Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Chem Commun (Camb) ; 60(42): 5514-5517, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38693792

ABSTRACT

In this study, we propose a novel therapy system composed of UiO-66 nanoparticles, which contain quercetin combined with chloroquine (UQCNP), to achieve dual autophagy-ubiquitination blockade. Through UiO-66 NP drug loading, the solubility of quercetin (a proteasome inhibitor) was improved under physiological conditions, thereby increasing its effective concentration at the tumor site. The cell experiment results showed that UQCNP significantly increased the apoptosis rate of 4T1 cells by 73.6%, which was significantly higher than other groups. Transmission electron microscopy results showed that the autophagosome of cells in the UQCNP treatment group was significantly lower than that in other treatment groups. Moreover, western blot results showed that, compared with other groups, LC3 expression and proteasome activity (p < 0.01), as well as the tumor volume of mice treated with UQCNP (p < 0.01) were significantly reduced. These results indicate that UQCNP achieves effective tumor therapy by blocking the autophagy and proteasome pathways synchronously.


Subject(s)
Autophagy , Chloroquine , Nanoparticles , Quercetin , Ubiquitination , Quercetin/pharmacology , Quercetin/chemistry , Chloroquine/pharmacology , Chloroquine/chemistry , Animals , Autophagy/drug effects , Mice , Nanoparticles/chemistry , Ubiquitination/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Humans
2.
Gene ; 917: 148467, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38615983

ABSTRACT

Rhodiola crenulata, a plant of great medicinal value found in cold high-altitude regions, has been excessively exploited due to the difficulty in cultivation. Understanding Rhodiola crenulata's adaptation mechanisms to cold environment can provide a theoretical basis for artificial breeding. Glutathione peroxidases (GPXs), critical enzymes found in plants, play essential roles in antioxidant defense through the ascorbate-glutathione cycle. However, it is unknown whether GPX5 contributes to Rhodiola crenulata's cold tolerance. In this study, we investigated the role of GPX5 in Rhodiola crenulata's cold tolerance mechanisms. By overexpressing Rhodiola crenulata GPX5 (RcGPX5) in yeast and Arabidopsis thaliana, we observed down-regulation of Arabidopsis thaliana GPX5 (AtGPX5) and increased cold tolerance in both organisms. Furthermore, the levels of antioxidants and enzyme activities in the ascorbate-glutathione cycle were elevated, and cold-responsive genes such as AtCBFs and AtCORs were induced. Additionally, RcGPX5 overexpressing lines showed insensitivity to exogenous abscisic acid (ABA), suggesting a negative regulation of the ABA pathway by RcGPX5. RcGPX5 also promoted the expression of several thioredoxin genes in Arabidopsis and interacted with two endogenous genes of Rhodiola crenulata, RcTrx2-3 and RcTrxo1, located in mitochondria and chloroplasts. These findings suggest a significantly different model in Rhodiola crenulata compared to Arabidopsis thaliana, highlighting a complex network involving the function of RcGPX5. Moreover, overexpressing RcGPX5 in Rhodiola crenulata hairy roots positively influenced the salidroside synthesis pathway, enhancing its pharmaceutical value for doxorubicin-induced cardiotoxicity. These results suggested that RcGPX5 might be a key component for Rhodiola crenulata to adapt to cold stress and overexpressing RcGPX5 could enhance the pharmaceutical value of the hairy roots.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Glutathione Peroxidase , Plant Roots , Rhodiola , Rhodiola/genetics , Rhodiola/metabolism , Arabidopsis/genetics , Plant Roots/genetics , Plant Roots/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Antioxidants/metabolism , Abscisic Acid/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adaptation, Physiological/genetics
3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612919

ABSTRACT

Salvia miltiorrhiza is a prized traditional Chinese medicinal plant species. Its red storage roots are primarily used for the treatment of cardiovascular and cerebrovascular diseases. In this study, a transcription factor gene AtMYB2 was cloned and introduced into Salvia miltiorrhiza for ectopic expression. Overexpression of AtMYB2 enhanced salt stress resistance in S. miltiorrhiza, leading to a more resilient phenotype in transgenic plants exposed to high-salinity conditions. Physiological experiments have revealed that overexpression of AtMYB2 can decrease the accumulation of reactive oxygen species (ROS) during salt stress, boost the activity of antioxidant enzymes, and mitigate oxidative damage to cell membranes. In addition, overexpression of AtMYB2 promotes the synthesis of tanshinones and phenolic acids by upregulating the expression of biosynthetic pathway genes, resulting in increased levels of these secondary metabolites. In summary, our findings demonstrate that AtMYB2 not only enhances plant tolerance to salt stress, but also increases the accumulation of secondary metabolites in S. miltiorrhiza. Our study lays a solid foundation for uncovering the molecular mechanisms governed by AtMYB2 and holds significant implications for the molecular breeding of high-quality S. miltiorrhiza varieties.


Subject(s)
Hydroxybenzoates , Salvia miltiorrhiza , Salvia miltiorrhiza/genetics , Abietanes , Antioxidants
4.
Nano Lett ; 24(17): 5197-5205, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634879

ABSTRACT

Highly active nonprecious-metal single-atom catalysts (SACs) toward catalytic transfer hydrogenation (CTH) of α,ß-unsaturated aldehydes are of great significance but still are deficient. Herein, we report that Zn-N-C SACs containing Zn-N3 moieties can catalyze the conversion of cinnamaldehyde to cinnamyl alcohol with a conversion of 95.5% and selectivity of 95.4% under a mild temperature and atmospheric pressure, which is the first case of Zn-species-based heterogeneous catalysts for the CTH reaction. Isotopic labeling, in situ FT-IR spectroscopy, and DFT calculations indicate that reactants, coabsorbed at the Zn sites, proceed CTH via a "Meerwein-Ponndorf-Verley" mechanism. DFT calculations also reveal that the high activity over Zn-N3 moieties stems from the suitable adsorption energy and favorable reaction energy of the rate-determining step at the Zn active sites. Our findings demonstrate that Zn-N-C SACs hold extraordinary activity toward CTH reactions and thus provide a promising approach to explore the advanced SACs for high-value-added chemicals.

5.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474225

ABSTRACT

MiR399 plays an important role in plant growth and development. The objective of the present study was to elucidate the evolutionary characteristics of the MIR399 gene family in grapevine and investigate its role in stress response. To comprehensively investigate the functions of miR399 in grapevine, nine members of the Vvi-MIR399 family were identified based on the genome, using a miRBase database search, located on four chromosomes (Chr 2, Chr 10, Chr 15, and Chr 16). The lengths of the Vvi-miR399 precursor sequences ranged from 82 to 122 nt and they formed stable stem-loop structures, indicating that they could produce microRNAs (miRNAs). Furthermore, our results suggested that the 2 to 20 nt region of miR399 mature sequences were relatively conserved among family members. Phylogenetic analysis revealed that the Vvi-MIR399 members of dicots (Arabidopsis, tomato, and sweet orange) and monocots (rice and grapevine) could be divided into three clades, and most of the Vvi-MIR399s were closely related to sweet orange in dicots. Promoter analysis of Vvi-MIR399s showed that the majority of the predicted cis-elements were related to stress response. A total of 66.7% (6/9) of the Vvi-MIR399 promoters harbored drought, GA, and SA response elements, and 44.4% (4/9) of the Vvi-MIRR399 promoters also presented elements involved in ABA and MeJA response. The expression trend of Vvi-MIR399s was consistent in different tissues, with the lowest expression level in mature and young fruits and the highest expression level in stems and young leaves. However, nine Vvi-MIR399s and four target genes showed different expression patterns when exposed to low light, high light, heat, cold, drought, and salt stress. Interestingly, a putative target of Vvi-MIR399 targeted multiple genes; for example, seven Vvi-MIR399s simultaneously targeted VIT_213s0067g03280.1. Furthermore, overexpression of Vvi_MIR399e and Vvi_MIR399f in Arabidopsis enhanced tolerance to drought compared with wild-type (WT). In contrast, the survival rate of Vvi_MIR399d-overexpressed plants were zero after drought stress. In conclusion, Vvi-MIR399e and Vvi-MIR399f, which are related to drought tolerance in grapevine, provide candidate genes for future drought resistance breeding.


Subject(s)
Vitis , Arabidopsis/genetics , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Breeding , Plant Proteins/genetics , Promoter Regions, Genetic , Stress, Physiological/genetics
6.
Front Plant Sci ; 15: 1313832, 2024.
Article in English | MEDLINE | ID: mdl-38525146

ABSTRACT

High temperatures affect grape yield and quality. Grapes can develop thermotolerance under extreme temperature stress. However, little is known about the changes in transcription that occur because of high-temperature stress. The heat resistance indices and transcriptome data of five grape cultivars, 'Xinyu' (XY), 'Miguang' (MG), 'Summer Black' (XH), 'Beihong' (BH), and 'Flame seedless' (FL), were compared in this study to evaluate the similarities and differences between the regulatory genes and to understand the mechanisms of heat stress resistance differences. High temperatures caused varying degrees of damage in five grape cultivars, with substantial changes observed in gene expression patterns and enriched pathway responses between natural environmental conditions (35 °C ± 2 °C) and extreme high temperature stress (40 °C ± 2 °C). Genes belonging to the HSPs, HSFs, WRKYs, MYBs, and NACs transcription factor families, and those involved in auxin (IAA) signaling, abscisic acid (ABA) signaling, starch and sucrose pathways, and protein processing in the endoplasmic reticulum pathway, were found to be differentially regulated and may play important roles in the response of grape plants to high-temperature stress. In conclusion, the comparison of transcriptional changes among the five grape cultivars revealed a significant variability in the activation of key pathways that influence grape response to high temperatures. This enhances our understanding of the molecular mechanisms underlying grape response to high-temperature stress.

8.
Article in English | MEDLINE | ID: mdl-38502614

ABSTRACT

Epilepsy, a chronic neuropsychiatric brain disorder characterized with recurrent seizures, is closely associated with abnormal neural communications within the brain. Despite that the phase-amplitude coupling (PAC) has been suggested to offer a new way to observe neural interactions during epilepsy, however, few studies pay attention to alterations of the epileptic functional brain network based on PAC, especially on the ß-γ PAC. Therefore, we use scalp electroencephalography (EEG) data of epileptic patients and the ß-γ PAC modulation index (MI) to construct functional brain networks to examine variations of neural interactions during different epileptic phases. Statistically, the findings show that between-channel MI values in the post-ictal period significantly increase compared to that in the pre-ictal period, and the between-channel MI value has a close association with the information of phase and amplitude provided by the channels. Importantly, in both the phase-amplitude and amplitude-phase functional brain networks, the average node degree is remarkably higher in the post-ictal period than that in the pre-ictal period, whereas the characteristic path length in the ictal and post-ictal periods is significantly lower than that in the pre-ictal period. Besides, the average betweenness centrality in the post-ictal period is remarkably higher than that in the ictal period. Interestingly, the positive correlations between within-channel MI values and between-channel MI values can be observed during the pre-ictal, ictal and post-ictal periods. These findings suggest that the ß-γ PAC-based functional brain network may provide a novel perspective to understanding alterations of neural interactions during the epileptic evolution, and may contribute to effectively controlling the spread of epileptic seizures.

9.
Brain Res Bull ; 208: 110901, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355058

ABSTRACT

Currently, most models rarely consider the negative transfer problem in the research field of cross-subject EEG emotion recognition. To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD). It consists of three modules: 1) GFK common feature extractor: projects the feature distribution of source and target subjects to the Grassmann manifold space, and obtains the latent common features of the two feature distributions through GFK method. 2) Source domain selector: obtains pseudo-labels of the target subject through weak classifier, finds "golden source subjects" by using few known labels of target subjects. 3) Label corrector: uses a dynamic distribution balance strategy to correct the pseudo-labels of the target subject. We conducted comparison experiments on the SEED and SEED-IV datasets, and the results show that MGFKD outperforms unsupervised and semi-supervised domain adaptation algorithms, achieving an average accuracy of 87.51±7.68% and 68.79±8.25% on the SEED and SEED-IV datasets with only one labeled sample per video for target subject. Especially when the number of source domains is set as 6 and the number of known labels is set as 5, the accuracy increase to 90.20±7.57% and 69.99±7.38%, respectively. The above results prove that our proposed algorithm can efficiently and quickly improve the cross-subject EEG emotion classification performance. Since it only need a small number of labeled samples of new subjects, making it has strong application value in future EEG-based emotion recognition applications.


Subject(s)
Algorithms , Emotions , Humans , Recognition, Psychology , Electroencephalography
10.
J Neural Eng ; 21(1)2024 02 22.
Article in English | MEDLINE | ID: mdl-38295419

ABSTRACT

Objective. The number of electrode channels in a motor imagery-based brain-computer interface (MI-BCI) system influences not only its decoding performance, but also its convenience for use in applications. Although many channel selection methods have been proposed in the literature, they are usually based on the univariate features of a single channel. This leads to a loss of the interaction between channels and the exchange of information between networks operating at different frequency bands.Approach. We integrate brain networks containing four frequency bands into a multilayer network framework and propose a multilayer network-based channel selection (MNCS) method for MI-BCI systems. A graph learning-based method is used to estimate the multilayer network from electroencephalogram (EEG) data that are filtered by multiple frequency bands. The multilayer participation coefficient of the multilayer network is then computed to select EEG channels that do not contain redundant information. Furthermore, the common spatial pattern (CSP) method is used to extract effective features. Finally, a support vector machine classifier with a linear kernel is trained to accurately identify MI tasks.Main results. We used three publicly available datasets from the BCI Competition containing data on 12 healthy subjects and one dataset containing data on 15 stroke patients to validate the effectiveness of our proposed method. The results showed that the proposed MNCS method outperforms all channels (85.8% vs. 93.1%, 84.4% vs. 89.0%, 71.7% vs. 79.4%, and 72.7% vs. 84.0%). Moreover, it achieved significantly higher decoding accuracies on MI-BCI systems than state-of-the-art methods (pairedt-tests,p< 0.05).Significance. The experimental results showed that the proposed MNCS method can select appropriate channels to improve the decoding performance as well as the convenience of the application of MI-BCI systems.


Subject(s)
Brain-Computer Interfaces , Humans , Imagination , Electroencephalography/methods , Imagery, Psychotherapy , Brain , Algorithms
11.
Small ; 20(16): e2306694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044277

ABSTRACT

Constructing structural defects is a promising way to enhance the catalytic activity toward the hydrogen evolution reaction (HER). However, the relationship between defect density and HER activity has rarely been discussed. In this study, a series of Pt/WOx nanocrystals are fabricated with controlled morphologies and structural defect densities using a facile one-step wet chemical method. Remarkably, compared with polygonal and star structures, the dendritic Pt/WOx (d-Pt/WOx) exhibited a richer structural defect density, including stepped surfaces and atomic defects. Notably, the d-Pt/WOx catalyst required 4 and 16 mV to reach 10 mA cm-2, and its turnover frequency (TOF) values are 11.6 and 22.8 times higher than that of Pt/C under acidic and alkaline conditions, respectively. In addition, d-Pt/WOx//IrO2 displayed a mass activity of 5158 mA mgPt -1 at 2.0 V in proton exchange membrane water electrolyzers (PEMWEs), which is significantly higher than that of the commercial Pt/C//IrO2 system. Further mechanistic studies suggested that the d-Pt/WOx exhibited reduced number of antibonding bands and the lowest dz2-band center, contributing to hydrogen adsorption and release in acidic solution. The highest dz2-band center of d-Pt/WOx facilitated the adsorption of hydrogen from water molecules and water dissociation in alkaline medium. This work emphasizes the key role of the defect density in improving the HER activity of electrocatalysts.

12.
Nanomaterials (Basel) ; 13(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38132982

ABSTRACT

Lithium-sulfur batteries (LSB) show excellent potential as future energy storage devices with high energy density, but their slow redox kinetics and the shuttle effect seriously hinder their commercial application. Herein, a 0D@2D composite was obtained by anchoring polar nano-TiO2 onto a 2D layered g-C3N4 surface in situ, and a functional separator was prepared using multi-walled carbon nanotubes as a conductive substrate. Due to their long-range conductivity, multi-walled carbon nanotubes make up for the low conductivity of TiO2@g-C3N4 to some extent. A lithium-sulfur battery prepared with a modified separator exhibited excellent long-term cycle performance, a good lithium ion diffusion rate, and rapid redox kinetics. The initial specific discharge capacity of the composite was 1316 mAh g-1 at 1 C, and a high specific discharge capacity of 569.9 mAh g-1 was maintained after 800 cycles (the capacity decay rate per cycle was only 0.07%). Even at the high current density of 5 C, a specific capacity of 784 mAh g-1 was achieved. After 60 cycles at 0.5 C, the modified separator retained the discharge capacity of 718 mAh g-1 under a sulfur load of 2.58 mg cm-2. In summary, the construction of a heterojunction significantly improved the overall cycle stability of the battery and the utilization rate of active substances. Therefore, this study provides a simple and effective strategy for further improving the overall performance and commercial application of lithium-sulfur batteries.

13.
Purinergic Signal ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153612

ABSTRACT

More and more studies have revealed that P2 purinergic receptors play a key role in the progression of colorectal cancer (CRC). P2X and P2Y purinergic receptors can be used as promoters and regulators of CRC and play a dual role in the progression of CRC. CRC microenvironment is rich in ATP and its cleavage products (ADP, AMP, Ado), which act as activators of P2X and P2Y purinergic receptors. The activation of P2X and P2Y purinergic receptors regulates the progression of CRC mainly by regulating the function of immune cells and mediating different signal pathways. In this paper, we focus on the specific mechanisms and functional roles of P2X7, P2Y12, and P2Y2 receptors in the growth and progression of CRC. The antagonistic effects of these selective antagonists of P2X purinergic receptors on the growth, invasion, and metastasis of CRC were further discussed. Moreover, different studies have reported that P2X7 receptor can be used as an effective predictor of patients with CRC. All these indicate that P2 purinergic receptors are a key regulator of CRC. Therefore, antagonizing P2 purinergic receptors may be an innovative treatment for CRC.

14.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958490

ABSTRACT

Transcription factors play crucial roles in regulating plant abiotic stress responses and physiological metabolic processes, which can be used for plant molecular breeding. In this study, an R2R3-MYB transcription factor gene, AtMYB12, was isolated from Arabidopsis thaliana and introduced into Salvia miltiorrhiza under the regulation of the CaMV35S promoter. The ectopic expression of AtMYB12 resulted in improved salt tolerance in S. miltiorrhiza; transgenic plants showed a more resistant phenotype under high-salinity conditions. Physiological experiments showed that transgenic plants exhibited higher chlorophyll contents, and decreased electrolyte leakage and O2- and H2O2 accumulation when subjected to salt stress. Moreover, the activity of reactive oxygen species (ROS)-scavenging enzymes was enhanced in S. miltiorrhiza via the overexpression of AtMYB12, and transgenic plants showed higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities compared with those of the wild type (WT) under salt stress, coupled with lower malondialdehyde (MDA) levels. In addition, the amount of salvianolic acid B was significantly elevated in all AtMYB12 transgenic hair roots and transgenic plants, and qRT-PCR analysis revealed that most genes in the phenolic acid biosynthetic pathway were up-regulated. In conclusion, these results demonstrated that AtMYB12 can significantly improve the resistance of plants to salt stress and promote the biosynthesis of phenolic acids by regulating genes involved in the biosynthetic pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Salvia miltiorrhiza , Arabidopsis/metabolism , Salvia miltiorrhiza/metabolism , Salt Tolerance/genetics , Hydrogen Peroxide/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Antioxidants , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
15.
ACS Nano ; 17(23): 24012-24021, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38019270

ABSTRACT

Sodium-ion batteries (SIBs) are attracting worldwide attention due to their multiple merits including abundant reserve and safety. However, industrialization is challenged by the scarcity of high-performance carbon anodes with high specific capacities. Here, we report the metal-assisted microcrystalline structure regulation of carbon materials to achieve high-capacity sodium storage. Systematic investigations of in situ thermal-treatment X-ray diffraction and multiple spectroscopies uncover the regulation mechanism of constructing steric hindrance (C-O-C bonds) to restrain the aromatic polycondensation reaction. The carbon precursor of polycyclic aromatic hydrocarbon-type pitch contributes to a high carbon yield rate (40%) compared with those of resin and biomass precursors. The as-synthesized carbon materials deliver high capacities of up to 390 mAh g-1, surpassing many reported carbon anodes for SIBs. Through correlating specific capacity with ID/IG values in Raman spectra and theoretical calculation of carbon materials regulated by different metal elements (Mn, Nb, Ce, Cr, and V), we identify and propose the binding energy as the descriptor for characterizing the capability of regulating the carbon microcrystalline structure to promote sodium storage. This work provides a universal method for regulating the carbon structure, which may lead to the controlled design and fabrication of carbon materials for energy storage and conversion and beyond.

16.
Front Immunol ; 14: 1280186, 2023.
Article in English | MEDLINE | ID: mdl-37915589

ABSTRACT

Neurological diseases are destructive, mainly characterized by the failure of endogenous repair, the inability to recover tissue damage, resulting in the increasing loss of cognitive and physical function. Although some clinical drugs can alleviate the progression of these diseases, but they lack therapeutic effect in repairing tissue injury and rebuilding neurological function. More and more studies have shown that cell therapy has made good achievements in the application of nerve injury. Olfactory ensheathing cells (OECs) are a special type of glial cells, which have been proved to play an important role as an alternative therapy for neurological diseases, opening up a new way for the treatment of neurological problems. The functional mechanisms of OECs in the treatment of neurological diseases include neuroprotection, immune regulation, axon regeneration, improvement of nerve injury microenvironment and myelin regeneration, which also include secreted bioactive factors. Therefore, it is of great significance to better understand the mechanism of OECs promoting functional improvement, and to recognize the implementation of these treatments and the effective simulation of nerve injury disorders. In this review, we discuss the function of OECs and their application value in the treatment of neurological diseases, and position OECs as a potential candidate strategy for the treatment of nervous system diseases.


Subject(s)
Neurodegenerative Diseases , Peripheral Nerve Injuries , Humans , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/metabolism , Axons/metabolism , Nerve Regeneration/physiology , Olfactory Bulb
17.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(9): 984-990, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37803960

ABSTRACT

OBJECTIVE: To investigate the development present situation of the department of critical care medicine in Inner Mongolia Autonomous Region (hereinafter referred to as Inner Mongolia), in order to promote the standardized and homogeneous development of critical care medicine in Inner Mongolia, and also provide a reference for discipline construction and resource allocation. METHODS: A survey study was conducted in comprehensive intensive care unit (ICU) of tertiary and secondary hospitals in Inner Mongolia by online questionnaire survey and telephone data verification. The questionnaire was based on the Guidelines for the Construction and Management of Intensive Care Units (Trial) (hereinafter referred to as the Guidelines) issued by the National Health Commission in 2009 and the development trend of the discipline. The questionnaire covered six aspects, including hospital basic information, ICU basic information, personnel allocation, medical quality management, technical skill and equipment configuration. The questionnaire was distributed in September 2022, and it was filled out by the discipline leaders or department heads of each hospital. RESULTS: As of October 24, 2022, a total of 101 questionnaires had been distributed, 85 questionnaires had been recovered, and the questionnaire recovery rate had reached 84.16%, of which 71 valid questionnaires had been collected in a total of 71 comprehensive ICU. (1) There were noticeable regional differences in the distribution of comprehensive ICU in Inner Mongolia, with a relatively weak distribution in the east and west, and the overall distribution was uneven. The development of critical care medicine in Inner Mongolia was still lacking. (2) Basic information of hospitals: the population and economy restricted the development of ICU. The average number of comprehensive ICU beds in the western region was only half of that in the central region (beds: 39.0 vs. 86.0), and the average number of ICU beds in the eastern region was in the middle (83.6 beds), which was relatively uneven. (3) Basic information of ICU: among the 71 comprehensive ICU surveyed, there were 44 tertiary hospitals and 27 secondary hospitals. The ratio of ICU beds to total beds in tertiary hospitals was significantly lower than that in secondary hospitals [(1.59±0.81)% vs. (2.11±1.07)%, P < 0.05], which were significantly lower than the requirements of the Guidelines of 2%-8%. The utilization rate of ICU in tertiary and secondary hospitals [(63.63±22.40)% and (44.65±20.66)%, P < 0.01] were both lower than the bed utilization rate required by the Guidelines (75% should be appropriate). (4) Staffing of ICU: there were 376 doctors and 1 117 nurses in tertiary hospitals, while secondary hospitals had 122 doctors and 331 nurses. There were significant differences in the composition ratio of the titles of doctors, the degree of doctors, and the titles of nurses between tertiary and secondary hospitals (all P < 0.05). Most of the doctors in tertiary hospitals had intermediate titles (attending physicians accounted for 41.49%), while most of the doctors in secondary hospitals had junior titles (resident physicians accounted for 43.44%). The education level of doctors in tertiary hospitals was generally higher than that in secondary hospitals (doctors: 2.13% vs. 0, masters: 37.24% vs. 8.20%). The proportion of nurses in tertiary hospitals was significantly lower than that in secondary hospitals (17.01% vs. 24.47%). The ratio of ICU doctors/ICU beds [(0.64±0.27)%, (0.59±0.34)%] and ICU nurses/ICU beds [(1.76±0.56)%, (1.51±0.48)%] in tertiary and secondary hospitals all failed to meet the requirements above 0.8 : 1 and 3 : 1 of the Guidelines. (5) Medical quality management of ICU: compared with secondary hospitals, the proportion of one-to-one drug-resistant bacteria care in tertiary hospitals (65.91% vs. 40.74%), multimodal analgesia and sedation (90.91% vs. 66.67%), and personal digital assistant (PDA) barcode scanning (43.18% vs. 14.81%) were significantly higher (all P < 0.05). (6) Technical skills of ICU: in terms of technical skills, the proportion of bronchoscopy, blood purification, jejunal nutrition tube placement and bedside ultrasound projects carried out in tertiary hospitals were higher than those in secondary hospitals (84.09% vs. 48.15%, 88.64% vs. 48.15%, 61.36% vs. 55.56%, 88.64% vs. 70.37%, all P < 0.05). Among them, the placement of jejunal nutrition tube, bedside ultrasound and extracorporeal membrane oxygenation were mainly completed independently in tertiary hospitals, while those in secondary hospitals tended to be completed in cooperation. (7) Equipment configuration of ICU: in terms of basic equipment, the ratio of the total number of ventilators/ICU beds in tertiary and secondary hospitals [0.77% (0.53%, 1.07%), 0.88% (0.63%, 1.38%)], and the ratio of injection pump/ICU beds [1.70% (1.00%, 2.56%), 1.25% (0.75%, 1.88%)] didn't meet the requirements of the Guidelines. The equipment ratio was insuffcient, which means that the basic needs of development had not been met yet. CONCLUSIONS: The development of comprehensive ICU in Inner Mongolia has tended to mature, but there is still a certain gap in the development scale, personnel ratio and instruments and equipment compared with the Guidelines. Moreover, the comprehensive ICU appears the characteristics of relatively weak eastern and western regions, and the overall distribution is uneven. Therefore, it is necessary to increase efforts to invest in the construction of the department of critical care medicine.


Subject(s)
Critical Care , Intensive Care Units , Humans , Surveys and Questionnaires , Tertiary Care Centers , China
18.
J Inflamm Res ; 16: 4373-4388, 2023.
Article in English | MEDLINE | ID: mdl-37808954

ABSTRACT

Objective: The aim of this study was to investigate the clinical significance of Fibrinogen and Platelet to Pre-albumin Ratio(FPAR) in predicting the prognosis of patients with advanced gastric cancer(AGC) and to construct a predictive model. Methods: We collected clinical data from 489 postoperative patients with AGC. FPAR was divided into high and low groups according to the receiver operating characteristic (ROC) curve. The value of FPAR in predicting the prognosis of progressive gastric cancer was analysed using univariate and multivariable Cox regression analysis and its relationship with clinicopathological features. Finally, the Overall Survival(OS) and recurrence-free survival(RFS) prediction models were constructed and validated using FPAR. Results: Univariate and multifactorial cox regression analysis showed that grade (P<0.001), TNM-stage (P<0.001), chemotherapy (P<0.001), and FPAR (OR=3.054,95% CI:2.088-4.467, P<0.001) were independent risk factors for OS; grade (P=0.021), N-stage (P=0.024), TNM-stage (P=0.033), and FPAR (OR=2.215,95% CI:1.634-3.003, P<0.001) were independent risk factors for RFS. Subgroup analysis showed that the FPAR-low group had higher OS and RFS than the FPAR-high group, regardless of the patient's TNM stage (p<0.05). However, OS was instead higher in the the stage III-FPAR-low group than in the the stage II-FPAR-high group (p<0.05), while RFS was not significantly different. Predictive models incorporating FPAR had better predictive performance than those without FPAR, showing wide range of net benefit and AUC. After correction, the 2-year AUC, 3-year AUC and C-index of the OS model were 0.737, 0.756, and 0.746; the 2-year AUC, 3-year AUC, and C-index of the RFS model were 0.738, 0.758, and 0.711. Conclusion: FPAR levels were associated with prognosis in patients with AGC and could independently predict RFS and OS.

19.
Cogn Neurodyn ; 17(3): 661-669, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37265653

ABSTRACT

The assessment of motor function is critical to the rehabilitation of stroke patients. However, commonly used evaluation methods are based on behavior scoring, which lacks neurological indicators that directly reflect the motor function of the brain. The objective of this study was to investigate whether resting-state EEG indicators could improve stroke rehabilitation evaluation. We recruited 68 participants and recorded their resting-state EEG data. According to Brunnstrom stage, the participants were divided into three groups: severe, moderate, and mild. Ten quantitative electroencephalographic (QEEG) and five non-linear parameters of resting-state EEG were calculated for further analysis. Statistical tests were performed, and the genetic algorithm-support vector machine was used to select the best feature combination for classification. We found the QEEG parameters show significant differences in Delta, Alpha1, Alpha2, DAR, and DTABR (P < 0.05) among the three groups. Regarding nonlinear parameters, ApEn, SampEn, Lz, and C0 showed significant differences (P < 0.05). The optimal feature classification combination accuracy rate reached 85.3%. Our research shows that resting-state EEG indicators could be used for stroke rehabilitation evaluation.

20.
Nano Lett ; 23(11): 5123-5130, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37272668

ABSTRACT

Developing cost-effective and highly efficient photocathodes toward polysulfide redox reduction is highly desirable for advanced quantum dot (QD) photovoltaics. Herein, we demonstrate nitrogen doped carbon (N-C) shell-supported iron single atom catalysts (Fe-SACs) capable of catalyzing polysulfide reduction in QD photovoltaics for the first time. Specifically, Fe-SACs with FeN4 active sites feature a power conversion efficiency of 13.7% for ZnCuInSe-QD photovoltaics (AM1.5G, 100 mW/cm2), which is the highest value for ZnCuInSe QD-based photovoltaics, outperforming those of Cu-SACs and N-C catalysts. Compared with N-C, Fe-SACs exhibit suitable energy level matching with polysulfide redox couples, revealed by the Kelvin probe force microscope, which accelerates the charge transferring at the interfaces of catalyst/polysulfide redox couple. Density functional theory calculations demonstrate that the outstanding catalytic activity of Fe-SACs originates from the preferable adsorption of S42- on the FeN4 active sites and the high activation degree of the S-S bonds in S42- initiated by the FeN4 active sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...