Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 21582-21594, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634578

ABSTRACT

Excessive blood loss and infections are the prominent risks accounting for mortality and disability associated with acute wounds. Consequently, wound dressings should encompass adequate adhesive, hemostatic, and bactericidal attributes, yet their development remains challenging. This investigation presented the benefits of incorporating a perfluorocarbon nanoemulsion (PPP NE) into a silk-fibroin (SF)-based hydrogel. By stimulating the ß-sheet conformation of the SF chains, PPP NEs drastically shortened the gelation time while augmenting the elasticity, mechanical stability, and viscosity of the hydrogel. Furthermore, the integration of PPP NEs improved hemostatic competence by boosting the affinity between cells and biomacromolecules. It also endowed the hydrogel with ultrasound-controlled bactericidal ability through the inducement of inner cavitation by perfluorocarbon and reactive oxygen species (ROS) generated by the sonosensitizer protoporphyrin. Ultimately, we employed a laparotomy bleeding model and a Staphylococcus aureus-infected trauma wound to demonstrate the first-aid efficacy. Thus, our research suggested an emulsion-incorporating strategy for managing emergency wounds.


Subject(s)
Anti-Bacterial Agents , Emulsions , Fibroins , Fluorocarbons , Hydrogels , Staphylococcus aureus , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Emulsions/chemistry , Emulsions/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Fibroins/chemistry , Fibroins/pharmacology , Mice , Hemostatics/chemistry , Hemostatics/pharmacology , Nanoparticles/chemistry , Staphylococcal Infections/drug therapy , Ultrasonic Waves , Male , Rats , Humans
2.
BMC Genomics ; 25(1): 306, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519923

ABSTRACT

BACKGROUND: Poplar anthracnose, which is one of the most important tree diseases, is primarily caused by Colletotrichum gloeosporioides, which has been detected in poplar plantations in China and is responsible for serious economic losses. The characteristics of 84K poplar that have made it one of the typical woody model plants used for investigating stress resistance include its rapid growth, simple reproduction, and adaptability. RESULTS: In this study, we found that the resistance of 84K poplar to anthracnose varied considerably depending on how the samples were inoculated of the two seedlings in each tissue culture bottle, one (84K-Cg) was inoculated for 6 days, whereas the 84K-DCg samples were another seedling inoculated at the 6th day and incubated for another 6 days under the same conditions. It was showed that the average anthracnose spot diameter on 84K-Cg and 84K-DCg leaves was 1.23 ± 0.0577 cm and 0.67 ± 0.1154 cm, respectively. Based on the transcriptome sequencing analysis, it was indicated that the upregulated phenylpropanoid biosynthesis-related genes in 84K poplar infected with C. gloeosporioides, including genes encoding PAL, C4H, 4CL, HCT, CCR, COMT, F5H, and CAD, are also involved in other KEGG pathways (i.e., flavonoid biosynthesis and phenylalanine metabolism). The expression levels of these genes were lowest in 84K-Cg and highest in 84K-DCg. CONCLUSIONS: It was found that PAL-related genes may be crucial for the induced resistance of 84K poplar to anthracnose, which enriched in the phenylpropanoid biosynthesis. These results will provide the basis for future research conducted to verify the contribution of phenylpropanoid biosynthesis to induced resistance and explore plant immune resistance-related signals that may regulate plant defense capabilities, which may provide valuable insights relevant to the development of effective and environmentally friendly methods for controlling poplar anthracnose.


Subject(s)
Gene Expression Profiling , Transcriptome , China
3.
Ultrason Sonochem ; 104: 106835, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38460473

ABSTRACT

Curcumin (Cur) as a natural pigment and biological component, can be widely used in food and beverages. However, the water insolubility of Cur significantly limits its applications. In this study, we prepared a series of nanocrystals via ultrasound-assisted method to improve the solubility and availability of Cur. The results showed artemisia sphaerocephala krasch polysaccharide (ASKP), gum arabic (GA) and wheat protein (WP) were outstanding stabilizers for nanocryatals except traditional agent, poloxamer 188 (F68). The obtained curcumin nanocrystals (Cur-NC) displayed a rod-shaped, crystal- and nanosized structure, and extremely high loading capacity (more over 80 %, w/w). Compared with raw powder, Cur-NC greatly improved the water solubility and dispersibility, and the slow and complete release of Cur of Cur-NC also endowed them excellent antioxidant capacities even at 10 µg/mL. Importantly, as functional factor additive in beverages (e.g. water and emulsion), Cur-NC could increase the content of Cur to at least 600 µg/mL and retain a good stability. Overall, we provided an effective improvement method for the liposoluble active molecules (e.g. Cur) based on the nanocrystals, which not only tremendously enhanced its water solubility, but also strengthened its bioactivity. Notably, our findings broadened the application of water-insoluble compounds.


Subject(s)
Curcumin , Nanoparticles , Curcumin/pharmacology , Curcumin/chemistry , Solubility , Poloxamer/chemistry , Nanoparticles/chemistry , Water/chemistry , Particle Size
4.
ACS Nano ; 18(10): 7455-7472, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38417159

ABSTRACT

The epithelial mucosa is a key biological barrier faced by gastrointestinal, intraoral, intranasal, ocular, and vaginal drug delivery. Ligand-modified nanoparticles demonstrate excellent ability on this process, but their efficacy is diminished by the formation of protein coronas (PCs) when they interact with biological matrices. PCs are broadly implicated in affecting the fate of NPs in vivo and in vitro, yet few studies have investigated PCs formed during interactions of NPs with the epithelial mucosa, especially mucus. In this study, we constructed transferrin modified NPs (Tf-NPs) as a model and explored the mechanisms and effects that epithelial mucosa had on PCs formation and the subsequent impact on the transcellular transport of Tf-NPs. In mucus-secreting cells, Tf-NPs adsorbed more proteins from the mucus layers, which masked, displaced, and dampened the active targeting effects of Tf-NPs, thereby weakening endocytosis and transcellular transport efficiencies. In mucus-free cells, Tf-NPs adsorbed more proteins during intracellular trafficking, which enhanced transcytosis related functions. Inspired by soft coronas and artificial biomimetic membranes, we used mucin as an "active PC" to precoat Tf-NPs (M@Tf-NPs), which limited the negative impacts of "passive PCs" formed during interface with the epithelial mucosa and improved favorable routes of endocytosis. M@Tf-NPs adsorbed more proteins associated with endoplasmic reticulum-Golgi functions, prompting enhanced intracellular transport and exocytosis. In summary, mucus shielded against the absorption of Tf-NPs, but also could be employed as a spear to break through the epithelial mucosa barrier. These findings offer a theoretical foundation and design platform to enhance the efficiency of oral-administered nanomedicines.


Subject(s)
Nanoparticles , Protein Corona , Female , Humans , Enterocytes/metabolism , Protein Corona/metabolism , Transcytosis , Mucus/metabolism , Transferrins/metabolism , Transferrins/pharmacology , Transferrin/metabolism
5.
Adv Mater ; 36(5): e2310979, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994277

ABSTRACT

The immunomodulatory effect of divalent manganese cations (Mn2+ ), such as activation of the cGAS-STING pathway or NLRP3 inflammasomes, positions them as adjuvants for cancer immunotherapy. In this study, it is found that trace Mn2+ ions, bound to bovine serum albumin (BSA) to form Mn@BSA nanocomplexes, stimulate pro-inflammatory responses in human- or murine-derived macrophages through TLR4-mediated signaling cascades. Building on this, the assembly of Mn@BSA nanocomplexes to obtain nanowire structures enables stronger and longer-lasting immunostimulation of macrophages by regulating phagocytosis. Furthermore, Mn@BSA nanocomplexes and their nanowires efficiently activate peritoneal macrophages, reprogramme tumor-associated macrophages, and inhibit the growth of melanoma tumors in vivo. They also show better biosafety for potential clinical applications compared to typical TLR4 agonists such as lipopolysaccharides. Accordingly, the findings provide insights into the mechanism of metalloalbumin complexes as potential TLR agonists that activate macrophage polarization and highlight the importance of their nanostructures in regulating macrophage-mediated innate immunity.


Subject(s)
Nanowires , Toll-Like Receptor 4 , Mice , Humans , Animals , Toll-Like Receptor 4/metabolism , Manganese , Macrophages/metabolism , Serum Albumin, Bovine/chemistry
6.
Aging Dis ; 14(5): 1853-1869, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37196127

ABSTRACT

A wealth of knowledge regarding glial cell-mediated neuroinflammation, which contributes to cognitive deficits in Alzheimer's disease (AD) has emerged in recent years. Contactin 1(CNTN1), a member of the cell adhesion molecule and immunoglobulin supergene family, is centrally involved in axonal growth regulation and is also a key player in inflammation-associated disorders. However, whether CNTN1 plays a role in inflammation-related cognitive deficits and how this process is triggered and orchestrated remain to be fully elucidated. In this study, we examined postmortem brains with AD. CNTN1 immunoreactivity was markedly increased, particularly in the CA3 subregion, as compared with non-AD brains. Furthermore, by applying an adeno-associated virus-based approach to overexpress CNTN1 directly via stereotactic injection in mice, we demonstrated that hippocampal CNTN1 overexpression triggered cognitive deficits detected by novel object-recognition, novel place-recognition and social cognition tests. The mechanisms underlying these cognitive deficits could be attributed to hippocampal microglia and astrocyte activation, which led to aberrant expression of excitatory amino acid transporters (EAAT)1/EAAT2. This resulted in long-term potentiation (LTP) impairment that could be reversed by minocyline, an antibiotic and the best-known inhibitor of microglial activation. Taken together, our results identified Cntn1 as a susceptibility factor involved in regulating cognitive deficits via functional actions in the hippocampus. This factor correlated with microglial activation and triggered astrocyte activation with abnormal EAAT1/EAAT2 expression and LTP impairment. Overall, these findings may significantly advance our understanding of the pathophysiological mechanisms underlying the risk of neuroinflammation related cognitive deficits.

7.
Microbiol Spectr ; 11(3): e0460322, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37219434

ABSTRACT

Poplar anthracnose caused by Colletotrichum gloeosporioides is a common disease affecting poplars globally that causes the destruction and alteration of poplar phyllosphere microbial communities; however, few studies have investigated these communities. Therefore, in this study, three species of poplar with different resistances were investigated to explore the effects of Colletotrichum gloeosporioides and poplar secondary metabolites on the composition of poplar phyllosphere microbial communities. Evaluation of the phyllosphere microbial communities before and after inoculation of the poplars with C. gloeosporioides revealed that both bacterial and fungal OTUs decreased after inoculation. Among bacteria, the most abundant genera were Bacillus, Plesiomonas, Pseudomonas, Rhizobium, Cetobacterium, Streptococcus, Massilia, and Shigella for all poplar species. Among fungi, the most abundant genera before inoculation were Cladosporium, Aspergillus, Fusarium, Mortierella, and Colletotrichum, while Colletotrichum was the main genus after inoculation. The inoculation of pathogens may regulate the phyllosphere microorganisms by affecting the secondary metabolites of plants. We investigated metabolite contents in the phyllosphere before and after the inoculation of the three poplar species, as well as the effects of flavonoids, organic acids, coumarins, and indoles on poplar phyllosphere microbial communities. We speculated that coumarin had the greatest recruitment effect on phyllosphere microorganisms, followed by organic acids through regression analysis. Overall, our results provide a foundation for subsequent screening of antagonistic bacteria and fungi against poplar anthracnose and investigations of the mechanism by which poplar phyllosphere microorganisms are recruited. IMPORTANCE Our findings revealed that the inoculation of Colletotrichum gloeosporioides has a greater effect on the fungal community than the bacterial community. In addition, coumarins, organic acids, and flavonoids may have recruitment effects on phyllosphere microorganisms, while indoles may have inhibitory effects on these organisms. These findings may provide the theoretical basis for the prevention and control of poplar anthracnose.


Subject(s)
Bacillus , Colletotrichum , Microbiota , Bacteria , Plant Diseases/microbiology
8.
Neurotox Res ; 41(4): 324-337, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37014368

ABSTRACT

Methamphetamine (Meth), a commonly used central nervous system stimulant, is highly addictive. Currently, there is no effective treatment for Meth dependence and abuse, although cell adhesion molecules (CAMs) have been shown to play an important role in the formation and remodeling of synapses in the nervous system while also being involved in addictive behavior. Contactin 1 (CNTN1) is a CAM that is widely expressed in the brain; nevertheless, its role in Meth addiction remains unclear. Therefore, in the present study, we established mouse models of single and repeated Meth exposure and subsequently determined that CNTN1 expression in the nucleus accumbens (NAc) was upregulated in mice following single or repeated Meth exposure, whereas CNTN1 expression in the hippocampus was not significantly altered. Intraperitoneal injection of the dopamine receptor 2 antagonist haloperidol reversed Meth-induced hyperlocomotion and upregulation of CNTN1 expression in the NAc. Additionally, repeated Meth exposure also induced conditioned place preference (CPP) in mice and upregulated the expression levels of CNTN1, NR2A, NR2B, and PSD95 in the NAc. Using an AAV-shRNA-based approach to specifically silence CNTN1 expression in the NAc via brain stereotaxis reversed Meth-induced CPP and decreased the expression levels of NR2A, NR2B, and PSD95 in the NAc. These findings suggest that CNTN1 expression in the NAc plays an important role in Meth-induced addiction, and the underlying mechanism may be related to the expression of synapse-associated proteins in the NAc. The results of this study improved our understanding of the role of cell adhesion molecules in Meth addiction.


Subject(s)
Amphetamine-Related Disorders , Central Nervous System Stimulants , Methamphetamine , Mice , Animals , Methamphetamine/pharmacology , Nucleus Accumbens , Contactin 1/metabolism , Central Nervous System Stimulants/pharmacology , Brain/metabolism , Amphetamine-Related Disorders/metabolism
9.
Front Cell Infect Microbiol ; 13: 1121163, 2023.
Article in English | MEDLINE | ID: mdl-37026060

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hemorrhagic fever in humans and is mainly transmitted by ticks. There is no effective vaccine for Crimean-Congo hemorrhagic fever (CCHF) at present. We developed three DNA vaccines encoding CCHFV nucleocapsid protein (NP), glycoprotein N-terminal (Gn) and C-terminal (Gc) fused with lysosome-associated membrane protein 1 (LAMP1) and assessed their immunogenicity and protective efficacy in a human MHC (HLA-A11/DR1) transgenic mouse model. The mice that were vaccinated three times with pVAX-LAMP1-CCHFV-NP induced balanced Th1 and Th2 responses and could most effectively protect mice from CCHFV transcription and entry-competent virus-like particles (tecVLPs) infection. The mice vaccinated with pVAX-LAMP1-CCHFV-Gc mainly elicited specific anti-Gc and neutralizing antibodies and provided a certain protection from CCHFV tecVLPs infection, but the protective efficacy was less than that of pVAX-LAMP1-CCHFV-NP. The mice vaccinated with pVAX-LAMP1-CCHFV-Gn only elicited specific anti-Gn antibodies and could not provide sufficient protection from CCHFV tecVLPs infection. These results suggest that pVAX-LAMP1-CCHFV-NP would be a potential and powerful candidate vaccine for CCHFV.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Vaccines, DNA , Humans , Animals , Mice , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/prevention & control , Nucleocapsid Proteins/genetics , Vaccines, DNA/genetics , Antibodies, Viral , Glycoproteins/genetics , Transcription Factors/metabolism , Lysosomal Membrane Proteins/genetics
10.
Cereb Cortex ; 33(5): 1814-1825, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35511705

ABSTRACT

Exposure therapy is the most effective approach of behavioral therapy for anxiety and post-traumatic stress disorder (PTSD). But fear is easy to reappear even after successful extinction. So, identifying novel strategies for augmenting exposure therapy is rather important. It was reported that exercise had beneficial effects on cognitive and memory deficits. However, whether exercise could affect fear memory, especially for fear extinction remained elusive. Here, our results showed that exposure to acute mild exercise 1 or 2 h before extinction training can augment recent fear extinction retention and 2 h for the remote fear extinction retention. These beneficial effects could be attributed to increased YTHDF1 expression in medial prefrontal cortex (mPFC). Furthermore, by using an AAV-shRNA-based approach to silence YTHDF1 expression via stereotactic injection in prelimbic cortex (PL) or infralimbic cortex (IL), respectively, we demonstrated that silence YTHDF1 in IL, but not in PL, blunted augmentation of exposure therapy induced by acute mild exercise and accompanied with decreased NR2B and GluR1 expression. Moreover, YTHDF1 modulated dendritic spines remodeling of pyramidal neuron in IL. Collectively, our findings suggested that acute mild exercise acted as an effective strategy in augmenting exposure therapy with possible implications for understanding new treatment underlying PTSD.


Subject(s)
Extinction, Psychological , Fear , Rats , Animals , Extinction, Psychological/physiology , Fear/physiology , Rats, Sprague-Dawley , Prefrontal Cortex/metabolism , Anxiety
11.
EClinicalMedicine ; 52: 101584, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35942273

ABSTRACT

Background: The prevalence of type 2 diabetes (T2DM) is increasing, but increasing longevity among persons with diagnosed diabetes may be is associated with more extensive and diverse types of morbidity. The extent and breadth of morbidity and how this varies across sub-groups is unclear and could have important clinical and public health implications. We aimed to estimate comorbidity profiles in people with T2DM and variations across sub-groups and over time. Methods: We identified approximately 224,000 people with T2DM in the Discover-NOW dataset, a real-world primary care database from 2000 to 2020 covering 2.5 million people across North-West London, England, linked to hospital records. We generated a mixed prevalence and incidence study population through repeated annual cross sections, and included a broad set of 35 comorbidities covering traditional T2DM conditions, emerging T2DM conditions and other common conditions.We estimated annual age-standardised prevalence of comorbidities, over the course of the disease in people with T2DM and several sub-groups. Findings: Multimorbidity (two or more chronic conditions) is common in people with T2DM and increasing, but the comorbidity profiles of people with T2DM vary substantially. Nearly 30% of T2DM patients had three or more comorbidities at diagnosis, increasing to 60% of patients ten years later. Two of the five commonest comorbidities at diagnosis were traditional T2DM conditions (hypertension (37%) and ischaemic heart disease (10%)) the other three were not (depression (15%), back pain (25%) and osteoarthritis (11%)). The prevalence of each increased during the course of the disease, with more than one in three patients having back pain and one in four having depression ten years post diagnosis.People with five or more comorbidities at diagnosis had higher prevalence of each of the 35 comorbidities. Hypertension (73%) was the commonest comorbidity at diagnosis in this group; followed by back pain (69%), depression (67%), asthma (45%) and osteoarthritis (36%). People with obesity at diagnosis had substantially different comorbidity profiles to those without, and the five commonest comorbidities were 50% more common in this group. Interpretation: Preventative and clinical interventions alongside care pathways for people with T2DM should transition to reflect the diverse set of causes driving persistent morbidity. This would benefit both patients and healthcare systems alike. Funding: The study was funded by the National Institute for Health and Care Excellence (NICE).

12.
Phytopathology ; 112(10): 2198-2206, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35578737

ABSTRACT

Poplar anthracnose caused by Colletotrichum gloeosporioides is one of the most important diseases widely distributed in poplar-growing areas in China, causing serious economic and ecological losses. In this study, three poplar species showed different resistance to poplar anthracnose: Populus × canadensis was resistant, Populus tomentosa was susceptible, and P. × beijingensis showed intermediate resistance. However, it remains uncertain whether phenolic compounds in poplar are involved in this resistance. Therefore, we determined the concentrations of phenolic compounds and their antifungal activity. Before and after the C. gloeosporioides inoculation, 20 phenolic compounds were detected in P. × canadensis and the number increased from 12 to 14 in P. × beijingensis but decreased from seven to four in P. tomentosa. Thus, phenolic compounds may be positively correlated with the degree of disease resistance. We selected seven phenolic compounds for further analysis, which varied considerably in content after inoculation with C. gloeosporioides. These seven compounds were salicin, arbutin, benzoic acid, salicylic acid, chlorogenic acid, ferulic acid, and naringenin, which helped poplar trees to limit the growth of C. gloeosporioides and differed in their antifungal effects, with phenolic acids having the strongest inhibitory effect. In addition, the optimal concentrations of different substances varied. We demonstrate that these phenolic compounds produced by poplar do play a certain role in the process of poplar resistance to anthracnose. These findings lay a foundation for future research into the antifungal mechanism of poplar trees and may be useful for enhancing the prevention and control of poplar anthracnose.


Subject(s)
Colletotrichum , Populus , Antifungal Agents/pharmacology , Arbutin/pharmacology , Chlorogenic Acid/pharmacology , Phenols , Plant Diseases/microbiology , Plant Diseases/prevention & control , Salicylic Acid/pharmacology
13.
Brain Res Bull ; 179: 13-24, 2022 02.
Article in English | MEDLINE | ID: mdl-34848271

ABSTRACT

Overweight induced by high-fat diet (HFD) represents one of the major health concerns in modern societies, which can cause lasting peripheral and central metabolic disorders in all age groups. Specifically, childhood obesity could lead to life-long impact on brain development and functioning. On the other hand, environmental enrichment (EE) has been demonstrated to be beneficial for learning and memory. Here, we explored the impact of high-fat diet on olfaction and organization of olfactory bulb cells in adolescent mice, and the effect of EE intervention thereon. Puberty mice (3-week-old) fed with HFD for 10 weeks exhibited poorer odor sensitivity and olfactory memory relative to controls consuming standard chows. The behavioral deficits were rescued in the HFD group with EE intervention. Neuroanatomically, parvalbumin (PV) interneurons in the olfactory bulb (OB) were reduced in the HFD-fed animals relative to control, while EE intervention also normalized this alteration. In contrast, cells expressing calbindin (CB), doublecortin (DCX) in the OB were not altered. Our findings suggest that PV interneurons may play a crucial role in mediating the HFD-induced olfactory deficit in adolescent mice, and can also serve a protective effect of EE against the functional deficit.


Subject(s)
Diet, High-Fat/adverse effects , Environment , Interneurons/metabolism , Olfaction Disorders/etiology , Olfaction Disorders/therapy , Olfactory Bulb , Parvalbumins/metabolism , Age Factors , Animals , Behavior, Animal/physiology , Disease Models, Animal , Mice , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Olfactory Bulb/physiopathology
14.
J Agric Food Chem ; 69(51): 15716-15727, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34918923

ABSTRACT

T-2 toxin is a trichothecene mycotoxin commonly found in animal feed and agricultural products. Evidence indicates that T-2 toxin induces apoptosis and autophagy. This study investigated the role of ferroptosis in T-2 toxin cytotoxicity. RAS-selective lethal compound 3 (RSL3) and Erastin were applied to initiate ferroptosis. RSL3- and Erastin-initiated cell death were enhanced by T-2 toxin. Treatment with the ferroptosis inhibitor ferrostatin-1 markedly restored the sensitizing effect of T-2 toxin to RSL3- or Erastin-initiated apoptosis, suggesting that ferroptosis plays a vital role in T-2 toxin-induced cytotoxicity. Mechanistically, T-2 toxin promoted ferroptosis by inducing lipid reactive oxygen species (ROS), as N-acetyl-l-cysteine significantly blocked T-2 toxin-induced ferroptosis. Moreover, T-2 toxin decreased the expression of solute carrier family 7 member 11 (SLC7A11) and failed to further enhance ferroptosis in SLC7A11-deficient cells. SLC7A11 overexpression significantly rescued the enhanced ferroptosis caused by T-2 toxin. T-2 toxin induces ferroptosis by downregulating SLC7A11 expression. Ferroptosis mediates T-2 toxin-induced cytotoxicity by increasing ROS and downregulating SLC7A11 expression.


Subject(s)
Ferroptosis , T-2 Toxin , Animals , Apoptosis , Lipids , Reactive Oxygen Species , T-2 Toxin/toxicity
15.
Mycobiology ; 47(3): 319-328, 2019.
Article in English | MEDLINE | ID: mdl-31620308

ABSTRACT

Cytospora is a genus including important phytopathogens causing severe dieback and canker diseases distributed worldwide with a wide host range. However, identification of Cytospora species is difficult since the currently available DNA sequence data are insufficient. Aside the limited availability of ex-type sequence data, most of the genetic work is only based on the ITS region DNA marker which lacks the resolution to delineate to the species level in Cytospora. In this study, three fresh strains were isolated from the symptomatic branches of Elaeagnus angustifolia in Xinjiang Uygur Autonomous Region, China. Morphological observation and multi-locus phylogenetic analyses (ITS, LSU, ACT and RPB2) support these specimens are best accommodated as a distinct novel species of Cytospora. Cytospora elaeagnicola sp. nov. is introduced, having discoid, nearly flat, pycnidial conidiomata with hyaline, allantoid conidia, and differs from its relatives genetically and by host association.

SELECTION OF CITATIONS
SEARCH DETAIL
...