservatives to maintain the quality and extend the shelf life of tilapia fillets stored at 4°C.


Subject(s)
Fagopyrum , Food Preservation , Peptides , Tilapia , Animals , Bacteria/drug effects , Fagopyrum/chemistry , Fish Products/standards , Food Preservation/methods , Peptides/pharmacology
4.
Chemistry ; 24(45): 11667-11674, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-29851158

ABSTRACT

The recognized therapeutic benefits from carbon monoxide (CO) have caused booming attention to develop a CO therapy for various major diseases, such as cancer. However, the controlled release of CO gas and the monitoring of the CO release are vitally important to the on-demand CO administration for a safe and efficient therapy, but greatly challenging. In this work, a new CO-releasing nanocomplex was constructed by the adsorption and coordination of manganese carbonyl ([MnBr(CO)5 ], abbreviated as MnCO) with a Ti-based metal-organic framework (Ti-MOF) to realize an intratumoral H2 O2 -triggered CO release and real-time CO release monitoring by fluorescence imaging. A high CO prodrug loading capacity (0.532 g MnCO per gram Ti-MOF) is achieved due to the high surface area of Ti-MOF, and the intracellular H2 O2 -triggered CO release from the MnCO@Ti-MOF is realized to enable the nanocomplex selectively release CO in tumor cells and kill tumor cells rather than normal cells. Particularly significant is that the real-time fluorescence imaging monitoring of the CO release is realized based on an annihilation effect of the fluorescence after MnCO loading into Ti-MOF and an activation effect of the fluorescence after CO release from Ti-MOF. The quantitative relationship between the fluorescence intensity and the released CO amount is established in great favor of guiding on-demand CO administration. The results demonstrate the advantage of versatile MOFs for high efficient CO delivery and monitoring, which is critical for the improvement of the effectiveness of future therapeutic application.

5.
BMC Plant Biol ; 18(1): 34, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29448924

ABSTRACT

BACKGROUND: Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H2O2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H2O2 and cellular redox states, were characterized. RESULTS: Low concentrations (10-25 mg·L- 1) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L- 1, which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H2O2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H2O2, GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H2O2-induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H2O2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. CONCLUSIONS: Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L- 1. The results showed that H2O2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H2O2 signaling, resulting in enhanced antioxidant capacity in tomato plants at low temperatures.


Subject(s)
Aminolevulinic Acid/pharmacology , Ascorbic Acid/metabolism , Glutathione/metabolism , Hydrogen Peroxide/pharmacology , Solanum lycopersicum/metabolism , Cold Temperature , Solanum lycopersicum/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Temperature
6.
Polymers (Basel) ; 9(10)2017 Sep 29.
Article in English | MEDLINE | ID: mdl-30965780

ABSTRACT

The present study aims to improve the mechanical properties of epoxy composite by incorporating supported ionic liquid silica (IL-silica). The IL-silica not only showed improved interfacial interaction and reinforcement, but also served as cure agent of epoxy composites. The differential scanning calorimetry analysis revealed that epoxy composites could be successfully cured with IL-silica without any routine curing agents. IL-silica/epoxy composites presented higher mechanical and thermal properties compared with epoxy composite containing un-functionalized silica (u-silica). The dynamic mechanical analysis showed that the storage modulus of composites significantly increased with the addition of IL-silica in comparison to that with added u-silica, as well as the variation of Tg parameter. The incorporation of IL-silica simultaneously enhanced the tensile strength, toughness, and thermal stability of the epoxy composites. The considerable improvements in mechanical and thermal properties are ascribed to the improved dispersion of IL-silica and the enhanced interfacial interactions between epoxy matrix and IL-silica by strong covalent bonding, which results in an effective load transfer.

7.
Langmuir ; 28(49): 16772-81, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23171370

ABSTRACT

The self-assembly of hyperbranched polymers has attracted much attention because of their wide application. In this article, we report a new facile surface self-assembly method for a carboxyl-ended hyperbranched polyester/platinum complex (HTD-3-Pt) and obtain ordered structural microrods with a length of 10-20 µm and a width of 1 µm. The length and diameter of the self-assembled microrods could be increased to 300-600 µm and 4-5 µm, respectively, by hierarchical self-assembly. The main factors affecting the morphology of the self-assemblies, including temperature, time, solvent and solubility parameter, and relative humidity were discussed by transmission/reflection polarizing optical microscopy (TRPOM), SEM, and HRSEM. The indications for the coordination bond (-COOPt) included the appearance of a new peak at 1606 cm(-1) and its shifting to 1634 cm(-1) in the FT-IR spectra, the disappearance of the C 1s peak at about 288.6 eV, and the increase in the O 1s electron binding energy in the XPS spectra. Furthermore, an interesting crystal property of the HTD-3-Pt self-assemblies was discovered and confirmed by XRD. The study results from the surface self-assembly mechanism suggest that the coordination induction of the platinum ion play a key role in driving microphase separation between the intermolecular chains and end groups of the HTD-3-Pt to form the microrod self-assemblies. Another interesting finding was that HTD-3-Pt showed a higher catalytic activity for hydrosilylation than did a traditional homogeneous catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...