Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Heliyon ; 10(17): e36574, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39263169

ABSTRACT

Background: Glycoprotein non-metastatic melanoma B (GPNMB)/osteoactivin was first identified in the human melanoma cell lines. GPNMB plays a key role in the anti-inflammatory and antioxidative functions as well as osteoblast differentiation, cancer progression, and tissue regeneration. Recently, GPNMB was used as an anti-aging vaccine for mice. The present study aimed to investigate the potential of biofluid GPNMB as an aging biomarker in humans using serum and urine samples from an aging Chinese population. Methods: We analyzed RNA-sequencing data (GSE132040) from 17 murine organs across different ages to assess the gene expression of potential ageing biomarkers. Spearman's correlation coefficients were used to evaluate the relationship between gene expression and age. Meanwhile, a cross-sectional population study was conducted, which included 473 participants (aged 25-91 years), a representative subset of participants from the Peng Zu Study on Healthy Ageing in China (Peng Zu Cohort). Biofluid GPNMB levels were measured by ELISA. The associations of serum and urine GPNMB levels with various clinical and anthropometrical indices were assessed using ANOVA, Kruskal-Wallis H test, and univariate and multivariate linear regression analyses. Results: In mice, the Gpnmb mRNA expression levels showed a significant positive association with age in multiple organs in mice (P < 0.05). In Peng Zu Cohort, biofluid (both serum and urine) GPNMB levels showed a positive correlation with age (P < 0.05). Univariate linear regression analysis revealed that serum GPNMB levels were negatively associated with skeletal muscle mass index (SMI, P < 0.05) and insulin-like growth factor 1 (IGF-1, P < 0.05), and urine GPNMB levels showed a negative association with total bile acids (TBA, P < 0.05). Multivariate linear regression analysis further indicated that serum GPNMB levels negatively correlated with the systemic immune-inflammation index (SII, P < 0.05), and the urine GPNMB levels maintained a negative association with TBA (P < 0.05), additionally, urine GPNMB levels in men were significantly lower than in women (P < 0.05). Conclusions: The biofluid GPNMB was a strong clinical biomarker candidate for estimating biological aging.

2.
Med Sci Sports Exerc ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39186734

ABSTRACT

PURPOSE: Modifying foot progression angle (FPA), the angle between the line from the heel to the second metatarsal head and the line of progression, can reduce peak knee adduction moment (pKAM). However, determining the optimal FPA that minimizes pKAM without inducing unnatural walking patterns can be challenging. This study investigated the FPA-pKAM relationship using a robotic stepping trainer to assess the feasibility of determining the optimal FPA based on this relationship. Additionally, it examined knee moments during stepping with three different FPAs, as stepping is a recommended exercise for knee osteoarthritis (KOA) rehabilitation. METHODS: Twenty-six asymptomatic individuals stepped on a robotic stepping trainer, which measured 6-axis footplate-reaction forces/torques and three-dimensional (3-D) ankle kinematics to determine external knee moments. The robot rotated the footplates slowly (~0.5 deg/sec) between 10°-toe-out and 10°-toe-in while participants stepped continuously, unaware of the footplate rotations. The slope of pKAM-FPA relationship during continuous stepping was determined. Peak 3-D knee moments were compared between the 10°-toe-in, 0°-FPA, and 10°-toe-out FPAs with repeated-measure ANOVA. Multiple linear regression determined the covariates that predicted pKAM during stepping. RESULTS: Eighteen participants had lower pKAM and KAM impulse with 10°-toe-in than 10°-toe-out (p < 0.001) and 0°-FPA (p < 0.001 and p = 0.008, respectively) (called toe-in responders). Conversely, eight participants reduced pKAM and KAM impulse with 10°-toe-out compared to 0°-FPA (p < 0.001, p = 0.017) and 10°-toe-in (p = 0.026, p = 0.004) (called toe-out responders). A linear pKAM-FPA relationship was determined for each individual, and its slope (the pKAM rate with FPA) was positive for toe-in responders (p < 0.01) and negative for toe-out responders (p = 0.02). Regression analysis revealed that smaller pKAM with toe-in in toe-in responders was explained by increased tibia medial tilt, tibia internal rotation, footplate-reaction lateral force, footplate-reaction anterior force, and decreased footplate-reaction internal rotation torque. CONCLUSIONS: Individuals may exhibit different responses to FPA modification during stepping. The slope and intercept of the linear pKAM-FPA relationship can be determined for individual subjects. This allows for a targeted pKAM reduction through guided FPA positioning and potentially offers subject-specific precision KOA rehabilitation.

3.
J Ultrasound ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060718

ABSTRACT

PURPOSE: The aim was to compare the use of different tools within the ImageJ program (polygon vs. segmented line) and their impact on the calculation of muscle area and echo intensity (EI) values in ultrasound imaging of the vastus lateralis muscle. METHODS: Thirteen volunteers participated in this study. Ultrasound images of the vastus lateralis muscle were acquired using 2D B-mode ultrasonography and analyzed using both the polygon and segmented line tools by the same evaluator. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) assessed the tools' reliability. Bland-Altman plots were employed to verify the agreement between measurements, and linear regression analysis determined proportional bias. A paired t-test was conducted to analyze differences between the tools. RESULTS: The reliability between tools for muscle area calculation was weak (r = 0.000; CV = 138.03 ± 0.34%), while it was excellent for EI (r = 0.871; CV = 15.19 ± 2.96%). The Bland-Altman plots indicated a large bias for muscle area (d = 195.2%) with a proportional bias (p < 0.001). For EI, the bias was (d = 15.2) with proportional bias (p = 0.028). The paired t-test revealed significant differences between the tools for area (p < 0.001) but not for EI (p = 0.060). CONCLUSION: The study found significant differences in measurements obtained with the polygon and segmented line tools in ImageJ, with the polygon tool showing higher values for muscle area and lower values for EI.

4.
Epigenomics ; 16(10): 715-731, 2024.
Article in English | MEDLINE | ID: mdl-38869474

ABSTRACT

Aim: Liquid biopsies analyzing cell-free DNA (cfDNA) methylation in plasma offer a noninvasive diagnostic for diseases, with the potential of aging biomarkers underexplored. Methods: Utilizing enzymatic methyl-seq (EM-seq), this study assessed cfDNA methylation patterns in aging with blood from 35 healthy individuals. Results: It found aging signatures, including higher cfDNA levels and variations in fragment sizes, plus approximately 2000 age-related differentially methylated CpG sites. A biological age predictive model based on 48 CpG sites showed a strong correlation with chronological age, verified by two datasets. Age-specific epigenetic shifts linked to inflammation were revealed through differentially methylated regions profiling and Olink proteomics. Conclusion: These findings suggest cfDNA methylation as a potential aging biomarker and might exacerbate immunoinflammatory reactivity in older individuals.


Our bodies undergo many changes as we age, some of which might affect our health. To better understand these changes, scientists study something called 'cell-free DNA' (cfDNA) in our blood. This cfDNA can give us clues about our health and the risk of diseases like cancer or heart conditions.In our research, we analyzed cfDNA from the blood of 35 people to identify patterns associated with aging. We discovered that approximately 2000 specific spots in our DNA change in a way that's linked to aging. These changes might help us figure out someone's biological age ­ essentially, how old their body seems based on various health factors, which can differ from their actual age.We also found that these DNA changes could indicate how aging might make the body's defense system ­ which fights off diseases ­ react more intensely. Understanding this could be crucial for managing health as we get older.Our study suggests that cfDNA could be a useful marker for aging, offering a new approach to understanding and possibly managing the health effects associated with growing older.


Subject(s)
Aging , Cell-Free Nucleic Acids , CpG Islands , DNA Methylation , Epigenesis, Genetic , Inflammation , Humans , Aging/genetics , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Inflammation/genetics , Male , Aged , Middle Aged , Adult , Biomarkers/blood , Aged, 80 and over
5.
Injury ; 55(6): 111540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622039

ABSTRACT

OBJECTIVES: In far-distal extra-articular tibia fracture "extreme" nailing, debate surrounds the relative biomechanical performance of plating the fibula compared with extra distal interlocks. This study aimed to evaluate several constructs for extreme nailing including one interlock (one medial-lateral interlock), one interlock + plate (one medial-lateral interlock with lateral fibula compression plating), and two interlocks (one medial-lateral interlock and one anterior-posterior interlock). METHODS: Fifteen pairs of fresh cadaver legs were instrumented with a tibial nail to the physeal scar. A 1 cm segment of bone was resected from the distal tibia 3.5 cm from the joint and an oblique osteotomy was made in the distal fibula. We loaded specimens with three different distal fixation constructs (one interlock, one interlock + plate, and two interlocks) through 10,000 cycles form 100N-700 N of axial loading. Load to failure (Newtons), angulation and displacement were also measured. RESULTS: Mean load to failure was 2092 N (one interlock), 1917 N (one interlock + plate), and 2545 N (two interlocks). Linear mixed effects modeling demonstrated that two interlocks had a load to failure 578 N higher than one interlock alone (95 % CI, 74N-1082 N; P = 0.02), but demonstrated no significant difference between one interlock and one interlock + plate. No statistically significant difference in rates or timing of displacement >2 mm or angulation >10° were demonstrated. CONCLUSIONS: When nailing far-distal extra-articular tibia and fibula fractures, adding a second interlock provides more stability than adding a fibular plate. Distal fibula plating may have minimal biomechanical effect in extreme nailing.


Subject(s)
Bone Nails , Bone Plates , Cadaver , Fibula , Fracture Fixation, Intramedullary , Tibial Fractures , Humans , Tibial Fractures/surgery , Tibial Fractures/physiopathology , Biomechanical Phenomena , Fibula/surgery , Fracture Fixation, Intramedullary/instrumentation , Fracture Fixation, Intramedullary/methods , Male , Female , Weight-Bearing/physiology , Aged , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Aged, 80 and over
6.
Heliyon ; 10(7): e28952, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596098

ABSTRACT

Amino acid variants in protein may result in deleterious effects on enzymatic activity. In this study we investigate the DNA variants on activity of CYP2B6 gene in a Chinese Han population for potential use in precision medicine. All exons in CYP2B6 gene from 1483 Chinese Han adults (Zhejiang province) were sequenced using Sanger sequencing. The effects of nonsynonymous variants on recombinant protein catalytic activity were investigated in vitro with Sf12 system. The haplotype of novel nonsynonymous variants with other single nucleotide variants in the same allele was determined using Nanopore sequencing. Of 38 alleles listed on the Pharmacogene Variation Consortium, we detected 7 previously reported alleles and 18 novel variants, of which 11 nonsynonymous variants showed lower catalytic activity (0.00-0.60) on bupropion compared to CYP2B6*1. Further, these 11 novel star-alleles (CYP2B6*39-49) were assigned by the Pharmacogene Variation Consortium, which may be valuable for pharmacogenetic research and personalized medicine.

8.
Arch Phys Med Rehabil ; 105(3): 480-486, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37714505

ABSTRACT

OBJECTIVES: To investigate shoulder, elbow and wrist proprioception impairment poststroke. DESIGN: Proprioceptive acuity in terms of the threshold detection to passive motion at the shoulder, elbow and wrist joints was evaluated using an exoskeleton robot to the individual joints slowly in either inward or outward direction. SETTING: A university research laboratory. PARTICIPANTS: Seventeen stroke survivors and 17 healthy controls (N=34). Inclusion criteria of stroke survivors were (1) a single stroke; (2) stroke duration <1 year; and (3) cognitive ability to follow simple instructions. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Threshold detection to passive motion and detection error at the shoulder, elbow and wrist. RESULTS: There was significant impairment of proprioceptive acuity in stroke survivors as compared to healthy group at all 3 joints and in both the inward (shoulder horizontal adduction, elbow and wrist flexion, P<.01) and outward (P<.01) motion. Furthermore, the distal wrist joint showed more severe impairment in proprioception than the proximal shoulder and elbow joints poststroke (P<.01) in inward motion. Stroke survivors showed significantly larger detection error in identifying the individual joint in motion (P<.01) and the movement direction (P<.01) as compared to the healthy group. There were significant correlations among the proprioception acuity across the shoulder, elbow and wrist joints and 2 movement directions poststroke. CONCLUSIONS: There were significant proprioceptive sensory impairments across the shoulder, elbow and wrist joints poststroke, especially at the distal wrist joint. Accurate evaluations of multi-joint proprioception deficit may help guide more focused rehabilitation.


Subject(s)
Elbow Joint , Stroke , Humans , Wrist , Cognition , Proprioception , Stroke/complications
9.
J Am Acad Orthop Surg ; 32(3): 139-146, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37922476

ABSTRACT

INTRODUCTION: The purpose of this study was to evaluate whether intramedullary nail contact with physeal scar improves construct mechanics when treating distal tibial shaft fractures. METHODS: Axially unstable extra-articular distal tibia fractures were created in 30 fresh frozen cadaveric specimens (15 pairs, mean age 79 years). Specimens underwent intramedullary nailing to the level of the physeal scar locked with one or two interlocks or short of the physeal scar locked with two interlocks (reference group). Specimens were subjected to 800N of axial load for 25,000 cycles. Primary outcomes were stiffness before and after cyclic loading. Secondary outcomes were load to failure, load at 3 mm displacement, plastic deformation, and total deformation. RESULTS: The physeal scar with one interlock cohort demonstrated 3.8% greater stiffness before cycling ( P = 0.75) and 1.7% greater stiffness after cycling ( P = 0.86) compared with the reference group. The physeal scar with two interlocks group exhibited 0.3% greater stiffness before cycling ( P = 0.98) and 8.4% greater stiffness after cycling ( P = 0.41) in relation to the reference group. No differences were identified regarding load to failure or load at 3 mm displacement. In specimens with two interlocks, those in contact with the physeal scar demonstrated significantly less plastic ( P = 0.02) and total ( P = 0.04) deformation. CONCLUSIONS: Constructs ending at the physeal scar demonstrated stiffness and load to failure similar to those without physeal scar contact. Less plastic and total deformation was noted in two-interlock constructs with physeal scar contact, suggesting a possible protective effect provided by the physeal scar. These data argue that physeal scar contact may offer a small mechanical benefit in nailing distal tibia fractures, but clinical relevance remains unknown.


Subject(s)
Ankle Fractures , Fracture Fixation, Intramedullary , Tibial Fractures , Humans , Aged , Tibia/surgery , Cicatrix , Bone Plates , Biomechanical Phenomena , Tibial Fractures/surgery , Bone Nails , Cadaver
10.
J Knee Surg ; 37(3): 193-197, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37023764

ABSTRACT

BACKGROUND: Surgical repair is indicated for patellar tendon ruptures that result in loss of knee extensor mechanism function. However, biomechanical studies report conflicting results when comparing transosseous suture versus suture anchor repair techniques. This discrepancy may be due to inconsistencies in experimental design as these studies use various numbers of suture strands. Therefore, the main objective of this study is to compare the ultimate load of four- versus six-strand transosseous suture repair. Secondary objectives are to compare gap formation after cyclical loading and mode of failure. METHODS: Six pairs of fresh-frozen cadaveric specimen were randomly allocated to either four- or six-strand transosseous suture repair. Specimen underwent preconditioning cyclical loading and then load to failure. RESULTS: The six-strand repair had a significantly higher maximum load to failure compared with the four-strand repair (mean difference = 319.3 N [57.9%], p = 0.03). There was no significant difference in gap length after cyclical loading or at max load. There were no significant differences in mode of failure. CONCLUSION: Utilizing a six-stand transosseous patella tendon repair construct with one additional suture increases overall construct strength by over 50% compared with a four-strand construct.


Subject(s)
Knee Injuries , Patellar Ligament , Plastic Surgery Procedures , Tendon Injuries , Humans , Patellar Ligament/surgery , Biomechanical Phenomena , Tendon Injuries/surgery , Knee Injuries/surgery , Sutures , Suture Techniques , Suture Anchors , Cadaver , Rupture/surgery
11.
ACS Chem Biol ; 18(12): 2544-2554, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37983266

ABSTRACT

Quorum sensing (QS) is a cell-cell communication mechanism by which bacteria synchronize social behaviors such as biofilm formation and virulence factor secretion by producing and sensing small molecular signals. Quorum quenching (QQ) by degrading signals or blocking signal transmissions has become a promising strategy for disrupting QS and preventing bacterial infection and biofilm formation. However, studies of high-throughput screening and identification approaches for quorum-sensing inhibitors (QSIs) are still inadequate. In this work, we developed a sensitive, high-throughput approach for screening QSIs based on the bacterial biosensor strain Agrobacterium tumefaciens N5 (pBA7P), which contains a traG gene promoter induced by QS signals fused with a promoterless ß-lactamase gene reporter. Using this approach, we identified 31 QQ bacteria from ∼2000 soil bacterial isolates, some belonging to the genera Bosea, Cupriavidus, and Flavobacterium that have not been reported previously as QQ bacteria. We also identified four QS inhibitory compounds and one QS signal analogue from ∼5000 small-molecule compounds, which profoundly affected the expression of QS-regulated genes and phenotypes of the pathogenic bacteria. This high-throughput screening system is effective and sensitive for screening of both QQ microbes and small molecules, enabling the discovery of a wide variety of biocompatible compounds.


Subject(s)
Biosensing Techniques , Quorum Sensing , Bacteria/metabolism , Virulence Factors/metabolism , High-Throughput Screening Assays
12.
Microbiol Spectr ; 11(6): e0021023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37966217

ABSTRACT

IMPORTANCE: DNA-based detection and quantification of soil-borne pathogens, such as the Ralstonia solanacearum species complex (RSSC), plays a vital role in risk assessment, but meanwhile, precise quantification is difficult due to the poor purity and yield of the soil DNA retrieved. The internal sample process control (ISPC) strain RsPC we developed solved this problem and significantly improved the accuracy of quantification of RSSC in different soils. ISPC-based quantitative PCR detection is a method especially suitable for the quantitative detection of microbes in complex matrices (such as soil and sludge) containing various PCR inhibitors and for those not easy to lyse (like Gram-positive bacteria, fungi, and thick-wall cells like resting spores). In addition, the use of ISPC strains removes additional workload on the preparation of high-quality template DNA and facilitates the development of high-throughput quantitative detection techniques for soil microbes.


Subject(s)
Ralstonia solanacearum , Ralstonia solanacearum/genetics , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Polymerase Chain Reaction/methods , Plant Diseases/microbiology
13.
Microbiol Spectr ; : e0098523, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37724877

ABSTRACT

The monothiol glutaredoxin GrxD plays an essential role in the biosynthesis of the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and the biocontrol capacity of the soil bacterium Pseudomonas fluorescens 2P24. However, the detailed mechanism underlying GrxD-mediated activation of the production of 2,4-DAPG remains unclear. Here, we found that GrxD directly interacted with IbaG, a BolA protein family member. The mutation of ibaG significantly decreased 2,4-DAPG production. Furthermore, expressing ibaG restored the production of 2,4-DAPG in the grxD ibaG double mutant to wild-type levels in the presence of dithiothreitol, suggesting that IbaG was required for GrxD-mediated regulation of 2,4-DAPG production. Transcriptome sequencing analyses revealed that IbaG plays a global role in gene regulation by affecting the expression of numerous genes throughout the genome. We also demonstrated that IbaG is an important regulator of several cellular processes, including swarming motility, biofilm formation, siderophore production, and acid resistance. Altogether, our data suggest that IbaG has an essential role in 2,4-DAPG production, motility, and biofilm formation. We also propose a regulatory mechanism linking GrxD to 2,4-DAPG production via IbaG. IMPORTANCE The production of 2,4-diacetylphloroglucinol (2,4-DAPG) is positively influenced by the monothiol glutaredoxin GrxD in Pseudomonas fluorescens 2P24. However, the regulatory mechanism underlying GrxD-mediated regulation of 2,4-DAPG biosynthesis is mostly uncharacterized. Here, we show the function of the BolA-like protein IbaG in 2,4-DAPG biosynthesis. We also demonstrate that GrxD directly interacts with IbaG and influences the redox state of IbaG. Altogether, this work provides new insights into the role of the highly conserved IbaG protein in regulating 2,4-DAPG synthesis, biofilm formation, and other biocontrol traits of P. fluorescens.

14.
Clin Lab ; 69(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37560856

ABSTRACT

BACKGROUND: Regenerating gene (REG) family proteins play a pivotal role in cell proliferation, tissue regeneration, and tumor metastasis. Recent studies have concentrated on the role of REG proteins in pancreatic cancer, but the results remain controversial. In this study, a meta-analysis was performed to evaluate the precise diagnostic value of REG proteins in pancreatic cancer. METHODS: A search was conducted in PubMed, Medline, Embase, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), Biomedical Literature Database (CBM), and WANFANG Data up to May 5, 2021. The QUADAS-2 tool was used to evaluate the quality of the included studies. The statistical analysis of the diagnostic tests was conducted using RevMan5 and Meta-Disc 1.4. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and their 95% confidence intervals (95% CIs) were calculated from each eligible study. RESULTS: The meta-analysis included 15 articles containing 796 patients and 584 controls. The pooled sensitivity was 0.71 (95% CI: 0.67 - 0.74), the pooled specificity was 0.73 (95% CI: 0.70 - 0.76), and the pooled DOR was 11.35 (95% CI: 5.92 - 21.77), respectively. The overall area under the receiver operating characteristic curve (AUC) was 0.84. Spearman's correlation coefficient was 0.34 (p = 0.221). For the subgroup analysis, the REG4 protein showed higher diagnostic accuracy compared with the other REG proteins. CONCLUSIONS: REG proteins have moderate diagnostic accuracy in pancreatic cancer. Further well-designed studies with larger sample sizes and clinical application are needed to validate the results of this meta-analysis.


Subject(s)
Pancreatic Neoplasms , Proteins , Humans , Pancreatic Neoplasms/diagnosis , ROC Curve , Biomarkers , Pancreatic Neoplasms
15.
Sci Rep ; 13(1): 12838, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553412

ABSTRACT

Understanding abnormal synergy of the upper extremity (UE) in stroke survivors is critical for better identification of motor impairment. Here, we investigated to what extent stroke survivors retain the ability to coordinate multiple joints of the arm during a reaching task. Using an exoskeleton robot, 37 stroke survivors' arm joint angles (θ) and torques (τ) during hand reaching in the horizontal plane was compared to that of 13 healthy controls. Kinematic and kinetic coordination patterns were quantified as variances of the multiple-joint angles and multiple-joint torques across trials, respectively, that were partitioned into task-irrelevant variance (TIVθ and TIVτ) and task-relevant variance (TRVθ and TRVτ). TIVθ and TRVθ (or TIVτ and TRVτ) led to consistent and inconsistent hand position (or force), respectively. The index of synergy (ISθ and ISτ) was determined as [Formula: see text] and [Formula: see text] for kinematic and kinetic coordination patterns, respectively. Both kinematic ISθ and kinetic ISτ in the stroke group were significantly lower than that of the control group, indicating stroke survivors had impaired reaching abilities in utilizing the multiple joints of the UE for successful completion of a reaching task. The reduction of kinematic ISθ in the stroke group was mainly attributed to the lower TIVθ as compared to the control group, while the reduction of kinetic ISτ was mainly due to the higher [Formula: see text] as well as lower TIVτ. Our results also indicated that stroke may lead to motor deficits in formation of abnormal kinetic synergistic movement of UE, especially during outward movement. The findings in abnormal synergy patterns provides a better understanding of motor impairment, suggesting that impairment-specific treatment could be identified to help improve UE synergies, focusing on outward movements.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Psychomotor Performance , Upper Extremity , Stroke/drug therapy , Movement , Hand , Biomechanical Phenomena , Ataxia , Stroke Rehabilitation/methods
16.
J Agric Food Chem ; 71(31): 11892-11901, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523467

ABSTRACT

Carbon metabolism is critical for microbial physiology and remarkably affects the outcome of secondary metabolite production. The production of 2,4-diacetylphloroglucinol (2,4-DAPG), a bacterial secondary metabolite with a broad spectrum of antibiotic activity, is a major mechanism used by the soil bacterium Pseudomonas fluorescens 2P24 to inhibit the growth of plant pathogens and control disease occurrence. Strain 2P24 has evolved a complex signaling cascade to regulate the production of 2,4-DAPG. However, the role of the central carbon metabolism in modulating 2,4-DAPG production has not been fully determined. In this study, we report that the gltA gene, which encodes citrate synthase, affects the expression of the 2,4-DAPG biosynthesis gene and is essential for the biocontrol capacity of strain 2P24. Our data showed that the mutation of gltA remarkably decreased the biosynthesis of 2,4-DAPG. Consistent with this result, the addition of citrate in strain 2P24 resulted in increased 2,4-DAPG production and decreased levels of RsmA and RsmE. In comparison with the wild-type strain, the gltA mutant was severely impaired in terms of biocontrol activity against the bacterial wilt disease of tomato plants caused by Ralstonia solanacearum. Moreover, the gltA mutant exhibited increased antioxidant activity, and the expression of oxidative, stress-associated genes, including ahpB, katB, and oxyR, was significantly upregulated in the gltA mutant compared to the wild-type strain. Overall, our data indicate that the citrate synthase GltA plays an important role in the production of 2,4-DAPG and oxidative stress and is required for biocontrol capacity.


Subject(s)
Pseudomonas fluorescens , Pseudomonas fluorescens/genetics , Citrate (si)-Synthase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phloroglucinol
17.
ISME J ; 17(10): 1564-1577, 2023 10.
Article in English | MEDLINE | ID: mdl-37340074

ABSTRACT

Proteobacteria primarily utilize acyl-homoserine lactones (AHLs) as quorum-sensing signals for intra-/interspecies communication to control pathogen infections. Enzymatic degradation of AHL represents the major quorum-quenching mechanism that has been developed as a promising approach to prevent bacterial infections. Here we identified a novel quorum-quenching mechanism revealed by an effector of the type IVA secretion system (T4ASS) in bacterial interspecies competition. We found that the soil antifungal bacterium Lysobacter enzymogenes OH11 (OH11) could use T4ASS to deliver the effector protein Le1288 into the cytoplasm of another soil microbiome bacterium Pseudomonas fluorescens 2P24 (2P24). Le1288 did not degrade AHL, whereas its delivery to strain 2P24 significantly impaired AHL production through binding to the AHL synthase PcoI. Therefore, we defined Le1288 as LqqE1 (Lysobacter quorum-quenching effector 1). Formation of the LqqE1-PcoI complex enabled LqqE1 to block the ability of PcoI to recognize/bind S-adenosy-L-methionine, a substrate required for AHL synthesis. This LqqE1-triggered interspecies quorum-quenching in bacteria seemed to be of key ecological significance, as it conferred strain OH11 a better competitive advantage in killing strain 2P24 via cell-to-cell contact. This novel quorum-quenching also appeared to be adopted by other T4ASS-production bacteria. Our findings suggest a novel quorum-quenching that occurred naturally in bacterial interspecies interactions within the soil microbiome by effector translocation. Finally, we presented two case studies showing the application potential of LqqE1 to block AHL signaling in the human pathogen Pseudomonas aeruginosa and the plant pathogen Ralstonia solanacearum.


Subject(s)
Pseudomonas fluorescens , Quorum Sensing , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas/metabolism , Pseudomonas aeruginosa/metabolism , Acyl-Butyrolactones/metabolism
18.
Front Microbiol ; 14: 1179087, 2023.
Article in English | MEDLINE | ID: mdl-37213510

ABSTRACT

Eight Gram-negative, aerobic, motile with paired polar flagella and rod-shaped bacteria were isolated from six tobacco fields in Yunnan, PR China. 16S rRNA gene sequence analysis revealed that all the strains belonged to the genus Ralstonia. Among them, strain 22TCCZM03-6 had an identical 16S rRNA sequence to that of R. wenshanensis 56D2T, and the other strains were closely related to R. pickettii DSM 6297T (98.34­99.86%), R. wenshanensis 56D2T (98.70­99.64%), and R. insidiosa CCUG 46789T (97.34­98.56%). Genome sequencing yielded sizes ranging from 5.17 to 5.72 Mb, with overall G + C contents of 63.3­64.1%. Pairwise genome comparisons showed that strain 22TCCZM03-6 shared average nucleotide identity (ANI) and digital DNA­DNA hybridization (dDDH) values above the species cut-off with R. wenshanensis 56D2T, suggesting that strain 22TCCZM03-6 is a special strain of the R. wenshanensis. Five strains, including 21MJYT02-10T, 21LDWP02-16, 22TCJT01-1, 22TCCZM01-4, and 22TCJT01-2, had ANI values >95% and dDDH values >70% when compared with each other. These five strains had ANI values of 73.32­94.17% and dDDH of 22.0­55.20% with the type strains of the genus Ralstonia individually, supporting these five strains as a novel species in the genus Ralstonia. In addition, strains 21YRMH01-3T and 21MJYT02-11T represent two independent species. They both had ANI and dDDH values below the thresholds for species delineation when compared with the type species of the genus Ralstonia. In strains 21YRMH01-3T and 21MJYT02-10T, the main fatty acids were summed features 3, 8, and C16:0; however, strain 21MJYT02-11T contained C16:0, cyclo-C17:0, and summed features 3 as major fatty acids. The main polar lipids, including diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine, were identified from strains 21YRMH01-3T, 21MJYT02-10T, and 21MJYT02-11T. The ubiquinones Q-7 and Q-8 were also detected in these strains, with Q-8 being the predominant quinone. Based on the above data, we propose that the eight strains represent one known species and three novel species in the genus Ralstonia, for which the names Ralstonia chuxiongensis sp. nov., Ralstonia mojiangensis sp. nov., and Ralstonia soli sp. nov. are proposed. The type strains are 21YRMH01-3T (=GDMCC 1.3534T = JCM 35818T), 21MJYT02-10T (=GDMCC 1.3531T = JCM 35816T), and 21MJYT02-11T (=GDMCC 1.3532T = JCM 35817T), respectively.

19.
Front Neurol ; 14: 1119761, 2023.
Article in English | MEDLINE | ID: mdl-37034096

ABSTRACT

Damage in the corticospinal system following stroke produces imbalance between flexors and extensors in the upper extremity, eventually leading to flexion-favored postures. The substitution of alternative tracts for the damaged corticospinal tract is known to excessively activate flexors of the fingers while the fingers are voluntarily being extended. Here, we questioned whether the cortical source or/and neural pathways of the flexors and extensors of the fingers are coupled and what factor of impairment influences finger movement. In this study, a total of seven male participants with severe-to-moderate impairment by a hemiplegic stroke conducted flexion and extension at the metacarpophalangeal (MCP) joints in response to auditory tones. We measured activation and de-activation delays of the flexor and extensor of the MCP joints on the paretic side, and force generation. All participants generated greater torque in the direction of flexion (p = 0.017). Regarding co-contraction, coupled activation of the extensor is also made during flexion in the similar way to coupled activation of the flexor made during extension. As opposite to our expectation, we observed that during extension, the extensor showed marginally significantly faster activation (p = 0.66) while it showed faster de-activation (p = 0.038), in comparison to activation and de-activation of the flexor during flexion. But movement smoothness was not affected by those factors. Our results imply that the cortical source and neural pathway for the extensors of the MCP joints are not coupled with those for the flexors of the MCP joints.

20.
Front Endocrinol (Lausanne) ; 14: 1110337, 2023.
Article in English | MEDLINE | ID: mdl-36875463

ABSTRACT

Background: Diabetes mellitus (DM), a metabolic disease that has attracted significant research and clinical attention over the years, can affect the eye structure and induce cataract in patients diagnosed with DM. Recent studies have indicated the relationship between glycoprotein non-metastatic melanoma protein B (GPNMB) and DM and DM-related renal dysfunction. However, the role of circulating GPNMB in DM-associated cataract is still unknown. In this study, we explored the potential of serum GPNMB as a biomarker for DM and DM-associated cataract. Methods: A total of 406 subjects were enrolled, including 60 and 346 subjects with and without DM, respectively. The presence of cataract was evaluated and serum GPNMB levels were measured using a commercial enzyme-linked immunosorbent assay kit. Results: Serum GPNMB levels were higher in diabetic individuals and subjects with cataract than in those without DM or cataract. Subjects in the highest GPNMB tertile group were more likely to have metabolic disorder, cataract, and DM. Analysis performed in subjects with DM elucidated the correlation between serum GPNMB levels and cataract. Receiver operating characteristic (ROC) curve analysis also indicated that GPNMB could be used to diagnose DM and cataract. Multivariable logistic regression analysis illustrated that GPNMB levels were independently associated with DM and cataract. DM was also found to be an independent risk factor for cataract. Further surveys revealed the combination of serum GPNMB levels and presence of DM was associated with a more precise identification of cataract than either factor alone. Conclusions: Increased circulating GPNMB levels are associated with DM and cataract and can be used as a biomarker of DM-associated cataract.


Subject(s)
Cataract , Diabetes Mellitus , Membrane Glycoproteins , Humans , Biomarkers , Cataract/etiology , Cross-Sectional Studies , Membrane Glycoproteins/blood
SELECTION OF CITATIONS
SEARCH DETAIL