Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
J Dent Educ ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722295

ABSTRACT

OBJECTIVE: The integration of curriculum is an important approach for enhancing medical education and facilitating interdisciplinary connections among students. This study aimed to develop a new morphological integrated teaching mode for undergraduate stomatology education by combining stomatological pathology and radiology courses with instructional media. METHODS: In total, 63 undergraduates were included in this study and divided into three groups: traditional (Group T; the control group) and two experimental groups: KoPa WiFi EDU (Group K), and KoPa WiFi EDU-cone beam computed tomography (CBCT) (Group K-C). All participants attended a 2-h lecture on periapical cysts and completed the first theoretical test. Subsequently, they underwent a 4-h experimental training session on the pathology and radiology of periapical cysts using different teaching methods. Following the training, participants completed the second theoretical test and underwent the first image-reading skill evaluation. After a 3-month period, participants completed the third theoretical test and underwent the second image-reading skill evaluation. The effectiveness of the teaching methods was assessed by analyzing the differences in theoretical test and experimental skill evaluation scores. RESULTS: There were no significant differences in the first theoretical outcomes among three groups (p > 0.05). However, the second theoretical scores, the first objective evaluation scores, and the first subjective evaluation scores were significantly higher in the integrated teaching mode (3D teaching mode with the KoPa WiFi EDU and CBCT: 89.29 ± 4.55, 81.00 ± 8.15, and 61.57 ± 5.52, respectively; 2D teaching mode with the KoPa WiFi EDU system: 80.43 ± 3.41, 73.00 ± 8.01, and 55.67 ± 5.66, respectively) than in the traditional teaching mode (72.57 ± 3.84, 69.38 ± 4.91, and 48.67 ± 5.54, respectively) (p < 0.05). Moreover, the long-term teaching effect of the integrated mode was better than that of the traditional mode (p < 0.05). CONCLUSIONS: The morphology-based integrated teaching mode combining pathology and radiology aroused student enthusiasm for learning, and resulted in enhanced learning outcomes in dental experimental education.

2.
Theranostics ; 14(7): 2835-2855, 2024.
Article in English | MEDLINE | ID: mdl-38773970

ABSTRACT

Rationale: The large-scale genomic analysis classifies glioblastoma (GBM) into three major subtypes, including classical (CL), proneural (PN), and mesenchymal (MES) subtypes. Each of these subtypes exhibits a varying degree of sensitivity to the temozolomide (TMZ) treatment, while the prognosis corresponds to the molecular and genetic characteristics of the tumor cell type. Tumors with MES features are predominantly characterized by the NF1 deletion/alteration, leading to sustained activation of the RAS and PI3K-AKT signaling pathways in GBM and tend to acquire drug resistance, resulting in the worst prognosis compared to other subtypes (PN and CL). Here, we used the CRISPR/Cas9 library screening technique to detect TMZ-related gene targets that might play roles in acquiring drug resistance, using overexpressed KRAS-G12C mutant GBM cell lines. The study identified a key therapeutic strategy to address the chemoresistance against the MES subtype of GBM. Methods: The CRISPR-Cas9 library screening was used to discover genes associated with TMZ resistance in the U87-KRAS (U87-MG which is overexpressed KRAS-G12C mutant) cells. The patient-derived GBM primary cell line TBD0220 was used for experimental validations in vivo and in vitro. Chromatin isolation by RNA purification (ChIRP) and chromatin immunoprecipitation (ChIP) assays were used to elucidate the silencing mechanism of tumor suppressor genes in the MES-GBM subtype. The small-molecule inhibitor EPIC-0412 was obtained through high-throughput screening. Transmission electron microscopy (TEM) was used to characterize the exosomes (Exos) secreted by GBM cells after TMZ treatment. Blood-derived Exos-based targeted delivery of siRNA, TMZ, and EPIC-0412 was optimized to tailor personalized therapy in vivo. Results: Using the genome-wide CRISPR-Cas9 library screening, we found that the ERBIN gene could be epigenetically regulated in the U87-KRAS cells. ERBIN overexpression inhibited the RAS signaling and downstream proliferation and invasion effects of GBM tumor cells. EPIC-0412 treatment inhibited tumor proliferation and EMT progression by upregulating the ERBIN expression both in vitro and in vivo. Genome-wide CRISPR-Cas9 screening also identified RASGRP1(Ras guanine nucleotide-releasing protein 1) and VPS28(Vacuolar protein sorting-associated protein 28) genes as synthetically lethal in response to TMZ treatment in the U87-KRAS cells. We found that RASGRP1 activated the RAS-mediated DDR pathway by promoting the RAS-GTP transformation. VPS28 promoted the Exos secretion and decreased intracellular TMZ concentration in GBM cells. The targeted Exos delivery system encapsulating drugs and siRNAs together showed a powerful therapeutic effect against GBM in vivo. Conclusions: We demonstrate a new mechanism by which ERBIN is epigenetically silenced by the RAS signaling in the MES subtype of GBM. Restoration of the ERBIN expression with EPIC-0412 significantly inhibits the RAS signaling downstream. RASGRP1 and VPS28 genes are associated with the promotion of TMZ resistance through RAS-GDP to RAS-GTP transformation and TMZ efflux, as well. A quadruple combination therapy based on a targeted Exos delivery system demonstrated significantly reduced tumor burden in vivo. Therefore, our study provides new insights and therapeutic approaches for regulating tumor progression and TMZ resistance in the MES-GBM subtype.


Subject(s)
CRISPR-Cas Systems , Drug Resistance, Neoplasm , Exosomes , Glioblastoma , Temozolomide , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/drug therapy , Temozolomide/pharmacology , Temozolomide/therapeutic use , Humans , Drug Resistance, Neoplasm/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Animals , Exosomes/metabolism , Exosomes/genetics , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Carcinogenesis/genetics , Carcinogenesis/drug effects , Mice, Nude , Xenograft Model Antitumor Assays
3.
Article in English | MEDLINE | ID: mdl-38663861

ABSTRACT

Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.

4.
ACS Appl Mater Interfaces ; 16(15): 19205-19213, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591860

ABSTRACT

An artificial nociceptor, as a critical and special bionic receptor, plays a key role in a bioelectronic device that detects stimuli and provides warnings. However, fully exploiting bioelectronic applications remains a major challenge due to the lack of the methods of implementing basic nociceptor functions and nociceptive blockade in a single device. In this work, we developed a Pt/LiSiOx/TiN artificial nociceptor. It had excellent stability under the 104 endurance test with pulse stimuli and exhibited a significant threshold current of 1 mA with 1 V pulse stimuli. Other functions such as relaxation, inadaptation, and sensitization were all realized in a single device. Also, the pain blockade function was first achieved in this nociceptor with over a 25% blocking degree, suggesting a self-protection function. More importantly, an obvious depression was activated by a stimulus over 1.6 V due to the cooperative effects of both lithium ions and oxygen ions in LiSiOx and the dramatic accumulation of Joule heat. The conducting channel ruptured partially under sequential potentiation, thus achieving nociceptive blockade, besides basic functions in one single nociceptor, which was rarely reported. These results provided important guidelines for constructing high-performance memristor-based artificial nociceptors and opened up an alternative approach to the realization of bioelectronic systems for artificial intelligence.


Subject(s)
Artificial Intelligence , Nociceptors , Humans , Nociceptors/physiology , Pain , Bionics , Ions/pharmacology
5.
Lab Chip ; 24(3): 549-560, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38168724

ABSTRACT

Effective granular sample manipulation with a portable and visualizable microfluidic device is significant for lots of applications, such as point-of-care testing and cargo delivery. Herein, we report a portable microfluidic device for controlled particle focusing, migration and double-emulsion droplet release via thermal fields. The device mainly contains a microfluidic chip, a microcontroller with a DC voltage control unit, a built-in microscope with a video transmission unit and a smartphone. Five microheaters located at the bottom of the microfluidic chip are used to unevenly heat fluids and then induce thermal buoyancy flow and a thermocapillary effect, and the experiments can be conveniently visualized through a smartphone, which provides convenient sample detection in outdoor environments. To demonstrate the feasibility and multifunctionality of this device, the focusing manipulation of multiple particles is first analyzed by using silica particles and yeast cells as experimental samples. We can directly observe the particle focusing states on the screen of a smartphone, and the particle focusing efficiency can be flexibly tuned by changing the control voltage of the microheater. Then the study focus is transferred to single-particle migration. By changing the voltage combinations applied on four strip microheaters, the single particle can migrate at predetermined trajectory and speed, showing attractiveness for those applications needing sample transportation. Finally, we manipulate the special three-phase flow system of double-emulsion drops in thermal fields. Under the combined effect of the thermocapillary effect and increased instability, the shell of double-emulsion droplets gradually thins and finally breaks, resulting in the release of samples in inner cores. The core release speed can also be flexibly adjusted by changing the control voltage of the microheater. These three experiments successfully demonstrate the effectiveness and multifunctionality of this thermally actuated microfluidic device on granular manipulation. Therefore, this portable microfluidic device will be promising for lots of applications, such as analytical detection, microrobot actuation and cargo release.

6.
Curr Issues Mol Biol ; 46(1): 650-662, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38248344

ABSTRACT

Isocorydine (ICD) exhibits strong antitumor effects on numerous human cell lines. However, the anticancer activity of ICD against oral squamous cell carcinoma (OSCC) has not been reported. The anticancer activity, migration and invasion ability, and changes in the cytoskeleton morphology and mechanical properties of ICD in OSCC were determined. Changes in the contents of reactive oxygen species (ROS), the mitochondrial membrane potential (MMP), ATP, and mitochondrial respiratory chain complex enzymes Ⅰ-Ⅳ in cancer cells were studied. ICD significantly inhibited the proliferation of oral tongue squamous cells (Cal-27), with an IC50 of 0.61 mM after 24 h of treatment. The invasion, migration, and adhesion of cancer cells were decreased, and cytoskeletal actin was deformed and depolymerized. In comparison to an untreated group, the activities of mitochondrial respiratory chain complex enzymes I-IV were significantly decreased by 50.72%, 27.39%, 77.27%, and 73.89%, respectively. The ROS production increased, the MMP decreased by 43.65%, and the ATP content decreased to 17.1 ± 0.001 (mmol/mL); ultimately, the apoptosis rate of cancer cells increased up to 10.57% after 24 h of action. These findings suggest that ICD exerted an obvious anticancer activity against OSCC and may inhibit Cal-27 proliferation and growth by causing mitochondrial dysfunction and interrupting cellular energy.

7.
Anal Chim Acta ; 1277: 341669, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37604623

ABSTRACT

Flexible droplet transportation and coalescence are significant for lots of applications such as material synthesis and analytical detection. Herein, we present an effective method for controllable droplet transportation and coalescence via thermal fields. The device used for droplet manipulation is composed of a glass substrate with indium tin oxide-made microheaers and a microchannel with two transport branches and a central chamber, and it's manipulated by sequentially powering the microheaters located at the bottom of microchannel. The fluid will be unevenly heated when the microheater is actuated, leading to the formation of thermal buoyancy convection and the decrease of interfacial tension of fluids. Subsequently, the microdroplets can be transported from the inlets of microchannel to the target position by the buoyancy flow-induced Stokes drag. And the droplet migration velocity can be flexibly adjusted by changing the voltage applied on the microheater. After being transported to the center of central chamber, the coalescence behaviors of microdroplets can be triggered if the microheater located at the bottom of central chamber is continuously actuated. The droplet coalescence is the combined effect of decreased fluid interfacial tension, the shortened droplet distance by buoyancy flow and the increased instability of droplet under the elevated temperature. The droplet coalescence efficiency is also related to the voltage of microheater, by increasing the voltage from 3.5 V to 7 V, the needed time for droplet coalescence dramatically decrease from 220s to 1.4 s. Finally, by the droplet coalescence-triggered calcium hydroxide precipitation reaction, we demonstrate the applicability of the droplet manipulation method on specific sample detection. Therefore, this approach used for droplet transportation and coalescence can be attractive for many droplet-based applications such as analytical detection.

8.
Nanotechnology ; 34(47)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37586343

ABSTRACT

Memristor-based neuromorphic computing is expected to overcome the bottleneck of von Neumann architecture. An artificial synaptic device with continuous conductance variation is essential for implementing bioinspired neuromorphic systems. In this work, a memristor based on Pt/LiSiOx/TiN structure is developed to emulate an artificial synapse, which shows non-volatile multilevel resistance state memory behavior. Moreover, the high nonlinearity caused by abrupt changes in the set process is optimized by adjusting the initial resistance. 100 levels of continuously modulated conductance states are achieved and the nonlinearity factors are reduced to 1.31. The significant improvement is attributed to the decrease in the Schottky barrier height and the evolution of the conductive filaments. Finally, due to the improved linearity of the long-term potentiation/long-term depression behaviors in LiSiOxmemristor, a robust recognition rate (∼94.58%) is achieved for pattern recognition with the modified National Institute of Standards and Technology handwriting database. The Pt/LiSiOx/TiN memristor shows significant potential in high-performance multilevel data storage and neuromorphic computing systems.

9.
ACS Appl Mater Interfaces ; 15(26): 31617-31626, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37339447

ABSTRACT

Negative capacitance field effect transistors made of Hf0.5Zr0.5O2 (HZO) are one of the most promising candidates for low-power-density devices because of the extremely steep subthreshold swing and high open-state currents resulting from the addition of ferroelectric materials in the gate dielectric layer. In this paper, HZO thin films were prepared by magnetron sputtering combined with rapid thermal annealing. Their ferroelectric properties were adjusted by changing the annealing temperature and the thickness of HZO. Two-dimensional MoS2 back-gate negative capacitance field-effect transistors (NCFETs) based on HZO were prepared as well. Different annealing temperatures, thicknesses of HZO thin films, and Al2O3 thicknesses were studied to achieve optimal capacitance matching, aiming to reduce both the subthreshold swing of the transistor and the hysteresis of the NCFET. The NCFET exhibits a minimum subthreshold swing as low as 27.9 mV/decade, negligible hysteresis (∼20 mV), and the ION/IOFF of up to 1.58 × 107. Moreover, a negative drain-induced barrier lowering effect and a negative differential resistance effect have been observed. This steep-slope transistor is compatible with standard CMOS manufacturing processes and attractive for 2D logic and sensor applications as well as future energy-efficient nanoelectronic devices with scaled power supplies.

10.
Front Neurosci ; 17: 1158601, 2023.
Article in English | MEDLINE | ID: mdl-37123372

ABSTRACT

Background: The emergence of the new WHO classification standard in 2021 incorporated molecular characteristics into the diagnosis system for meningiomas, making the diagnosis and treatment of meningiomas enter the molecular era. Recent findings: At present, there are still some problems in the clinical molecular detection of meningioma, such as low attention, excessive detection, and a long cycle. In order to solve these clinical problems, we realized the intraoperative molecular diagnosis of meningioma by combining real-time fluorescence PCR and AIGS, which is also the first known product applied to the intraoperative molecular diagnosis of meningioma. Implications for practice: We applied AIGS to detect and track a patient with TERTp mutant meningioma, summarized the process of intraoperative molecular diagnosis, and expounded the significance of intraoperative molecular diagnosis under the new classification standard, hoping to optimize the clinical decision-making of meningioma through the diagnosis and treatment plan of this case.

11.
Am J Sports Med ; 51(7): 1831-1843, 2023 06.
Article in English | MEDLINE | ID: mdl-37129100

ABSTRACT

BACKGROUND: Treatment of painful chronic tendinopathy is challenging, and there is an urgent need to develop new regenerative methods. Irreversible electroporation (IRE) can lead to localized cell ablation by electrical pulses and induce new cell and tissue growth. Previously, the authors' group reported that electroporation-ablated tendons fully regenerated. PURPOSE: To assess the efficiency of IRE in improving tendon healing using a collagenase-induced Achilles tendinopathy rat model. STUDY DESIGN: Controlled laboratory study. METHODS: After screening for the IRE ablation parameters, a collagenase-induced Achilles tendinopathy rat model was used to assess the efficacy of IRE in improving tendon healing via biomechanical, behavioral, histological, and immunofluorescence assessments. RESULTS: The experiments showed that the parameter of 875 V/cm 180 pulses could ablate most tenocytes, and apoptosis was the main type of death in vitro. In vivo, IRE promoted the healing process of chronic tendinopathy in the Achilles tendon of rats, based on biomechanical, behavioral, and histological assessments. Finally, immunofluorescence results revealed that IRE improved blood supply in the early stages of tendon repair and could potentially reduce neuropathic pain. CONCLUSION: IRE enhanced tendon tissue healing in a rat model of collagenase-induced Achilles tendinopathy. CLINICAL RELEVANCE: IRE may as a potential alternative treatment for tendinopathy in clinical usage.


Subject(s)
Achilles Tendon , Tendinopathy , Rats , Animals , Tendinopathy/surgery , Achilles Tendon/pathology , Disease Models, Animal , Electroporation , Collagenases/adverse effects
12.
Micromachines (Basel) ; 14(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37241573

ABSTRACT

In this work, we establish a two-dimensional axisymmetric simulation model to numerically study the impacting behaviors between oil droplets and an immiscible aqueous solution based on the three-phase field method. The numerical model is established by using the commercial software of COMSOL Multiphysics first and then validated by comparing the numerical results with the previous experimental study. The simulation results show that under the impact of oil droplets, a crater will form on the surface of the aqueous solution, which firstly expands and then collapses with the transfer and dissipation of kinetic energy of this three-phase system. As for the droplet, it flattens, spreads, stretches, or immerses on the crater surface and finally achieves an equilibrium state at the gas-liquid interface after experiencing several sinking-bouncing circles. The impacting velocity, fluid density, viscosity, interfacial tension, droplet size, and the property of non-Newtonian fluids all play important roles in the impact between oil droplets and aqueous solution. The conclusions can help to cognize the mechanism of droplet impact on an immiscible fluid and provide useful guidelines for those applications concerning droplet impact.

13.
Front Cell Dev Biol ; 11: 1099287, 2023.
Article in English | MEDLINE | ID: mdl-37082621

ABSTRACT

Objective: Osteoarthritis (OA) is a common joint disorder characterized by degenerative articular cartilage, subchondral bone remodeling, and inflammation. Increasing evidence suggests that the substantial crosstalk between cartilage and synovium is closely related to Osteoarthritis development, but the events that cause this degeneration remain unknown. This study aimed to explore the alterations in intercellular communication involved in the pathogenesis of Osteoarthritis using bioinformatics analysis. Methods: Single-cell transcriptome sequencing (scRNA-seq) profiles derived from articular cartilage tissue of patients with Osteoarthritis were downloaded from a public database. Chondrocyte heterogeneity was assessed using computational analysis, and cell type identification and clustering analysis were performed using the "FindClusters" function in the Seurat package. Intercellular communication networks, including major signaling inputs and outputs for cells, were predicted, and analyzed using CellChat. Results: Seven molecularly defined chondrocytes clusters (homeostatic chondrocytes, hypertrophic chondrocyte (HTC), pre-HTC, regulatory chondrocytes, fibro-chondrocytes (FC), pre-FC, and reparative chondrocyte) with different compositions were identified in the damaged cartilage. Compared to those in the intact cartilage, the overall cell-cell communication frequency and communication strength were remarkably increased in the damaged cartilage. The cellular communication among chondrocyte subtypes mediated by signaling pathways, such as PTN, VISFATIN, SPP1, and TGF-ß, was selectively altered in Osteoarthritis. Moreover, we verified that SPP1 pathway enrichment scores increased, but VISFATIN pathway enrichment scores decreased based on the bulk rna-seq datasets in Osteoarthritis. Conclusion: Our results revealed alterations in cell-cell communication among OA-related chondrocyte subtypes that were mediated by specific signaling pathways, which might be a crucial underlying mechanism associated with Osteoarthritis progression.

15.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047124

ABSTRACT

A glucose biosensor was layer-by-layer assembled on a modified glassy carbon electrode (GCE) from a nanocomposite of NAD(P)+-dependent glucose dehydrogenase, aminated polyethylene glycol (mPEG), carboxylic acid-functionalized multi-wall carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymers. The electrochemical electrode was denoted as NF/IL/GDH/mPEG-fMWCNTs/GCE. The composite polymer membranes were characterized by cyclic voltammetry, ultraviolet-visible spectrophotometry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. The cyclic voltammogram of the modified electrode had a pair of well-defined quasi-reversible redox peaks with a formal potential of -61 mV (vs. Ag/AgCl) at a scan rate of 0.05 V s-1. The heterogeneous electron transfer constant (ks) of GDH on the composite functional polymer-modified GCE was 6.5 s-1. The biosensor could sensitively recognize and detect glucose linearly from 0.8 to 100 µM with a detection limit down to 0.46 µM (S/N = 3) and a sensitivity of 29.1 nA µM-1. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 0.21 mM. The constructed electrochemical sensor was compared with the high-performance liquid chromatography method for the determination of glucose in commercially available glucose injections. The results demonstrated that the sensor was highly accurate and could be used for the rapid and quantitative determination of glucose concentration.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Glucose/chemistry , Polymers , Nanotubes, Carbon/chemistry , Glucose 1-Dehydrogenase , Electrochemistry/methods , Electrodes , Biosensing Techniques/methods
16.
Neurosurgery ; 92(4): 762-771, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36607719

ABSTRACT

BACKGROUND: With the advent of the molecular era, the diagnosis and treatment systems of glioma have also changed. A single histological type cannot be used for prognosis grade. Only by combining molecular diagnosis can precision medicine be realized. OBJECTIVE: To develop an automatic integrated gene detection system (AIGS) for intraoperative detection in glioma and to explore its positive role in intraoperative diagnosis and treatment. METHODS: We analyzed the isocitrate dehydrogenase 1 (IDH1) mutation status of 105 glioma samples and evaluated the product's potential value for diagnosis; 37 glioma samples were detected intraoperatively to evaluate the feasibility of using the product in an actual situation. A blinding method was used to evaluate the effect of the detection technology on the accuracy of intraoperative histopathological diagnosis by pathologists. We also reviewed the current research status in the field of intraoperative molecular diagnosis. RESULTS: Compared with next-generation sequencing, the accuracy of AIGS in detecting IDH1 was 100% for 105 samples and 37 intraoperative samples. The blind diagnostic results were compared between the 2 groups, and the molecular information provided by AIGS increased the intraoperative diagnostic accuracy of glioma by 16.2%. Using the technical advantages of multipoint synchronous detection, we determined the tumor molecular margins for 5 IDH-positive patients and achieved accurate resection at the molecular level. CONCLUSION: AIGS can quickly and accurately provide molecular information during surgery. This methodology not only improves the accuracy of intraoperative pathological diagnosis but also provides an important molecular basis for determining tumor margins to facilitate precision surgery.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Glioma/diagnosis , Glioma/genetics , Glioma/surgery , Prognosis , Mutation/genetics , Isocitrate Dehydrogenase/genetics , World Health Organization
17.
Oral Dis ; 29(4): 1668-1679, 2023 May.
Article in English | MEDLINE | ID: mdl-35255186

ABSTRACT

Long non-coding RNAs (lncRNAs) are thought to play important roles in non-syndromic orofacial clefts (NSOFC). Clinical diagnosis was categorized as either non-syndromic cleft lip with or without cleft palate (NSCL/P), or non-syndromic cleft palate only (NSCPO). Tissues excised from the trimmed wound edge were reserved as experimental samples; adjacent normal control was used as a positive control, and tissue from healthy individuals was used as a blank control. Target lncRNAs in the collected tissues were identified using microarrays and quantitative reverse transcription PCR (RT-qPCR). Immunohistochemical (IHC) staining and RT-qPCR were used to verify the target mRNAs. Pathway, gene ontology (GO) enrichment, and TargetScan predictions were employed to construct competing endogenous RNA networks (ceRNA networks) and explore their potential functions. RNA-Seq revealed 24 upregulated and 43 downregulated lncRNAs; MALAT1 and NEAT1 were screened and validated using RT-qPCR. Common NSOFC risk factors were positively correlated with MALAT1 and NEAT1 expression. Bioinformatics predicted four ceRNA networks; GO enrichment focused on their potential functions. RT-qPCR and IHC data were consistent with respect to expression levels of proteins and the mRNAs that encode them. As MALAT1 and NEAT1 are associated with the severity of NSOFC, they represent potential therapeutic targets and prognostic biomarkers.


Subject(s)
Cleft Lip , Cleft Palate , MicroRNAs , RNA, Long Noncoding , Humans , Cleft Lip/genetics , Cleft Palate/genetics , RNA, Long Noncoding/genetics , Risk Factors , MicroRNAs/genetics
18.
Nanoscale ; 15(3): 1200-1209, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36533724

ABSTRACT

High-density storage and neuromorphic devices based on 2D materials are hindered by large-scale growth. Moreover, the lack of a mature mechanism makes it difficult to obtain high-quality single crystals in large-scale 2D materials. In this work, we prepared a centimeter-scale single crystal α-MoO3via an oxygen assisted substrate-free self-standing growth method and mechanism and constructed high-performance synaptic devices based on the centimeter-scale α-MoO3. The oxygen assisted growth mechanism of α-MoO3 was developed from the periodic bond chain theory. The large-scale α-MoO3 is up to 2 cm and exhibits high homogeneity and single crystalline characteristic. Furthermore, with an optimized oxygen partial pressure (18%), the centimeter-scale α-MoO3 makes the as-prepared memristor achieve continuous conductance modulation. Moreover, the trap-controlled electron conducting mechanism of the memristor was demonstrated through I-V curve fitting analysis at various temperatures, in which the high resistance state section demonstrates space-charge-limited conduction (SCLC) mode. Moreover, the as-prepared α-MoO3 memristors exhibit low-energy consumption and well emulate the essential synaptic behaviors including excitatory/inhibitory postsynaptic current, paired-pulse facilitation and long-term plasticity.

19.
Nat Biotechnol ; 41(5): 652-662, 2023 05.
Article in English | MEDLINE | ID: mdl-36424488

ABSTRACT

'Smart' bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.


Subject(s)
Bandages , Wearable Electronic Devices , Mice , Animals , Wound Healing , Skin , Monitoring, Physiologic
20.
ACS Appl Mater Interfaces ; 14(40): 45832-45843, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36169636

ABSTRACT

Foams made of immiscible polymer blends have attracted great interest in both academia and industry, because of the integration of desirable properties of different polymers in a hybrid foam. However, the foamability and end-use properties are hampered because of the poor interfacial strength within the immiscible blends. Furthermore, few investigations have been carried out on the mechanisms by which interfacial strength and structure affect the foamability of polymer blends. In this work, two different reactive interfacial compatibilizers, i.e., poly(styrene-co-glycidyl methacrylate)-graft-poly(l-lactide) and poly(styrene-co-glycidyl methacry-late)-graft-poly(d-lactide), abbreviated as SG-g-PLLA and SG-g-PDLA, respectively, were designed and synthesized through reactive melt blending and subsequently applied to strengthen the interfacial strength and foamability of immiscible poly(butylene adipate-co-terephthalate) (PBAT)/poly(l-lactide) (PLLA) blends. Both compatibilizers could remarkably enhance the interfacial strength and foamability of the PBAT/PLLA blends, as evidenced by the significantly elongated dispersed phase in the resulting cocontinuous phase and more than 7000-fold increase in the cell density. Furthermore, the improved foamability was quantitively explained by the reduced gas diffusion and increased melt strength. Strikingly, the SG-g-PDLA introduced a stereocomplex crystal at the interface (i-SC), providing highly strengthened interfaces and nanoscale heterogeneous nucleation sites, which led to an energetically favorable cell nucleation. Moreover, foams with specifically laminated cell structures were fabricated by combining pressure-induced flow processing and i-SC strengthened interfaces. This work provides insight into the relationship between interfacial strength and formability of immiscible polymer blends and offers new possibilities for controlling cell morphologies and designing unique cell structures for polymer foams.

SELECTION OF CITATIONS
SEARCH DETAIL
...