Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(21): e2309555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38502881

ABSTRACT

Photo-rechargeable zinc-ion batteries (PRZIBs) have attracted much attention in the field of energy storage due to their high safety and dexterity compared with currently integrated lithium-ion batteries and solar cells. However, challenges remain toward their practical applications, originating from the unsatisfactory structural design of photocathodes, which results in low photoelectric conversion efficiency (PCE). Herein, a flexible MoS2/SnO2-based photocathode is developed via constructing a sunflower-shaped light-trapping nanostructure with 3D hierarchical and self-supporting properties, enabled by the hierarchical embellishment of MoS2 nanosheets and SnO2 quantum dots on carbon cloth (MoS2/SnO2 QDs@CC). This structural design provides a favorable pathway for the effective separation of photogenerated electron-hole pairs and the efficient storage of Zn2+ on photocathodes. Consequently, the PRZIB assembled with MoS2/SnO2 QDs@CC delivers a desirable capacity of 366 mAh g-1 under a light intensity of 100 mW cm-2, and achieves an ultra-high PCE of 2.7% at a current density of 0.125 mA cm-2. In practice, an integrated battery system consisting of four series-connected quasi-solid-state PRZIBs is successfully applied as a wearable wristband of smartwatches, which opens a new door for the application of PRZIBs in next-generation flexible energy storage devices.

2.
Small ; 19(43): e2301573, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37365697

ABSTRACT

2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.

3.
Nanoscale ; 15(2): 828-835, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36533585

ABSTRACT

van der Waals heterostructures (vdWHs), with their flexible combination of various two-dimensional (2D) materials, are continuously revealing new physics and functionalities. 2D magnetic materials have recently become a focus due to their fascinating electronic and spintronic properties. However, there has rarely been any investigation of the optical properties of 2D magnetic materials-based heterostructures. Herein, we construct a new WSe2/FePS3 heterostructure, in which WSe2 works as a "sensor" to visualize the thickness-dependent properties of FePS3. As characterized by photoluminescence (PL) spectra, whether under or on top of the FePS3, the PL intensity of the monolayer WSe2 is strongly quenched. The quenching effect becomes more obvious as the FePS3 thickness increases. This is because of the efficient charge transfer process occurring at the WSe2/FePS3 interface with type II band alignment, which is faster for thicker FePS3, as is evident from transient absorption measurements. The thickness-dependent charge transfer process and corresponding excitonic properties are further revealed in low-temperature photoluminescence spectra of WSe2/FePS3 heterostructures. Our results show that the thickness of 2D magnetic materials can work as an experimental tuning knob to manipulate the optical performance of conventional 2D semiconductors, endowing van der Waals heterostructures with more unexpected properties and functionalities.

4.
ACS Nano ; 17(1): 530-538, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36547249

ABSTRACT

Hybrid systems have recently attracted increasing attention, which combine the special attributes of each constitute and create interesting functionalities through multiple heterointerface interactions. Here, we design a two-dimensional (2D) hybrid phototransistor utilizing Janus-interface engineering, in which the WSe2 channel combines light-sensitive perovskite and spontaneously polarized ferroelectrics, achieving collective ultrasensitive detection performance. The top perovskite (BA2(MA)3Pb4I13) layer can absorb the light efficiently and provide generous photoexcited holes to WSe2. WSe2 exhibit p-type semiconducting states of different degrees due to the selective light-operated doping effect, which also enables the ultrahigh photocurrent of the device. The bottom ferroelectric (Hf0.5Zr0.5O2) layer dramatically decreases the dark current, which should be attributed to the ferroelectric polarization assisted charge trapping effect and improved gate control. As a whole, our phototransistors show excellent photoelectric performances across the ultraviolet to near-infrared range (360-1050 nm), including an ultrahigh ON/OFF current ratio > 109 and low noise-equivalent power of 1.3 fW/Hz1/2, all of which are highly competitive in 2D semiconductor-based optoelectronic devices. In particular, the devices show excellent weak light detection ability, where the distinguishable photoswitching signal is obtained even under a record-low light intensity down to 1.6 nW/cm2, while showing a high responsivity of 2.3 × 105 A/W and a specific detectivity of 4.1 × 1014 Jones. Our work demonstrates that Janus-interface design makes the upper and lower interfaces complement each other for the joint advancement into high-performance optoelectronic applications, providing a picture to realize the integrated engineering on carrier dynamics by light irradiation, electric field, interfacial trapping, and band alignment.

5.
Adv Mater ; 35(12): e2207895, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36581586

ABSTRACT

2D metal oxides (2DMOs) have stimulated tremendous attention due to their distinct electronic structures and abundant surface chemistry. However, it remains a standing challenge for the synthesis of 2DMOs because of their intrinsic 3D lattice structure and ultrahigh synthesis temperature. Here, a reliable WSe2 -assisted chemical vapor deposition (CVD) strategy to grow nonlayered WO2 nanoplates with tunable thickness and lateral dimension is reported. Optical microscopy and scanning electron microscopy studies demonstrate that the WO2 nanoplates exhibit a well-faceted rhombic geometry with a lateral dimension up to the sub-millimeter level (≈135 µm), which is the largest size of 2DMO single crystals obtained by CVD to date. Scanning transmission electron microscopy studies reveal that the nanoplates are high-quality single crystals. Electrical measurements show the nanoplates exhibit metallic behavior with strong anisotropic resistance, outstanding conductivity of 1.1 × 106  S m-1 , and breakdown current density of 7.1 × 107  A cm-2 . More interestingly, low-temperature magnetotransport studies demonstrate that the nanoplates show a quantum-interference-induced weak-localization effect. The developed WSe2 -assisted strategy for the growth of WO2 nanoplates can enrich the library of 2DMO materials and provide a material platform for other property explorations based on 2D WO2 .

6.
Nat Mater ; 21(9): 1042-1049, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35879439

ABSTRACT

Formation of epitaxial heterostructures via post-growth self-assembly is important in the design and preparation of functional hybrid systems combining unique properties of the constituents. This is particularly attractive for the construction of metal halide perovskite heterostructures, since their conventional solution synthesis usually leads to non-uniformity in composition, crystal phase and dimensionality. Herein, we demonstrate that a series of two-dimensional and three-dimensional perovskites of different composition and crystal phase can form epitaxial heterostructures through a ligand-assisted welding process at room temperature. Using the CsPbBr3/PEA2PbBr4 heterostructure as a demonstration, in addition to the effective charge and energy transfer across the epitaxial interface, localized lattice strain was observed at the interface, which was extended to the top layer of the two-dimensional perovskite, leading to multiple new sub-bandgap emissions at low temperature. Given the versatility of our strategy, unlimited hybrid systems are anticipated, yielding composition-, interface- and/or orientation-dependent properties.

7.
Nano Lett ; 22(10): 3961-3968, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35507685

ABSTRACT

Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.

8.
Chem Sci ; 12(17): 6073-6080, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33996003

ABSTRACT

Recent breakthrough in synthesizing arbitrary vertical heterostructures of Ruddlesden-Popper (RP) perovskites opens doors to myriad quantum optoelectronic applications. However, it is not clear whether moiré excitons and flat bands can be formed in such heterostructures. Here, we predict from first principles that twisted homobilayers of RP perovskite, MA2PbI4, can host moiré excitons and yield flat energy bands. The moiré excitons exhibit unique and hybridized characteristics with electrons confined in a single layer of a striped distribution while holes localized in both layers. Nearly flat valence bands can be formed in the bilayers with relatively large twist angles, thanks to the presence of hydrogen bonds that strengthen the interlayer coupling. External pressures can further increase the interlayer coupling, yielding more localized moiré excitons and flatter valence bands. Finally, electrostatic gating is predicted to tune the degree of hybridization, energy, position and localization of moiré excitons in twisted MA2PbI4 bilayers.

9.
J Phys Chem Lett ; 11(17): 6982-6989, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32787199

ABSTRACT

In two-dimensional (2D) halide perovskites, four distinct types of intramolecular band alignment (Ia, Ib, IIa, and IIb) can be formed between the organic and inorganic components. Molecular design to achieve desirable band alignments is of crucial importance to the applications of 2D perovskites and their heterostructures. In this work, by means of first-principles calculations, we have developed molecular design strategies that lead to the discovery of 2D halide perovskites with favorable band alignments toward light-emitting and photovoltaic applications. The same design strategies can be extended to vertical and lateral heterostructures of 2D perovskites with selective light emissions from the organic and/or inorganic layer of constituent 2D perovskites. For each intramolecular band alignment, the charge density and binding energy of the lowest energy exciton are examined. The effect of spin-orbit coupling (SOC) on the band structures is assessed. While SOC significantly lowers the band gaps in type-Ia and type-IIa alignments, it has a negligible effect in type-Ib and type-IIb alignments.

10.
J Phys Chem Lett ; 11(8): 2910-2916, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32220212

ABSTRACT

Formation of heterostructures is often inevitable in two-dimensional (2D) halide perovskites and band alignment in 2D perovskite heterostructures is of central importance to their applications. However, controversies abound in literature on the band alignment of the 2D perovskite heterostructures. While external factors have been sought to reconcile the controversies, we show that the 2D perovskite heterostructures are in fact intrinsically prone to band "misalignment", driven by thermal fluctuations. Owing to the "softness" of inorganic layers in the perovskites, electron-phonon coupling at room temperature could be strong enough to override band offsets at zero temperature, leading to oscillatory band alignment between type-I and type-II at 300 K. We further demonstrate that by tuning the inorganic layers, one can increase the band offsets and stabilize the band alignment, paving the way for optoelectronic applications of the 2D perovskite heterostructures.

11.
Comb Chem High Throughput Screen ; 21(6): 411-419, 2018.
Article in English | MEDLINE | ID: mdl-29852865

ABSTRACT

AIMS AND OBJECTIVE: A large number of experimental evidences report that the oscillatory dynamics of p53 would regulate the cell fate decisions. Moreover, multiple time delays are ubiquitous in gene expression which have been demonstrated to lead to important consequences on dynamics of genetic networks. Although delay-driven sustained oscillation in p53-based networks is commonplace, the precise roles of such delays during the processes are not completely known. METHOD: Herein, an integrated model with five basic components and two time delays for the network is developed. Using such time delays as the bifurcation parameter, the existence of Hopf bifurcation is given by analyzing the relevant characteristic equations. Moreover, the effects of such time delays are studied and the expression levels of the main components of the system are compared when taking different parameters and time delays. RESULT AND CONCLUSION: The above theoretical results indicated that the transcriptional and translational delays can induce oscillation by undergoing a super-critical Hopf bifurcation. More interestingly, the length of these delays can control the amplitude and period of the oscillation. Furthermore, a certain range of model parameter values is essential for oscillation. Finally, we illustrated the main results in detail through numerical simulations.


Subject(s)
Computer Simulation/statistics & numerical data , Gene Regulatory Networks/physiology , Tumor Suppressor Protein p53/genetics , Algorithms , DNA Damage , Gene Expression Regulation , Models, Theoretical , Time Factors
12.
Comb Chem High Throughput Screen ; 21(6): 431-443, 2018.
Article in English | MEDLINE | ID: mdl-29921202

ABSTRACT

AIMS AND OBJECTIVE: In order to understand the dynamic mechanisms of tumor growth and make a contribution to develop anti-cancer treatment strategies, a mathematical model for tumor growth with two-time delays is proposed in this article. MATERIALS AND METHODS: First, the relationships among host cells, tumor cells and effector cells, and the biological meaning of two-time delays are explained. Moreover, the system stability is discussed by analyzing the characteristic equation of the model. In addition, the existence and properties of oscillatory dynamic are also researched by using normative theory and central manifold method. Finally, the numerical simulations are performed to further illustrate and support the theoretical results. RESULTS: Both two-time delays in the model can affect the dynamics of tumor growth. Meanwhile, the system can experience a Hopf bifurcation when the delay crosses a series of critical values. Further, a clear formula is deduced to determine the Hopf bifurcation and the direction of stability of the periodic solution. Finally, these results are verified by using numerical simulation. CONCLUSION: The results demonstrated that the time from identifying tumor cells to making the appropriate response for the immune system and the time needed for competition between host cells and tumor cells for natural resources and living space is significant for tumor growth. These findings in this paper may help us better understand the behaviors of tumors and develop better anti-cancer treatment strategies.


Subject(s)
Computer Simulation/statistics & numerical data , Models, Biological , Models, Theoretical , Neoplasms/metabolism , Antineoplastic Agents/metabolism , Cell Line, Tumor , Drug Discovery/statistics & numerical data , Humans , Kinetics , Time Factors , Tumor Microenvironment
13.
Tumour Biol ; 35(11): 11289-93, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25117072

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth common cancer and the third common cause of cancer mortality worldwide. However, the exact molecular mechanism of HCC remains uncertain. Caveolin-1 (CAV1) is the main protein in the caveolin family and plays an important role in tumorigenesis signaling. However, the contribution of CAV1 genetic variants to HCC is still unknown. The purpose of this study was to evaluate the association between the tagSNPs of the CAV1 gene and HCC risk. In this case-control study, we enrolled 1,000 HCC patients and 1,000 cancer-free controls, which were frequency-matched by age, gender, and HBV infection status. We found that CAV1 rs729949 was statistically associated with increased risk of HCC (odds ratio (OR) = 1.28; 95% confidence interval (CI), 1.11-1.48; P = 8.53 × 10(-4)), even after Bonferroni correction (P = 5.97 × 10(-3)); the expression levels of CAV1 in cancer tissues were significantly lower than those in adjacent normal tissues (P = 0.012). We also detected a significant association for CAV1 rs3807989 under the log-additive model (OR = 0.85; 95% CI, 0.74-0.98; P = 0.026). Significant associations were also detected for CAV1 rs6466583 (GG vs AA: OR = 2.53; 95% CI, 1.24-5.17; P = 0.011) and CAV1 rs3807986 (AG vs AA: OR = 3.16; 95% CI, 1.68-5.91; P = 3.36 × 10(-4)) among genotype comparisons. These findings indicated that genetic variants n CAV1 might contribute to HCC susceptibility.


Subject(s)
Carcinoma, Hepatocellular/genetics , Caveolin 1/genetics , Liver Neoplasms/genetics , Liver/metabolism , Polymorphism, Single Nucleotide/genetics , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotype , Humans , Liver/pathology , Liver Neoplasms/epidemiology , Liver Neoplasms/pathology , Male , Middle Aged , Polymerase Chain Reaction , Prognosis , Risk Factors
14.
J Math Neurosci ; 3(1): 9, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23899051

ABSTRACT

The spread of activity in neural populations is a well-known phenomenon. To understand the propagation speed and the stability of stationary fronts in neural populations, the present work considers a neural field model that involves intracortical and cortico-cortical synaptic interactions. This includes distributions of axonal transmission speeds and nonlocal feedback delays as well as general classes of synaptic interactions. The work proves the spectral stability of standing and traveling fronts subject to general transmission speeds for large classes of spatial interactions and derives conditions for the front instabilities subjected to nonlocal feedback delays. Moreover, it turns out that the uniqueness of the stationary traveling fronts guarantees its exponential stability for vanishing feedback delay. Numerical simulations complement the analytical findings.

15.
Small ; 9(5): 733-7, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23124950

ABSTRACT

This work presents an inexpensive and easily manufacturable, highly conductive and transparent nanowire network electrode for textured semiconductors. It is based on lines of silver nanoparticles transformed into a nanowire network by microwave or furnace sintering. The nanonetwork electrode on crystalline silicon is demonstrated experimentally, with the nanoparticles self-assembling in the valleys between the pyramids of the textured surface. Optical experiments show that this conductive nanowire network electrode can be essentially 'invisible' when covered with the conventional anti-reflection coating (ARC), and thus could be employed in photovoltaic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...