Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(26): 18172-18183, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888159

ABSTRACT

Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1ß by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Penicillium , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Penicillium/metabolism , Penicillium/chemistry , Humans , Biosynthetic Pathways/drug effects , Interleukin-1beta/metabolism , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/metabolism , Molecular Structure
2.
Adv Sci (Weinh) ; 11(26): e2310018, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38687842

ABSTRACT

Dimeric indole-containing diketopiperazines (di-DKPs) are a diverse group of natural products produced through cytochrome P450-catalyzed C-C or C-N coupling reactions. The regio- and stereoselectivity of these reactions plays a significant role in the structural diversity of di-DKPs. Despite their pivotal role, the mechanisms governing the selectivity in fungi are not fully understood. Employing bioinformatics analysis and heterologous expression experiments, five undescribed P450 enzymes (AmiP450, AcrP450, AtP450, AcP450, and AtuP450) responsible for the regio- and stereoselective dimerization of diketopiperazines (DKPs) in fungi are identified. The function of these P450s is consistent with phylogenetic analysis, highlighting their dominant role in controlling the dimerization modes. Combinatorial biosynthesis-based pathway reconstitution of non-native gene clusters expands the chemical space of fungal di-DKPs and reveals that the regioselectivity is influenced by the substrate. Furthermore, multiple sequence alignment and molecular docking of these enzymes demonstrate a C-terminal variable region near the substrate tunnel entrance in AtuP450 that is crucial for its regioselectivity. These findings not only reveal the secret of fungal di-DKPs diversity but also deepen understanding of the mechanisms and catalytic specificity involved in P450-catalyzed dimerization reactions.


Subject(s)
Cytochrome P-450 Enzyme System , Diketopiperazines , Dimerization , Diketopiperazines/metabolism , Diketopiperazines/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Stereoisomerism , Fungi/genetics , Fungi/enzymology , Fungi/metabolism , Phylogeny , Catalysis , Computational Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL