Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Water Environ Res ; 96(2): e10985, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305068

ABSTRACT

To improve the treatment performance of anaerobic ammonium oxidation (ANAMMOX) processes at low temperatures, the immobilized cold-acclimation ANAMMOX granules (R3) were prepared and their low-temperature nitrogen removal ability as well as the cold adaptation mechanism were analyzed. The results indicated that the total inorganic nitrogen (TIN) removal efficiency of R3 was significantly higher than that of R2 (cold-acclimation granules without immobilization) and R1 (common granules), especially at 11 ± 2 and 7 ± 2°C (68% and 54%). These were attributed to the remarkable biomass retention capacity of R3, high up to 4.3-4.9 mg/gVSS even at 5-18°C. Besides, higher protein (PN) content of tightly bound extracellular polymeric substances (TB-EPS) also facilitated microbial aggregation in R3. Meanwhile, R3 granules retained higher ANAMMOX activity and heme c content at 5-25°C. The original dominant ANAMMOX genus (Candidatus Kuenenia) in R3 kept higher abundance (49%-57%) at 23 ± 2 and 16 ± 2°C, whereas Candidatus Brocadia became the dominant ANAMMOX genus (25%-32%) in R3 at 11 ± 2 and 7 ± 2°C. Notably, different ANAMMOX genera in R3 may adapt to cold environment by regulating the expression of cold-stress proteins (CspA, CspB, PpiD, and UspA). PRACTITIONER POINTS: Immobilized cold-acclimation ANAMMOX granules showed higher nitrogen removal efficiency at 23°C → 5°C. Immobilization method effectively retained biomass (Candidatus Kuenenia and Candidatus Brocadia). Immobilization facilitated TB-EPS release and biological aggregation in cold-acclimation granules. Expression of cold-stress proteins in immobilized cold-acclimation granules was more active.


Subject(s)
Denitrification , Nitrogen , Temperature , Nitrogen/metabolism , Anaerobic Ammonia Oxidation , Anaerobiosis , Oxidation-Reduction , Bioreactors , Acclimatization , Heat-Shock Proteins/metabolism , Sewage
2.
Hum Gene Ther ; 34(17-18): 927-946, 2023 09.
Article in English | MEDLINE | ID: mdl-37597209

ABSTRACT

Lipoprotein lipase deficiency (LPLD) results from mutations within the lipoprotein lipase (LPL) gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues. The aim of this study was to develop a more efficacious AAV gene therapy vector for LPLD. Following preclinical biodistribution, efficacy and non-Good Laboratory Practice toxicity studies with novel AAV1 and AAV8-based vectors in mice, we identified AAV8 pVR59. AAV8 pVR59 delivered a codon-optimized, human gain-of-function hLPLS447X transgene driven by a CAG promoter in an AAV8 capsid. AAV8 pVR59 was significantly more efficacious, at 10- to 100-fold lower doses, compared with an AAV1 vector based on Glybera, when delivered intramuscularly or intravenously, respectively, in mice with LPLD. Efficient gene transfer was observed within the injected skeletal muscle and liver following delivery of AAV8 pVR59, with long-term correction of LPLD phenotypes, including normalization of plasma triglycerides and lipid tolerance, for up to 6 months post-treatment. While intramuscular delivery of AAV8 pVR59 was well tolerated, intravenous administration augmented liver pathology. These results highlight the feasibility of developing a superior AAV vector for the treatment of LPLD and provide critical insight for initiating studies in larger animal models. The identification of an AAV gene therapy vector that is more efficacious at lower doses, when paired with recent advances in production and manufacturing technologies, will ultimately translate to increased safety and accessibility for patients.


Subject(s)
Hyperlipoproteinemia Type I , Humans , Animals , Mice , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/therapy , Tissue Distribution , Transgenes , Administration, Intravenous
3.
Mol Ther ; 31(4): 1159-1166, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36793209

ABSTRACT

The rapid development of CRISPR genome editing technology has provided the potential to treat genetic diseases effectively and precisely. However, efficient and safe delivery of genome editors to affected tissues remains a challenge. Here, we developed luminescent ABE (LumA), a luciferase reporter mouse model containing the R387X mutation (c.A1159T) in the luciferase gene located in the Rosa26 locus of the mouse genome. This mutation eliminates luciferase activity but can be restored upon A-to-G correction by SpCas9 adenine base editors (ABEs). The LumA mouse model was validated through intravenous injection of two FDA-approved lipid nanoparticle (LNP) formulations consisting of either MC3 or ALC-0315 ionizable cationic lipids, encapsulated with ABE mRNA and LucR387X-specific guide RNA (gRNA). Whole-body bioluminescence live imaging showed consistent restoration of luminescence lasting up to 4 months in treated mice. Compared with mice carrying the wild-type luciferase gene, the ALC-0315 and MC3 LNP groups showed 83.5% ± 17.5% and 8.4% ± 4.3% restoration of luciferase activity in the liver, respectively, as measured by tissue luciferase assays. These results demonstrated successful development of a luciferase reporter mouse model that can be used to evaluate the efficacy and safety of different genome editors, LNP formulations, and tissue-specific delivery systems for optimizing genome editing therapeutics.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mice , Animals , Gene Editing/methods , Adenine , Disease Models, Animal , Luciferases/genetics
4.
CRISPR J ; 5(2): 187-202, 2022 04.
Article in English | MEDLINE | ID: mdl-35238621

ABSTRACT

Genome editing provides a new therapeutic strategy to cure genetic diseases. The recently developed CRISPR-Cas9 base editing technology has shown great potential to repair the majority of pathogenic point mutations in the patient's DNA precisely. Base editor is the fusion of a Cas9 nickase with a base-modifying enzyme that can change a nucleotide on a single strand of DNA without generating double-stranded DNA breaks. However, a major limitation in applying such a system is the prerequisite of a protospacer adjacent motif sequence at the desired position relative to the target site. Progress has been made to increase the targeting scope of base editors by engineering SpCas9 protein variants, establishing systems with broadened editing windows, characterizing new SpCas9 orthologs, and developing prime editing technology. In this review, we discuss recent progress in the development of CRISPR base editing, focusing on its targeting scope, and we provide a workflow for selecting a suitable base editor based on the target nucleotide sequences.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , DNA , DNA Breaks, Double-Stranded , Humans , Nucleotides
5.
Water Environ Res ; 93(9): 1576-1588, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33595115

ABSTRACT

This study investigated the relationship between acyl homoserine lactones (AHLs)-based quorum sensing (QS) and the properties of Anammox granular sludge at low temperatures (11-23°C). Results indicated that adding different concentrations of AHLs inhibitors reduced the content of N-hexanoyl-dl-homoserine lactone (C6-HSL) and N-octanoyl-dl-homoserinelactone (C8-HSL) in Anammox granules on different degrees at different operation temperatures, which led to the deterioration of granules stability and activity. The important role of endogenous C6-HSL and C8-HSL signals in maintaining Anammox granular sludge stability and activity in low-temperature conditions was revealed. In addition, in the process of reducing operation temperatures, another type of AHL signal (N-(3-oxooctanoyl)-l-homoserine lactone, 3OC8-HSL) was released by Anammox granules. The effects of exogenous C8-HSL on the strength, average diameter, and density of Anammox granules were closely related to the operation temperature. When the operation temperature ranged from 11°C to 16°C, the stability of granules could be significantly improved by exogenous C8-HSL. In addition, the addition of C6-HSL and 3OC8-HSL promoted the activity of Anammox granules when the operation temperatures of the reactors were 11-23°C. This study proposed a novel approach to improve the properties of Anammox granules at low temperatures from the perspective of QS. PRACTITIONER POINTS: Endogenous AHLs played an important role in maintaining the activity and stability of Anammox granules at 11-23°C. Exogenous C8-HSL improved the granules stability at the low temperature of 11-16°C. Exogenous C6-HSL or 3OC8-HSL promoted the granules activity at 11-23°C. Supply a novel way to improve the Anammox granules performance at low temperatures.


Subject(s)
Acyl-Butyrolactones , Bioreactors , Quorum Sensing , Sewage , Temperature
6.
Sci Total Environ ; 763: 144610, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33383514

ABSTRACT

This study investigated the effects of denitrification sludge EPS enhanced (DS-EPSCN) by a fluctuating carbon and nitrogen ratio (C/N) cultivation strategy on the properties of Anammox granules under extreme acid or alkaline shock. The results showed that the DS-EPSCN significantly improved the nitrogen removal performance of low-density Anammox granular sludge (Granules-L) and high-density Anammox granular sludge (Granules-H) under extreme acid shock (pH 5.0). The contents of high-molecular-weight substances (such as aromatic proteins and polysaccharides) in the DS-EPSCN rose markedly, contributing to a substantial increase in the flocculation efficiency under acidic conditions and increasing the granule stability. In addition, abundant amounts of N-butyryl-dl-homoserine lactone (C4-HSL) and N-hexanoyl-dl-homoserine lactone (C6-HSL) in the DS-EPSCN promoted the granule activity. However, under extreme alkaline shock (pH 10.5), the flocculation efficiency of the DS-EPSCN was poor, and the addition of DS-EPSCN had no influence on the stability of the granules but improved the activity of the Granules-H. The reason was that the release mechanism of the endogenous acyl-homoserine lactone (AHL) signals in the Granules-H was activated by the exogenous C4-HSL and C6-HSL in the DS-EPSCN under alkaline conditions, leading to increased Granules-H activity. This research provides a novel approach to enhance the resistance of Anammox granular sludge to extreme pH shock.


Subject(s)
Denitrification , Sewage , Acyl-Butyrolactones , Bioreactors , Hydrogen-Ion Concentration , Quorum Sensing
7.
Hum Gene Ther ; 31(15-16): 794-807, 2020 08.
Article in English | MEDLINE | ID: mdl-32586150

ABSTRACT

Recent advances in genome sequencing have greatly improved our ability to understand and identify the causes of genetic diseases. However, there remains an urgent need for innovative, safe, and effective treatments for these diseases. CRISPR-based genome editing systems have become important and powerful tools in the laboratory, and efforts are underway to translate these into patient therapies. Therapeutic base editing is one form of genome engineering that has gained much interest because of its simplicity, specificity, and effectiveness. Base editors are a fusion of a partially deactivated Cas9 enzyme with nickase function, together with a base-modifying enzyme. They are capable of precisely targeting and repairing a pathogenic mutation to restore the normal function of a gene, ideally without disturbing the rest of the genome. In the past year, research has identified new safety concerns of base editors and sparked new innovations to improve their safety. In this review, we provide an overview of the recent advances in the safety and effectiveness of therapeutic base editors and prime editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy/methods , Genome, Human , Mutation , Humans
8.
Medicine (Baltimore) ; 99(20): e20180, 2020 May.
Article in English | MEDLINE | ID: mdl-32443337

ABSTRACT

BACKGROUND: Previous clinical studies have reported that clinical value of high-frequency ultrasound combined computed tomography (HFUCT) is used for diagnosis of thyroid tumor (TT). However, no study has investigated this topic systematically. Therefore, this study will evaluate the clinical value of HFUCT for the diagnosis of TT. METHODS: We will search the databases of Cochrane Library, EMBASE, PUBMED, SCOPUS, Web of Science, OpenGrey, Cumulative Index to Nursing and Allied Health Literature, Allied and Complementary Medicine Database, and China National Knowledge Infrastructure from any time period published to the present. We will consider all case-controlled studies that assessed the clinical value of HFUCT for diagnosis of TT. Two authors will independently scan titles and abstracts to check eligible studies, followed by full-text read. We will extract data and assess study quality using Quality Assessment of Diagnostic Accuracy Studies tool. RevMan 5.3 software will be utilized for data pooling and statistical analysis. RESULTS: This study will be performed to assess the clinical value of HFUCT for the diagnosis of TT, and will provide an evidence-based synthesis for clinical application and further study. CONCLUSION: Summary of this study will provide the latest evidence to determine whether HFUCT can be used for TT diagnosis accurately. STUDY REGISTRATION: INPLASY202040022.


Subject(s)
Multimodal Imaging/methods , Thyroid Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Ultrasonography/methods , Case-Control Studies , China/epidemiology , Humans , Multimodal Imaging/statistics & numerical data , Quality Assurance, Health Care/methods , Research Design , Sensitivity and Specificity , Software , Thyroid Neoplasms/pathology , Ultrasonography/trends , Meta-Analysis as Topic
9.
Arterioscler Thromb Vasc Biol ; 37(11): 2147-2155, 2017 11.
Article in English | MEDLINE | ID: mdl-28882873

ABSTRACT

OBJECTIVE: High-density lipoproteins (HDL) are considered to protect against atherosclerosis in part by facilitating the removal of cholesterol from peripheral tissues. However, factors regulating lipid efflux are incompletely understood. We previously identified a variant in adenosine triphosphate-binding cassette transporter A8 (ABCA8) in an individual with low HDL cholesterol (HDLc). Here, we investigate the role of ABCA8 in cholesterol efflux and in regulating HDLc levels. APPROACH AND RESULTS: We sequenced ABCA8 in individuals with low and high HDLc and identified, exclusively in low HDLc probands, 3 predicted deleterious heterozygous ABCA8 mutations (p.Pro609Arg [P609R], IVS17-2 A>G and p.Thr741Stop [T741X]). HDLc levels were lower in heterozygous mutation carriers compared with first-degree family controls (0.86±0.34 versus 1.17±0.26 mmol/L; P=0.005). HDLc levels were significantly decreased by 29% (P=0.01) in Abca8b-/- mice on a high-cholesterol diet compared with wild-type mice, whereas hepatic overexpression of human ABCA8 in mice resulted in significant increases in plasma HDLc and the first steps of macrophage-to-feces reverse cholesterol transport. Overexpression of wild-type but not mutant ABCA8 resulted in a significant increase (1.8-fold; P=0.01) of cholesterol efflux to apolipoprotein AI in vitro. ABCA8 colocalizes and interacts with adenosine triphosphate-binding cassette transporter A1 and further potentiates adenosine triphosphate-binding cassette transporter A1-mediated cholesterol efflux. CONCLUSIONS: ABCA8 facilitates cholesterol efflux and modulates HDLc levels in humans and mice.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cholesterol, Dietary/blood , Cholesterol, HDL/blood , ATP-Binding Cassette Transporters/deficiency , ATP-Binding Cassette Transporters/genetics , Adult , Aged , Animals , Apolipoprotein A-I/blood , Apolipoprotein B-100/blood , Biological Transport , Biomarkers/blood , COS Cells , Case-Control Studies , Chlorocebus aethiops , DNA Mutational Analysis , Diet, High-Fat , Feces/chemistry , Female , HEK293 Cells , Heredity , Heterozygote , Humans , Liver/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Mutation , Pedigree , Phenotype , Transfection
10.
Mol Genet Metab ; 120(4): 337-341, 2017 04.
Article in English | MEDLINE | ID: mdl-28216384

ABSTRACT

Clinical and laboratory data were collected from three Finnish patients including a sibling pair and another unrelated child with unexplained childhood hypoglycemia. Transient elevation of alanine transaminase, lactate and tricarboxylic acid cycle intermediates, especially fumarate, were noticed in urine organic acid analysis. Exome sequencing was performed for the patients and their parents. A novel homozygous PCK1 c.925G>A (p.G309R) mutation was detected in all affected individuals. COS-1 cells transfected with mutant PCK1 transcripts were used to study the pathogenic nature of the detected variant. The COS-1 transfected cells showed the mutant gene to be incapable of producing a normally functioning cytosolic phosphoenolpyruvate carboxykinase (PEPCK) enzyme. This report further delineates the clinical phenotype of isolated cytosolic PEPCK deficiency and offers a metabolic pattern helping to recognize these patients. Cytosolic PEPCK deficiency should be considered in the differential diagnosis of children presenting with hypoglycemia, hepatic dysfunction and elevated tricarboxylic acid intermediates in urinary organic acid analysis.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/diagnosis , Hypoglycemia/etiology , Intracellular Signaling Peptides and Proteins/genetics , Liver Diseases/diagnosis , Liver/physiopathology , Mutation, Missense , Phosphoenolpyruvate Carboxykinase (GTP)/deficiency , Urine/chemistry , Animals , COS Cells , Carbohydrate Metabolism, Inborn Errors/physiopathology , Child , Chlorocebus aethiops , Exome , Female , Genetic Predisposition to Disease , Homozygote , Humans , Liver Diseases/physiopathology , Male , Pedigree , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Sequence Analysis, DNA/methods
11.
Mol Genet Metab ; 119(1-2): 44-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27477828

ABSTRACT

Primary 5-oxoprolinuria (pyroglutamic aciduria) is caused by a genetic defect in the γ-glutamyl cycle, affecting either glutathione synthetase or 5-oxoprolinase. While several dozens of patients with glutathione synthetase deficiency have been reported, with hemolytic anemia representing the clinical key feature, 5-oxoprolinase deficiency due to OPLAH mutations is less frequent and so far has not attracted much attention. This has prompted us to investigate the clinical phenotype as well as the underlying genotype in patients from 14 families of various ethnic backgrounds who underwent diagnostic mutation analysis following the detection of 5-oxoprolinuria. In all patients with 5-oxoprolinuria studied, bi-allelic mutations in OPLAH were indicated. An autosomal recessive mode of inheritance for 5-oxoprolinase deficiency is further supported by the identification of a single mutation in all 9/14 parent sample sets investigated (except for the father of one patient whose result suggests homozygosity), and the absence of 5-oxoprolinuria in all tested heterozygotes. It is remarkable, that all 20 mutations identified were novel and private to the respective families. Clinical features were highly variable and in several sib pairs, did not segregate with 5-oxoprolinuria. Although a pathogenic role of 5-oxoprolinase deficiency remains possible, this is not supported by our findings. Additional patient ascertainment and long-term follow-up is needed to establish the benign nature of this inborn error of metabolism. It is important that all symptomatic patients with persistently elevated levels of 5-oxoproline and no obvious explanation are investigated for the genetic etiology.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Glutathione Synthase/deficiency , Pyroglutamate Hydrolase/deficiency , Pyroglutamate Hydrolase/genetics , Pyrrolidonecarboxylic Acid/metabolism , Adolescent , Alleles , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/physiopathology , Child , Child, Preschool , Female , Glutathione/metabolism , Glutathione Synthase/genetics , Heterozygote , Homozygote , Humans , Infant , Male , Mutation
12.
N Engl J Med ; 374(23): 2246-55, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27276562

ABSTRACT

BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).


Subject(s)
Exome , Genetic Testing/methods , Metabolism, Inborn Errors/genetics , Sequence Analysis, DNA/methods , Adolescent , Adult , Child , Child, Preschool , Female , Genotype , Humans , Infant , Intellectual Disability/genetics , Male , Metabolism, Inborn Errors/diagnosis , Phenotype , Young Adult
13.
Brain ; 139(Pt 3): 674-91, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26700687

ABSTRACT

Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy.


Subject(s)
Hypokinesia/diagnosis , Hypokinesia/genetics , Mutation/genetics , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , Female , HEK293 Cells , Humans , Infant, Newborn , Male , Pedigree , Severity of Illness Index , Xenopus laevis
14.
JIMD Rep ; 18: 51-62, 2015.
Article in English | MEDLINE | ID: mdl-25308558

ABSTRACT

Tangier disease is a rare, autosomal recessive disorder caused by mutations in the ABCA1 gene and is characterized by near absence of plasma high-density lipoprotein cholesterol, accumulation of cholesterol in multiple tissues, peripheral neuropathy, and accelerated atherosclerosis. Here we report three new kindreds with Tangier disease harboring both known and novel mutations in ABCA1. One patient was identified to be homozygous for a nonsense mutation, p.Gln1038*. In a remarkably large Tangier disease pedigree with four affected siblings, we identified compound heterozygosity for previously reported missense variants, p.Arg937Val and p.Thr940Met, and show that both of these mutations result in significantly impaired cholesterol efflux in transfected cells. In a third pedigree, the proband was identified to be compound heterozygous for two novel mutations, a frameshift (p.Ile1200Hisfs*4) and an intronic variant (c.4176-11T>G), that lead to the creation of a cryptic splice site acceptor and premature truncation, p.Ser1392Argfs*6. We demonstrate that this mutation arose de novo, the first demonstration of a pathogenic de novo mutation in ABCA1 associated with Tangier disease. We also report results of glucose tolerance testing in a Tangier disease kindred for the first time, showing a gene-dose relationship between ABCA1 activity and glucose tolerance and suggesting that Tangier disease patients may have substantially impaired islet function. Our findings provide insight into the diverse phenotypic manifestations of this rare disorder, expand the list of pathogenic mutations in ABCA1, and increase our understanding of how specific mutations in this gene lead to abnormal cellular and physiological phenotypes.

15.
Am J Hum Genet ; 94(3): 453-61, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24530203

ABSTRACT

Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child.


Subject(s)
Carbonic Anhydrase V/deficiency , Carbonic Anhydrase V/genetics , Hyperammonemia/genetics , Adolescent , Base Sequence , Child , Child, Preschool , Exons , Female , Gene Deletion , Genetic Variation , Homozygote , Humans , Hyperammonemia/therapy , Infant , Liver/enzymology , Male , Molecular Sequence Data , Mutation, Missense , Pedigree , Sequence Analysis, DNA , Temperature
16.
Arterioscler Thromb Vasc Biol ; 33(12): 2724-32, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24135019

ABSTRACT

OBJECTIVE: The ATP-binding cassette transporter A1 (ABCA1) protein maintains cellular cholesterol homeostasis in several different tissues. In the liver, ABCA1 is crucial for high-density lipoprotein biogenesis, and in the pancreas ABCA1 can regulate insulin secretion. In this study, our aim was to identify novel microRNAs that regulate ABCA1 expression in these tissues. APPROACH AND RESULTS: We combined multiple microRNA prediction programs to identify 8 microRNAs that potentially regulate ABCA1. A luciferase reporter assay demonstrated that 5 of these microRNAs (miR-148, miR-27, miR-144, miR-145, and miR-33a/33b) significantly repressed ABCA1 3'-untranslated region activity with miR-145 resulting in one of the larger decreases. In hepatic HepG2 cells, miR-145 can regulate both ABCA1 protein expression levels and cholesterol efflux function. In murine islets, an increase in miR-145 expression decreased ABCA1 protein expression, increased total islet cholesterol levels, and decreased glucose-stimulated insulin secretion. Inhibiting miR-145 produced the opposite effect of increasing ABCA1 protein levels and improving glucose-stimulated insulin secretion. Finally, increased glucose levels in media significantly decreased miR-145 levels in cultured pancreatic beta cells. These findings suggest that miR-145 is involved in glucose homeostasis and is regulated by glucose concentration. CONCLUSIONS: Our studies demonstrate that miR-145 regulates ABCA1 expression and function, and inhibiting this microRNA represents a novel strategy for increasing ABCA1 expression, promoting high-density lipoprotein biogenesis in the liver, and improving glucose-stimulated insulin secretion in islets.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Hepatocytes/metabolism , Islets of Langerhans/metabolism , MicroRNAs/metabolism , 3' Untranslated Regions , ATP Binding Cassette Transporter 1/genetics , Animals , Binding Sites , Cholesterol/metabolism , Gene Expression Regulation , Genes, Reporter , Glucose/metabolism , Hep G2 Cells , Homeostasis , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Lipoproteins, HDL/metabolism , Mice , Transfection
17.
J Lipid Res ; 53(5): 941-950, 2012 May.
Article in English | MEDLINE | ID: mdl-22389325

ABSTRACT

The lipidation of apoA-I in liver greatly influences HDL biogenesis and plasma HDL levels by stabilizing the secreted apoA-I. Niacin is the most effective lipid-regulating agent clinically available to raise HDL. This study was undertaken to identify regulatory mechanisms of niacin action in hepatic lipidation of apoA-I, a critical event involved in HDL biogenesis. In cultured human hepatocytes (HepG2), niacin increased: association of apoA-I with phospholipids and cholesterol by 46% and 23% respectively, formation of lipid-poor single apoA-I molecule-containing particles up to ~2.4-fold, and pre ß 1 and α migrating HDL particles. Niacin dose-dependently stimulated the cell efflux of phospholipid and cholesterol and increased transcription of ABCA1 gene and ABCA1 protein. Mutated DR4, a binding site for nuclear factor liver X receptor alpha (LXR α ) in the ABCA1 promoter, abolished niacin stimulatory effect. Further, knocking down LXR α or ABCA1 by RNA interference eliminated niacin-stimulated apoA-I lipidation. Niacin treatment did not change apoA-I gene expression. The present data indicate that niacin increases apoA-I lipidation by enhancing lipid efflux through a DR4-dependent transcription of ABCA1 gene in HepG2 cells. A stimulatory role of niacin in early hepatic formation of HDL particles suggests a new mechanism that contributes to niacin action to increase the stability of newly synthesized circulating HDL.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Apolipoprotein A-I/metabolism , Cholesterol, HDL/biosynthesis , Niacin/pharmacology , Repetitive Sequences, Nucleic Acid/genetics , Transcription, Genetic/drug effects , ATP Binding Cassette Transporter 1 , Biological Transport/drug effects , Culture Media/metabolism , Gene Expression Regulation/drug effects , Hep G2 Cells , High-Density Lipoproteins, Pre-beta/metabolism , Humans , Movement/drug effects , Phospholipids/metabolism , Repetitive Sequences, Nucleic Acid/drug effects
18.
Diabetes ; 61(3): 653-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22315319

ABSTRACT

Changes in cellular cholesterol affect insulin secretion, and ß-cell-specific deletion or loss-of-function mutations in the cholesterol efflux transporter ATP-binding cassette transporter A1 (ABCA1) result in impaired glucose tolerance and ß-cell dysfunction. Upregulation of ABCA1 expression may therefore be beneficial for the maintenance of normal islet function in diabetes. Studies suggest that microRNA-33a (miR-33a) expression inversely correlates with ABCA1 expression in hepatocytes and macrophages. We examined whether miR-33a regulates ABCA1 expression in pancreatic islets, thereby affecting cholesterol accumulation and insulin secretion. Adenoviral miR-33a overexpression in human or mouse islets reduced ABCA1 expression, decreased glucose-stimulated insulin secretion, and increased cholesterol levels. The miR-33a-induced reduction in insulin secretion was rescued by cholesterol depletion by methyl-ß-cyclodextrin or mevastatin. Inhibition of miR-33a expression in apolipoprotein E knockout islets and ABCA1 overexpression in ß-cell-specific ABCA1 knockout islets rescued normal insulin secretion and reduced islet cholesterol. These findings confirm the critical role of ß-cell ABCA1 in islet cholesterol homeostasis and ß-cell function and highlight modulation of ß-cell miR-33a expression as a means to influence insulin secretion.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Cholesterol/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , MicroRNAs/physiology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/analysis , ATP-Binding Cassette Transporters/genetics , Animals , Glucose/pharmacology , Humans , Insulin Secretion , Mice , beta-Cyclodextrins/pharmacology
19.
J Gene Med ; 13(1): 37-45, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21259407

ABSTRACT

BACKGROUND: Previous work in our laboratory has demonstrated that the anti-DNA antibody-immobilized stent results in highly site-specific gene delivery in a rabbit carotid model. As a result of the similarity in the anatomy and physiology of the pig and human cardiovascular systems, the porcine coronary stent model was used in the present study to evaluate the site-specificity, efficiency and long-term therapeutic effect of this gene delivery system in pig coronary arteries. METHODS: A reporter plasmid pEGFP (pEGFP-C1) was tethered on the antibody-immobilized stents and assessed for site-specificity and efficiency in a pig coronary stent model. Inducible nitric oxide synthase (NOS) cDNA (pcDNA3.1-iNOS) was tethered on the stent as a therapeutic gene to evaluate the site-specificity and long-term therapeutic effect of this novel gene delivery system for the inhibition of restenosis after coronary stenting for 28 days. RESULTS: Both the pEGFP-C1 and pcDNA3.1-iNOS tethered stents achieved site-specific gene transfection without distal spreading in the porcine coronary model. The overall GFP transfection efficiency was 2.6 ± 0.9% of the total cells, whereas the neointimal transfection was more than 6%. Histology and morphology studies showed no significant artery stenosis and intimal proliferation for 28 days after coronary stenting using pcDNA3.1-iNOS tethered stents. CONCLUSIONS: For the first time, we report the successful use of anti-DNA antibody-immobilized stent as plasmid gene delivery system that possess high efficiency and site-specificity in a porcine coronary stent model. The novel system showed long-term therapeutic effects on the inhibition of restenosis when pcDNA3.1-iNOS was tethered on the stent.


Subject(s)
Antibodies, Antinuclear/immunology , Coronary Restenosis/prevention & control , Gene Transfer Techniques , Genetic Therapy/methods , Stents , Analysis of Variance , Animals , Antibodies, Antinuclear/chemistry , Coronary Vessels/metabolism , Gene Expression , Green Fluorescent Proteins , Male , Models, Animal , Nitric Oxide Synthase Type II/metabolism , Plasmids/metabolism , Swine , Swine, Miniature , Transfection
20.
Hum Mol Genet ; 19(14): 2877-85, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20418488

ABSTRACT

It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 x 10(-11)) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cholesterol, HDL/blood , Indians, North American/genetics , Selection, Genetic , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/physiology , Adult , Alleles , Cholesterol, HDL/genetics , Female , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Geography , Haplotypes , Humans , Linkage Disequilibrium , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...