Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Food Microbiol ; 416: 110646, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38457886

ABSTRACT

The development of minimally processed baked goods is dependent on new "clean label" functional ingredients that allow substitution of additives without compromising quality. We investigated the use of fermentation with Bacillus spp. as a novel approach to improve bread quality. Bacillus velezensis FUA2155 and Bacillus amyloliquefaciens Fad WE ferments were prepared using white wheat flour, wheat bran or buckwheat, and were added at a level of 2.5-20 % to bread dough. Ropy spoilage of bread was controlled by sourdough addition at a level of 10 or 20 %. The volume of white wheat bread and wheat bran bread increased by 47.4 and 62.5 % respectively with 2.5 % Bacillus ferments. Bread shelf-life was prolonged by the Bacillus ferment only at higher dosages that also reduced bread volume. The use of unfermented or sourdough fermented buckwheat improved bread volume and delayed mould spoilage. The characterization of water-soluble polysaccharides from sourdoughs and Bacillus ferments revealed that solubilization of arabinoxylans contributed to the increase in volume after fermentation of wheat but not after fermentation of buckwheat. In conclusion, Bacillus fermentation can be used to improve bread quality, adding to the diversity of microbes that are suitable for baking applications.


Subject(s)
Bacillus , Flour , Fermentation , Flour/analysis , Food Microbiology , Triticum , Bread/analysis , Dietary Fiber
2.
Article in English | MEDLINE | ID: mdl-35604827

ABSTRACT

Genomic characterization of Furfurilactobacillus rossiae revealed that strains which were previously identified as F. rossiae are genetically heterogeneous. The 16S rRNA gene sequences of strains FUA3430, FUA3583, C5, FUA3115 and FUA3119, were 99.6 % identical to F. rossiae but the core genome analysis revealed that these strains share less than 93 % average nucleotide identity (ANI) with the F. rossiae type strain DSM 15814T. Because the ANI value is below the threshold for delineation of bacterial species, we propose the novel species Furfurilactobacillus milii sp. nov. with the type strain FUA3430T (=DSM 113338T=LMG 32478T). Strains of F. milii have smaller genomes than F. rossiae, lack the pdu-cbi-cob-hem cluster which is responsible for 1,2-propanediol utilization in F. rossiae, and lack genes involved in ethanolamine utilization. Two strains of the novel species (FUA3430T and FUA3583) were compared to F. rossiae FUA3214. Analysis of the cellular fatty acid composition and metabolite analysis did not reveal significant differences between F. milii sp. nov. and F. rossiae FUA3124. Although the growth requirements with respect to temperature and pH were very similar, only the strain of F. rossiae utilized melibiose and d-xylose. Morphological differences were also seen in the colony and cell size of the novel compared to F. rossiae.


Subject(s)
Edible Grain , Genes, Bacterial , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Lactobacillaceae , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL