Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Adv Sci (Weinh) ; : e2406474, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303161

ABSTRACT

The integration of solar interfacial evaporation and power generation offers a sustainable solution to address water and electricity scarcity. Although water-power cogeneration schemes are proposed, the existing schemes lack scalability, flexibility, convenience, and stability. These limitations severely limit their future industrial applications. In this study, we prepared a hybrid fabric composed of basalt fibers and cotton yarns with asymmetric structure using textile weaving technology. The cotton yarn in lower layer of fabric facilitates water transport, while the basalt fibers in upper layer enable thermal localization and water supply balancing. The carbon black is deposited on top layer by flame burning to facilitate photothermal conversion. The fabric exhibits a high evaporation rate of 1.52 kg m-2 h-1, which is 3.6 times that of pure water, and an efficiency of 88.06% under 1 kW m-2 light intensity. After assembly with a thermoelectric module, the hybrid system achieves a maximum output power density of 66.73 mW m-2. By exploiting the scalability of fabric, large-scale desalination and power production can be achieved in outdoor environments. This study demonstrates the seamless integration of fabric-based solar evaporation and waste heat-to-energy technologies, thereby providing new avenues for the development of scalable and stable water-power cogeneration systems.

2.
Toxicology ; 509: 153955, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303899

ABSTRACT

Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/ß and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.

3.
Sci Total Environ ; 949: 174960, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39089383

ABSTRACT

Both natural revegetation and cropping have great impact on long-term soil carbon (C) sequestration, yet the differences in their underlying mechanisms remain unclear. In this study, we investigated trends in soil organic C (SOC) accumulation during natural revegetation (VR) and cropping processes over 24 years, and explored the contributions of microbial necromass and plant-derived C to SOC formation and their primary controls. Over the course of 24 years of land use/cover change (LUCC) from 1995, SOC content exhibited a more substantial increase in VR (0.31 g kg-1 a-1) than in cropland (0.14 g kg-1 a-1) during Stage II (>10 y after LUCC), and recalcitrant organic carbon explained more of the SOC variation than easily oxidizable carbon. The higher SOC content in VR was attributed to a greater contribution of plant-derived C (14-28 %) than that in cropland (3-11 %) to SOC and a consistently lower ratio of cinnamyl (C)- to vanillyl (V)-type phenols in VR across all the assessed years. Although there were higher proportion of microbial necromass of SOC (41-84 %) in cropland than in VR, the differences were not significant. The dominant bacterial phylum of Chloroflexi and soil nitrogen content were the primary biotic and abiotic factors regulating microbial-derived and plant-derived C in both cropland and VR. However, soil phosphorus content was the main factor in cropland, while climatic factors such as mean annual precipitation were more important in VR. These results provided evidence that long-term natural revegetation enhanced SOC sequestration by greater contribution of plant-derived C to SOC formation compared to cropping. These findings underscore the synergistic contribution of vegetation and microorganisms to long-term SOC sequestration, offering insights into the different mechanisms of carbon formation during VR and cropping processes, and providing support for optimizing land management to achieve global carbon neutrality goals.


Subject(s)
Carbon Sequestration , Carbon , Soil Microbiology , Soil , Soil/chemistry , Carbon/analysis , Agriculture/methods , Environmental Restoration and Remediation/methods , Crops, Agricultural
4.
Front Microbiol ; 15: 1374199, 2024.
Article in English | MEDLINE | ID: mdl-38550861

ABSTRACT

The combined application of chemical and organic fertilizers has been recognized to enhance soil fertility and foster the soil microbial ecosystem. However, the optimal ratio of chemical and organic fertilizers in oilseed rape cultivation is still uncertain, and the role of rhizosphere effect is still unclear. Thus, this study aimed to elucidate the impacts of varying ratios of chemical and organic fertilizers on the structure and potential functionalities of rhizosphere and non-rhizosphere soil microbial communities. The interplay of microbial communities with soil properties and oilseed rape root exudates was investigated in controlled pot cultivations receiving varying ratios of chemical and organic fertilizers. Results indicated clear segregation in the soil bacterial community, influenced by both fertilization treatments and rhizosphere effects. The bacterial community structure significantly correlated with nitrate nitrogen, organic acids, and dissolved organic carbon (DOC) content. Rhizosphere effects led to increased bacteria abundance, reduced diversity, and decreased network stability. Notably, F3 treatment receiving 25% chemical and 75% organic fertilizers showed a significantly higher abundance at 1.43 × 1011 copies g-1 dry soil, accompanied by increased species and genetic diversity, and ecological network complexity. This treatment also yielded the highest aboveground biomass of oilseed rape. However, the application of organic fertilizers also increased the risk of plant pathogenicity. This study reveals the impact of fertilizers and rhizosphere effects on soil microbial community structure and function, shedding light on the establishment of more effective fertilization schemes for oilseed rape agriculture.

5.
Front Microbiol ; 14: 1130298, 2023.
Article in English | MEDLINE | ID: mdl-37547687

ABSTRACT

Water and fertilizer managements are the most common practices to maximize crop yields, and their long-term impact on soil microbial communities has been extensively studied. However, the initial response of microbes to fertilization and soil moisture changes remains unclear. In this study, the immediate effects of nitrogen (N)-fertilizer application and moisture levels on microbial community of paddy soils were investigated through controlled incubation experiments. Amplicon sequencing results revealed that moisture had a stronger influence on the abundance and community composition of total soil bacteria, as well as ammonia oxidizing-archaea (AOA) and -bacteria (AOB). Conversely, fertilizer application noticeably reduced the connectivity and complexity of the total bacteria network, and increasing moisture slightly exacerbated these effects. NH4+-N content emerged as a significant driving force for changes in the structure of the total bacteria and AOB communities, while NO3--N content played more important role in driving shifts in AOA composition. These findings indicate that the initial responses of microbial communities, including abundance and composition, and network differ under water and fertilizer managements. By providing a snapshot of microbial community structure following short-term N-fertilizer and water treatments, this study contributes to a better understanding of how soil microbes respond to long-term agriculture managements.

6.
PLoS Pathog ; 18(9): e1010759, 2022 09.
Article in English | MEDLINE | ID: mdl-36084159

ABSTRACT

Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV is lymphotropic in nature and SLAM was identified as the primary receptor for PPRV and other Morbilliviruses. Many viruses have been demonstrated to engage extracellular vesicles (EVs) to facilitate their replication and pathogenesis. Here, we provide evidence that PPRV infection significantly induced the secretion levels of EVs from goat PBMC, and that PPRV-H protein carried in EVs can enhance SLAM receptor expression in the recipient cells via suppressing miR-218, a negative miRNA directly targeting SLAM gene. Importantly, EVs-mediated increased SLAM expression enhances PPRV infectivity as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Moreover, our data reveal that PPRV associate EVs rapidly entry into the recipient cells mainly through macropinocytosis pathway and cooperated with caveolin- and clathrin-mediated endocytosis. Taken together, our findings identify a new strategy by PPRV to enhance virus infection and escape innate immunity by engaging EVs pathway.


Subject(s)
Extracellular Vesicles , MicroRNAs , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Virus Diseases , Animals , Caveolins/metabolism , Clathrin/metabolism , Cytokines/metabolism , Extracellular Vesicles/metabolism , Goats/genetics , Leukocytes, Mononuclear , Lymphocyte Activation , MicroRNAs/genetics , MicroRNAs/metabolism , Peste-des-petits-ruminants virus/genetics , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism
7.
Infect Drug Resist ; 15: 3427-3436, 2022.
Article in English | MEDLINE | ID: mdl-35800122

ABSTRACT

Purpose: To investigate the epidemiological features of Klebsiella pneumoniae infection of the hepatobiliary system of patients in Yantai, China. Methods: This retrospective study was conducted from January to December 2019 in Yantai Yuhuangding Hospital. Patients for whom K. pneumoniae was isolated from the hepatobiliary system were considered for inclusion. The clinical features and genetic analyses were conducted to explore the epidemiological characteristics. Results: A total of 88 cases were enrolled, including 69 cases of hypervirulent K. pneumoniae (hvKP) and 19 cases of classical K. pneumoniae (cKP). Community-acquired infections, fever, liver abscess, and C-reactive protein (CRP) and procalcitonin (PCT) levels were significantly higher, while biliary tract disease was lower in the hvKP group compared with the cKP group. Among the 69 hvKP infections, 61 developed a liver abscess. Community-acquired infections, fever, and CRP and PCT levels were higher, whereas biliary tract disease and malignancy were lower in the liver abscess group compared with the non-liver abscess group. All strains were susceptible to the majority of antibiotics tested. All hvKP strains possessed the bla SHV, oqxA, oqxB and fosA resistance genes. K1 and K2 accounted for 78% of hvKP strains. K1 strains belonged to sequence types ST23 and ST700, whereas K2 strains belonged to ST65, ST86 and ST5212. K1 isolates possessed the most virulence determinants, followed by K2 and non-K1/K2 isolates. K2 isolates lacked the allS gene, which was rare in non K1/K2 isolates, but present in most K1 isolates. The mceG gene was only detected in K1 isolates. AllS and virulence determinants were significantly more prevalent in the liver abscess group than in the non-liver abscess group. Conclusion: The prevalence of hvKP among K. pneumoniae infections of the hepatobiliary system is high in Yantai, China. Greater vigilance of hvKP infection is required in clinical and microbiological laboratories.

8.
Pol J Microbiol ; 71(2): 251-256, 2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35716168

ABSTRACT

Cefoperazone/sulbactam (CSL) and piperacillin/tazobactam (TZP) are commonly used in clinical practice in China because of their excellent antimicrobial activity. CSL and TZP-nonsusceptible Enterobacteriaceae are typically resistant to extended-spectrum cephalosporins such as ceftriaxone (CRO). However, 11 nonrepetitive Enterobacteriaceae strains, which were resistant to CSL and TZP yet susceptible to CRO, were collected from January to December 2020. Antibiotic susceptibility tests and whole-genome sequencing were conducted to elucidate the mechanism for this rare phenotype. Antibiotic susceptibility tests showed that all isolates were amoxicillin/clavulanic-acid resistant and sensitive to ceftazidime, cefepime, cefepime/tazobactam, cefepime/zidebactam, ceftazidime/avibactam, and ceftolozane/tazobactam. Whole-genome sequencing revealed three of seven Klebsiella pneumoniae strains harbored bla SHV-1 only, and four harbored bla SHV-1 and bla TEM-1B. Two Escherichia coli strains carried bla TEM-1B only, while two Klebsiella oxytoca isolates harbored bla OXY-1-3 and bla OXY-1-1, respectively. No mutation in the ß-lactamase gene and promoter sequence was found. Outer membrane protein (Omp) gene detection revealed that numerous missense mutations of OmpK36 and OmpK37 were found in all strains of K. pneumoniae. Numerous missense mutations of OmpK36 and OmpK35 and OmpK37 deficiency were found in one K. oxytoca strain, and no OmpK gene was found in the other. No Omp mutations were found in E. coli isolates. These results indicated that narrow spectrum ß-lactamases, TEM-1, SHV-1, and OXY-1, alone or in combination with Omp mutation, contributed to the resistance to CSL and TZP in CRO-susceptible Enterobacteriaceae. Antibiotic susceptibility tests Antibiotics Breakpoint, (µg/ml) Klebsiella pneumoniae Escherichia cou Klebriehd axyoca E1 E3 E4 E7 E9 E10 E11 E6 E8 E2 E5 CRO ≤1≥4 ≤0.5 ≤0.5 ≤0.5 ≤0.5 1 ≤0.5 1 ≤0.5 ≤0.5 1 1 CAZ 4 ≥16 1 2 1 4 4 4 4 2 4 1 1 FEP ≤2 216 1 1 0.25 1 2 2 2 0.5 2 1 1 AMC ≤8 ≥32 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 CSL ≤16 ≥64 64 64 64 64 ≥128 128 ≥128 64 128 128 ≥128 TZP ≤16 ≥128 ≥256 ≥256 ≥256 ≥256 2256 2256 ≥256 ≥256 ≥256 ≥256 ≥256 FPT ≤2 ≥16 1 0.5 0.06 0.125 2 1 2 0.25 1 0.125 0.25 FPZ ≤2 216 0.25 0.25 0.06 0.125 0.25 0.25 1 0.125 0.25 0.125 0.125 CZA ≤8 216 1 0.5 0.25 0.25 1 0.25 1 0.5 0.5 0.5 0.25 CZT ≤2 28 2 1 0.5 1 2 2 2 1 1 2 2 CROceftriaxone, CAZceftazidime, FEPcefepime, AMC:amoxicillin clavulanic-acid, CSLcefoperazone/sulbactam, TZP:piperadllin/tazobactam, FPT:cefepime tazobactam, FPZ:cefepime/zidebactam, CZA:ceftazidime/avibactam, CZTceftolozane/tazobactam Gene sequencing results Number Strain ST p-Lactamase gene Promoter sequence mutation Omp mutation El Kpn 45 blaSHV-1, blaTEM-lB none OmpK36, OmpK3 7 E3 Kpn 45 blaSHV-1, blaTEM-lB none OmpK36. OmpK3 7 E4 Kpn 2854 blaSHV-1 none OmpK36, OmpK3 7 E7 Kpn 2358 blaSHV-1 - blaTEM-lB none OmpK36, OmpK3 7 E9 Kpn 2358 blaSHV-1. blaTEM-lB none OmpK36. OmpK3 7 E10 Kpn 18 9 blaSHV-1 none OmpK36. OmpK3 7 Ell Kpn 45 blaSHV-1 none OmpK36, OmpK3 7 E6 Eco 88 blaTEM-lB none none ES Eco 409 blaTEM-1B none none E2 Kox 194 blaOXY-1-3 none OmpK36 mutations. OmpK35 and OmpK 37 deficiency E5 Kox 11 blaOXY-1-1 none no OmpK (OmpK3 5, OmpK36 and OmpK37) gene found.


Subject(s)
Enterobacteriaceae , beta-Lactamases , Amoxicillin , Anti-Bacterial Agents/pharmacology , Cefepime , Cefoperazone/pharmacology , Ceftazidime , Enterobacteriaceae/genetics , Escherichia coli/metabolism , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation , Piperacillin/pharmacology , Sulbactam/pharmacology , Tazobactam , beta-Lactamases/genetics , beta-Lactamases/metabolism
9.
J Virol ; 96(7): e0024422, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35319226

ABSTRACT

Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. We showed previously that PPRV induced sustained autophagy for their replication in host cells. Many studies have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate the recipient's cellular response and result in productive infection of the recipient host. Here, we show that PPRV infection results in packaging of the viral genomic RNA and partial viral proteins into exosomes of Vero cells and upregulates exosome secretion. We provide evidence showing that the exosomal viral cargo can be transferred to and establish productive infection in a new target cell. Importantly, our study reveals that PPRV-induced autophagy enhances exosome secretion and exosome-mediated virus transmission. Additionally, our data show that TSG101 may be involved in the sorting of the infectious PPRV RNA into exosomes to facilitate the release of PPRV through the exosomal pathway. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated PPRV intercellular transmission. IMPORTANCE Autophagy plays an important role in PPRV pathogenesis. The role of exosomes in viral infections is beginning to be appreciated. The present study examined the role of autophagy in secretion of infectious PPRV from Vero cells. Our data provided the first direct evidence that ATG7-mediated autophagy enhances exosome secretion and exosome-mediated PPRV transmission. TSG101 may be involved in the sorting of the infectious PPRV RNA genomes into exosomes to facilitate the release of PPRV through the exosomal pathway. Inhibition of PPRV-induced autophagy or TSG101 expression could be used as a strategy to block exosome-mediated virus transmission.


Subject(s)
Autophagy , Exosomes , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Chlorocebus aethiops , Exosomes/metabolism , Exosomes/virology , Peste-des-Petits-Ruminants/transmission , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , RNA, Viral/metabolism , Ruminants , Vero Cells , Viral Proteins/metabolism
10.
Curr Probl Cancer ; 43(1): 18-26, 2019 02.
Article in English | MEDLINE | ID: mdl-29776595

ABSTRACT

AIM: Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an immune inhibitory receptor which is expressed within most types of hematopoietic cells and negatively regulates immune responses. Recently, we found LAIR-1 expression to be present within tumors of nonhematopoietic lineages. However, the roles of LAIR-1 in hepatocellular carcinoma (HCC) have yet to be examined. The purpose of this study was to investigate the expression of LAIR-1 in HCC tissue and assess its clinical significance at this site. MATERIALS AND METHODS: Expression levels of LAIR-1 within HCC samples collected from 90 patients and compared with that of slides of normal liver tissue collected from 9 non-HCC patients were measured by immunohistochemistry using tissue microarrays. A semiquantitative score was assigned, as was based on staining intensity and percent of positive cells and a Spearman Rank correlation test was used to assess any potential significant correlations between LAIR-1 expression and clinicopathological factors. Overall survival analysis was performed using the Kaplan-Meier and Log Rank statistical test. RESULTS: LAIR-1 expression was detected in cancer tissue and adjacent tumor tissue, but not in normal liver tissue. The percent of LAIR-1-positive expression in cancer tissue of HCC samples was 97.78% (88/90) while that in adjacent tumor tissue was 96.67% (87/90). Significantly greater expression levels of LAIR-1 were obtained from cancer tissue (Mean ±â€¯SD = 5.722 ±â€¯2.145) than that in adjacent tumor tissue (4.141 ±â€¯1.486). In addition, LAIR-1 expression was found to be significantly correlated with pathological grade of HCC, T stage, and age. Expression levels of LAIR-1 were related with worse overall survival rates of HCC patients, especially in HCC patients with hepatic cirrhosis. CONCLUSION: Results of this study show that LAIR-1 is expressed in HCC tissues and that high levels of LAIR-1 expression are associated with the poor cancer differentiation. In addition, overexpression of LAIR-1 was significantly associated with worse overall survival in the patients with HCC. These data suggest that LAIR-1 may be an independent predictor for clinical outcomes in patients with HCC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/secondary , Liver Neoplasms/pathology , Receptors, Immunologic/metabolism , Adolescent , Adult , Aged , Carcinoma, Hepatocellular/metabolism , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Liver Neoplasms/metabolism , Lymphatic Metastasis , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL