Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Adv Sci (Weinh) ; : e2403592, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023171

ABSTRACT

Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.

2.
Microvasc Res ; 155: 104718, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019108

ABSTRACT

Psoriasis is characterized by excessive angiogenesis, with increased distortion and dilation of the dermal blood vessels. These vascular alterations are ascribed, at least in part, to the changes in dermal microvascular endothelial cell functions. However, despite the recognition of vascular normalization as an emerging strategy for the treatment of psoriasis, in-depth studies of human dermal microvascular endothelial cells (HDMECs) have been missing. The difficulty of isolation and culture of HDMECs has impeded the study of endothelial dysfunction in psoriasis. Researchers have done a great deal of work to study the abnormal characteristics of keratinocytes, fibroblasts, and leukocytes in psoriatic skin tissue. Recently, with successful isolation of HDMECs from psoriasis, great progress has been made in the elucidation of the pathogenic role of these cells in psoriasis. It is of great therapeutic significance to study the molecular mechanism of HDMECs in psoriasis. We review here the abnormalities of HDMECs in psoriasis.

3.
Int J Biol Sci ; 20(9): 3497-3514, 2024.
Article in English | MEDLINE | ID: mdl-38993569

ABSTRACT

Resistance to HER2-targeted therapy is the major cause of treatment failure in patients with HER2+ breast cancer (BC). Given the key role of immune microenvironment in tumor development, there is a lack of an ideal prognostic model that fully accounts for immune infiltration. In this study, WGCNA analysis was performed to discover the relationship between immune-related signaling and prognosis of HER2+ BC. After Herceptin-resistant BC cell lines established, transcriptional profiles of resistant cell line and RNA-sequencing data from GSE76360 cohort were analyzed for candidate genes. 85 samples of HER2+ BC from TCGA database were analyzed by the Cox regression, XGBoost and Lasso algorithm to generalize a credible immune-related prognostic index (IRPI). Correlations between the IRPI signature and tumor microenvironment were further analyzed by multiple algorithms, including single-cell RNA sequencing data analysis. Patients with high IRPI had suppressive tumor immune microenvironment and worse prognosis. The suppression of type I interferon signaling indicated by the IRPI in Herceptin-resistant HER2+ BC was validated. And we elucidated that the suppression of cGAS-STING pathway is the key determinant underlying immune escape in Herceptin-resistant BC with high IRPI. A combination of STING agonist and DS-8201 could serve as a new strategy for Herceptin-resistant HER2+ BC.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Membrane Proteins , Nucleotidyltransferases , Receptor, ErbB-2 , Trastuzumab , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Female , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Drug Resistance, Neoplasm/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction , Cell Line, Tumor , Prognosis , Gene Expression Regulation, Neoplastic
4.
Exp Dermatol ; 33(7): e15135, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021278

ABSTRACT

Autoimmune skin disease is a kind of heterogeneous disease with complicated pathogenesis. Many factors such as genetic, infectious, environmental and even psychological factors may interact together to trigger a synergistic effect for the development of abnormal innate and adaptive immune responses. Although the exact mechanisms remain unclear, recent evidence suggests that pyroptosis plays a pivotal role in the development of autoimmune skin disease. The feature of pyroptosis is the first formation of pores in cellular membranes, then cell rupture and the release of intracellular substances and pro-inflammatory cytokines, such as interleukin-1 beta (IL-1ß) and IL-18. This hyperactive inflammatory programmed cell death damages the homeostasis of the immune system and advances autoimmunity. This review briefly summarises the molecular regulatory mechanisms of pyrin domain-containing protein 3 (NLRP3) inflammasome and gasdermin family, as well as the molecular mechanisms of pyroptosis, highlights the latest progress of pyroptosis in autoimmune skin disease, including systemic lupus erythematosus, psoriasis, atopic dermatitis and systemic scleroderma and attempts to identify its potential advantages as a therapeutic target or prognostic biomarker for these diseases.


Subject(s)
Autoimmune Diseases , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Skin Diseases/immunology , Animals , Phosphate-Binding Proteins/metabolism , Interleukin-1beta/metabolism , Scleroderma, Systemic/immunology , Lupus Erythematosus, Systemic/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Psoriasis/immunology , Psoriasis/metabolism , Autoimmunity , Interleukin-18/metabolism , Dermatitis, Atopic/immunology
5.
J Dermatolog Treat ; 35(1): 2375580, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39013549

ABSTRACT

Psoriasis is a prevalent skin disease affecting approximately 1%-3% of the population and imposes significant medical, social and economic burdens. Psoriasis involves multiple organs and is often complicated with obesity, diabetes, dyslipidemia, and hypertension. Because of the benefits of lipid-lowering agents and antidiabetic medications for psoriasis, metabolic abnormalities possibly play a pathogenic role in psoriasis.This review focuses on the impacts of a variety of metabolic disorders on psoriasis and the underlying mechanisms.In psoriasis, enhanced glycolysis, glutamine metabolism and altered fatty acid composition in the psoriatic lesion and plasma result in the excessive proliferation of keratinocytes and secretion of inflammatory cytokines. Altered metabolism is associated with the activation of MTORC signaling pathway and transcription factors such as HIF and S6K1. Therefore, MTORC1 can be a target for the treatment of psoriasis. Additionally, there are diabetes drugs and lipid-lowering drugs including TZDs, GLP-1 RAs, Metformin, statins and fibrates, which improve both metabolic levels and psoriasis symptoms.


Subject(s)
Psoriasis , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/complications , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Signal Transduction/drug effects
6.
Clin Transl Med ; 14(6): e1735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899748

ABSTRACT

BACKGROUND: Mitochondrial outer membrane permeabilisation (MOMP) plays a pivotal role in cellular death and immune activation. A deeper understanding of the impact of tumour MOMP on immunity will aid in guiding more effective immunotherapeutic strategies. METHODS: A comprehensive pan-cancer dataset comprising 30 cancer-type transcriptomic cohorts, 20 immunotherapy transcriptomic cohorts and three immunotherapy scRNA-seq datasets was collected and analysed to determine the influence of tumour MOMP activity on clinical prognosis, immune infiltration and immunotherapy effectiveness. Leveraging 65 scRNA-Seq datasets, the MOMP signature (MOMP.Sig) was developed to accurately reflect tumour MOMP activity. The clinical predictive value of MOMP.Sig was explored through machine learning models. Integration of the MOMP.Sig model and a pan-cancer immunotherapy CRISPR screen further investigated potential targets to overcome immunotherapy resistance, which subsequently underwent clinical validation. RESULTS: Our research revealed that elevated MOMP activity reduces mortality risk in cancer patients, drives the formation of an anti-tumour immune environment and enhances the response to immunotherapy. This finding emphasises the potential clinical application value of MOMP activity in immunotherapy. MOMP.Sig, offering a more precise indicator of tumour cell MOMP activity, demonstrated outstanding predictive efficacy in machine-learning models. Moreover, with the assistance of the MOMP.Sig model, FOXO1 was identified as a core modulator that promotes immune resistance. Finally, these findings were successfully validated in clinical immunotherapy cohorts of skin cutaneous melanoma and triple-negative breast cancer patients. CONCLUSIONS: This study enhances our understanding of MOMP activity in immune modulation, providing valuable insights for more effective immunotherapeutic strategies across diverse tumours.


Subject(s)
Immunotherapy , Mitochondrial Membranes , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Mitochondrial Membranes/metabolism , Immunomodulation/drug effects
7.
Cell Biol Int ; 48(8): 1069-1079, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884348

ABSTRACT

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.


Subject(s)
Protein Isoforms , Humans , Protein Isoforms/metabolism , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , Neoplasms/metabolism , Protein Binding
8.
Br J Dermatol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752336

ABSTRACT

BACKGROUND: Psoriasis is a prevalent chronic inflammatory dermatosis characterized by excessive proliferation of keratinocytes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification that regulates various biological processes. Abnormal Khib modification has been closely associated with the development of autoimmune diseases. OBJECTIVE: To investigate the abnormal Khib profile and its pathogenic role in psoriasis. METHODS: We utilized liquid chromatography-tandem mass spectrometry to analyze Khib-modified proteins in the epidermis of psoriasis and healthy controls. Mutated cells and mice with downregulated Ebp1Khib210 were generated to investigate its functional effects in psoriasis. RESULTS: The omic analysis revealed dysregulation of Khib modification in psoriatic lesions, exhibiting a distinct profile compared to controls. We observed the downregulation of Ebp1Khib210 in psoriatic lesions and IMQ-induced psoriatic mice. Notably, the expression of Ebp1Khib210 was upregulated in psoriatic patients following effective treatment. Decreased Ebp1Khib210 enhanced keratinocyte viability, proliferation, and survival while inhibiting apoptosis in vitro. Additionally, Pa2g4K210A mice with downregulated Ebp1Khib210 exhibited more severe psoriatic lesions and enhanced keratinocyte proliferation. Moreover, we found that Ebp1K210A mutation increased the interaction between Ebp1 and nuclear Akt, thereby inhibiting MDM2-mediated TIF-IA ubiquitination, and resulting to increased rRNA synthesis and keratinocyte proliferation. The downregulation of Ebp1Khib210 was attributed to inflammation-induced increases in HDAC2 expression. CONCLUSION: Our findings demonstrate that downregulation of Ebp1Khib210 promotes keratinocyte proliferation through modulation of Akt signaling and TIF-IA-mediated rRNA synthesis. These insights into Khib modification provide a better understanding of the pathogenesis of psoriasis and suggest potential therapeutic targets.

9.
Nat Commun ; 15(1): 4330, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773072

ABSTRACT

The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Henipavirus Infections , Viral Fusion Proteins , Animals , Antibodies, Neutralizing/immunology , Female , Antibodies, Viral/immunology , Henipavirus Infections/virology , Henipavirus Infections/immunology , Viral Fusion Proteins/immunology , Viral Fusion Proteins/chemistry , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/chemistry , Nipah Virus/immunology , Virus Internalization/drug effects , Henipavirus/immunology , Cricetinae , Cross Reactions/immunology , Hendra Virus/immunology , Macaca , Mesocricetus , Crystallography, X-Ray
10.
Acta Histochem ; 126(4): 152166, 2024 May.
Article in English | MEDLINE | ID: mdl-38688157

ABSTRACT

Autophagy is a lysosome-dependent, self-renewal mechanism that degrades and recycles cellular components in eukaryotic cells to maintain the homeostasis of the intracellular environment. Psoriasis is featured by increased inflammatory response, epidermal hyperproliferation and abnormal differentiation, infiltration of immune cells and increased expression levels of both endothelial adhesion molecules and angiogenic mediators. Evidence indicates that autophagy has important roles in many different types of cells, such as lymphocytes, keratinocytes, monocytes and mesenchymal stem cells (MSCs). This paper will review the role of autophagy in the pathogenesis of psoriasis and strategies for therapeutic modulation. Key Message Autophagy regulates the functions of cutaneous cells (MSCs, KCs, T cells and endothelial cells). Since reduced autophagy contributes in part to the pathogenesis of psoriasis, enhancement of autophagy can be an alternative approach to mitigate psoriasis.


Subject(s)
Autophagy , Psoriasis , Psoriasis/pathology , Psoriasis/metabolism , Humans , Animals , Mesenchymal Stem Cells/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology
11.
Molecules ; 29(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611839

ABSTRACT

Geopolymers show great potential in complex wastewater treatment to improve water quality. In this work, general geopolymers, porous geopolymers and geopolymer microspheres were prepared by the suspension curing method using three solid waste products, coal gangue, fly ash and blast furnace slag. The microstructure, morphology and surface functional groups of the geopolymers were studied by SEM, XRD, XRF, MIP, FTIR and XPS. It was found that the geopolymers possess good adsorption capacities for both organic and inorganic pollutants. With methylene blue and potassium dichromate as the representative pollutants, in order to obtain the best removal rate, the effects of the adsorbent type, dosage of adsorbent, concentration of methylene blue and potassium dichromate and pH on the adsorption process were studied in detail. The results showed that the adsorption efficiency of the geopolymers for methylene blue and potassium dichromate was in the order of general geopolymers < porous geopolymers < geopolymer microspheres, and the removal rates were up to 94.56% and 79.46%, respectively. Additionally, the competitive adsorption of methylene blue and potassium dichromate in a binary system was also studied. The mechanism study showed that the adsorption of methylene blue was mainly through pore diffusion, hydrogen bond formation and electrostatic adsorption, and the adsorption of potassium dichromate was mainly through pore diffusion and redox reaction. These findings demonstrate the potential of geopolymer microspheres in adsorbing organic and inorganic pollutants, and, through five cycles of experiments, it is demonstrated that MGP exhibits excellent recyclability.

12.
Nat Commun ; 15(1): 2987, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582870

ABSTRACT

Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.


Subject(s)
Henipavirus Infections , Nipah Virus , Humans , Antibodies, Neutralizing/metabolism , Nipah Virus/metabolism , Antibodies, Viral
13.
Nat Commun ; 15(1): 3558, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670995

ABSTRACT

The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.


Subject(s)
Cryoelectron Microscopy , NEDD8 Protein , Receptors, Interleukin-17 , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/chemistry , NEDD8 Protein/metabolism , NEDD8 Protein/genetics , Proline/metabolism , Protein Multimerization , HEK293 Cells , Protein Binding , Substrate Specificity , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Models, Molecular , Cullin Proteins/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Degrons
14.
Proc Natl Acad Sci U S A ; 121(10): e2320493121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38427602

ABSTRACT

Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2), resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "arms." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4 to 6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across these human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9 to 8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4 to 9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities and notable differences, with implications for potential protein-binding modes and therapeutic targets.


Subject(s)
Alphacoronavirus , COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2/genetics , RNA
15.
Nat Commun ; 15(1): 2055, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448434

ABSTRACT

Developing X-ray scintillators that are water-dispersible, compatible with polymeric matrices, and processable to flexible substrates is an important challenge. Herein, Tb3+-doped Na5Lu9F32 is introduced as an X-ray scintillating material with steady-state X-ray light yields of 15,800 photons MeV-1, which is generated as nanocrystals on halloysite nanotubes. The obtained product exhibits good water-dispersibility and highly sensitive luminescence to X-rays. It is deposited onto a polyurethane foam to afford a composite foam material with dose-dependent radioluminescence. Moreover, the product is dispersed into polymer matrixes in aqueous solution to prepare rigid or flexible scintillator screen for X-ray imaging. As a third example, it is incorporated multilayer hydrogels for information camouflage and multilevel encryption. Encrypted information can be recognized only by X-ray irradiation, while the false information is read out under UV light. Altogether, we demonstrate that the water-dispersible scintillators are highly promising for aqueous processing of radioluminescent, X-ray imaging, and information encrypting materials.

16.
BMJ Open ; 14(2): e079798, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38365292

ABSTRACT

OBJECTIVE: To investigate the prognostic impact of initial lung cancer (LC) on second primary breast cancer after LC (LC-BC) and further develop a nomogram for predicting the survival of patients. METHODS: All patients diagnosed with LC-BC and first primary BC (BC-1) during 2000-2017 were collected from Surveillance, Epidemiology, and End Results database. Pathological features, treatment strategies and survival outcomes were compared between LC-BC and BC-1 before and after propensity score matching (PSM). Cox regression analysis was performed to identify the prognostic factors associated with LC in patients with LC-BC. Additionally, least absolute shrinkage and selection operator regression analysis was used to select clinical characteristics for nomogram construction, which were subsequently evaluated using the concordance index (C-index), calibration curve and decision curve analysis (DCA). RESULTS: 827 429 patients with BC-1 and 1445 patients with LC-BC were included in the analysis. Before and after PSM, patients with BC-1 had a better prognosis than individuals with LC-BC in terms of both overall survival (OS) and breast cancer-specific survival (BCSS). Furthermore, characteristics such as more regional lymph node dissection, earlier stage and the lack of chemotherapy and radiation for LC were found to have a stronger predictive influence on LC-BC. The C-index values (OS, 0.748; BCSS, 0.818), calibration curves and DCA consistently demonstrated excellent predictive accuracy of the nomogram. CONCLUSION: In conclusion, patients with LC-BC have a poorer prognosis than those with BC-1, and LC traits can assist clinicians estimate survival of patients with LC-BC more accurately.


Subject(s)
Breast Neoplasms , Drug-Related Side Effects and Adverse Reactions , Lung Neoplasms , Neoplasms, Second Primary , Humans , Female , Prognosis , Breast Neoplasms/therapy , Lung Neoplasms/therapy , Propensity Score , Nomograms
17.
Elife ; 122024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180340

ABSTRACT

Precursor ribosomal RNA (pre-rRNA) processing is a key step in ribosome biosynthesis and involves numerous RNases. A HEPN (higher eukaryote and prokaryote nucleotide binding) nuclease Las1 and a polynucleotide kinase Grc3 assemble into a tetramerase responsible for rRNA maturation. Here, we report the structures of full-length Saccharomyces cerevisiae and Cyberlindnera jadinii Las1-Grc3 complexes, and C. jadinii Las1. The Las1-Grc3 structures show that the central coiled-coil domain of Las1 facilitates pre-rRNA binding and cleavage, while the Grc3 C-terminal loop motif directly binds to the HEPN active center of Las1 and regulates pre-rRNA cleavage. Structural comparison between Las1 and Las1-Grc3 complex exhibits that Grc3 binding induces conformational rearrangements of catalytic residues associated with HEPN nuclease activation. Biochemical assays identify that Las1 processes pre-rRNA at the two specific sites (C2 and C2'), which greatly facilitates rRNA maturation. Our structures and specific pre-rRNA cleavage findings provide crucial insights into the mechanism and pathway of pre-rRNA processing in ribosome biosynthesis.


Subject(s)
RNA Precursors , RNA, Ribosomal , Ribosomes , RNA Processing, Post-Transcriptional , Endonucleases
18.
Nat Commun ; 15(1): 84, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167898

ABSTRACT

Histamine receptors are a group of G protein-coupled receptors (GPCRs) that play important roles in various physiological and pathophysiological conditions. Antihistamines that target the histamine H1 receptor (H1R) have been widely used to relieve the symptoms of allergy and inflammation. Here, to uncover the details of the regulation of H1R by the known second-generation antihistamines, thereby providing clues for the rational design of newer antihistamines, we determine the cryo-EM structure of H1R in the apo form and bound to different antihistamines. In addition to the deep hydrophobic cavity, we identify a secondary ligand-binding site in H1R, which potentially may support the introduction of new derivative groups to generate newer antihistamines. Furthermore, these structures show that antihistamines exert inverse regulation by utilizing a shared phenyl group that inserts into the deep cavity and block the movement of the toggle switch residue W4286.48. Together, these results enrich our understanding of GPCR modulation and facilitate the structure-based design of novel antihistamines.


Subject(s)
Histamine H1 Antagonists , Histamine , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/chemistry , Histamine H1 Antagonists/metabolism , Receptors, Histamine H1/genetics , Receptors, Histamine H1/metabolism , Histamine Antagonists/pharmacology , Histamine Antagonists/chemistry , Histamine Antagonists/metabolism , Receptors, Histamine
19.
J Cosmet Dermatol ; 23(1): 326-338, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37635345

ABSTRACT

OBJECTIVE: Increased angiogenesis is a pathological feature of psoriasis, but the pathomechanisms of angiogenesis in psoriasis are not clear. Interleukin-17A (IL-17A) is the major effect factor in the pathogenesis of psoriasis. Our results showed that IL-17A can promote angiogenesis and cause endothelial cell inflammation. Autophagy plays an important role not only in regulating inflammation, but also in regulating angiogenesis. Whether angiogenesis in psoriasis is related to autophagy remains unclear. In this study, we treated human umbilical vein endothelial cells (HUVECs) with IL-17A to simulate increased angiogenesis to study whether increased angiogenesis in psoriasis is related to autophagy. METHODS AND RESULTS: Our results showed that treatment of HUVECs with IL-17A significantly increased angiogenesis and expression levels of mRNA for multiple proinflammatory cytokines (CCL20, IL-8, CCL2, IL-6, and IL-1ß) and, while decreasing intracellular levels of nitric oxide (NO) and NO synthase (NOS) activity. Moreover, IL-17A inhibited autophagy as shown that IL-17A significantly increased expression levels of LC3II and p62 proteins. Induction of autophagy ameliorated IL-17A-mediated inflammatory response and inhibited angiogenesis, accompanied by increased p-AMPKα(Thr172) and p-ULK1(Ser555) expression, and decreased p-mTOR(Ser2448) and p-ULK1(Ser757) expression. Furthermore, inhibition of either AMPK or lysosomal acidification completely overrode autophagy-induced changes in angiogenesis and NOS activity. Finally, induction of autophagy decreased apoptosis and caspase-3 activity in IL-17A-treated HUVECs. CONCLUSIONS: These results showed that IL-17A is involved in angiogenesis and inflammatory response by inhibiting autophagy through AMPK signaling pathway, suggesting that autophagy may be a new therapeutic target for psoriasis.


Subject(s)
Interleukin-17 , Psoriasis , Humans , AMP-Activated Protein Kinases/pharmacology , AMP-Activated Protein Kinases/therapeutic use , Autophagy , Endothelial Cells/pathology , Hyperplasia , Inflammation/pathology , Interleukin-17/metabolism , Psoriasis/drug therapy
20.
bioRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38076883

ABSTRACT

Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically-determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses. The SL5 domain of betacoronavirus SARS-CoV-2, resolved at 4.7 Å resolution, exhibits a T-shaped structure, with its UUYYGU hexaloops at opposing ends of a coaxial stack, the T's "arms." Further analysis of SL5 domains from SARS-CoV-1 and MERS (7.1 and 6.4-6.9 Å resolution, respectively) indicate that the junction geometry and inter-hexaloop distances are conserved features across the studied human-infecting betacoronaviruses. The MERS SL5 domain displays an additional tertiary interaction, which is also observed in the non-human-infecting betacoronavirus BtCoV-HKU5 (5.9-8.0 Å resolution). SL5s from human-infecting alphacoronaviruses, HCoV-229E and HCoV-NL63 (6.5 and 8.4-9.0 Å resolution, respectively), exhibit the same coaxial stacks, including the UUYYGU-capped arms, but with a phylogenetically distinct crossing angle, an X-shape. As such, all SL5 domains studied herein fold into stable tertiary structures with cross-genus similarities, with implications for potential protein-binding modes and therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL