Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Nat Commun ; 13(1): 182, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013322

ABSTRACT

Combining immune checkpoint therapy (ICT) and targeted therapy holds great promises for broad and long-lasting anti-cancer therapies. However, combining ICT with anti-PI3K inhibitors have been challenging because the multifaceted effects of PI3K on both cancer cells and immune cells within the tumor microenvironment. Here we find that intermittent but not daily dosing of a PI3Kα/ß/δ inhibitor, BAY1082439, on Pten-null prostate cancer models could overcome ICT resistance and unleash CD8+ T cell-dependent anti-tumor immunity in vivo. Mechanistically, BAY1082439 converts cancer cell-intrinsic immune-suppression to immune-stimulation by promoting IFNα/IFNγ pathway activation, ß2-microglubin expression and CXCL10/CCL5 secretion. With its preferential regulatory T cell inhibition activity, BAY1082439 promotes clonal expansion of tumor-associated CD8+ T cells, most likely via tertiary lymphoid structures. Once primed, tumors remain T cell-inflamed, become responsive to anti-PD-1 therapy and have durable therapeutic effect. Our data suggest that intermittent PI3K inhibition can alleviate Pten-null cancer cell-intrinsic immunosuppressive activity and turn "cold" tumors into T cell-inflamed ones, paving the way for successful ICT.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Immune Checkpoint Inhibitors/pharmacology , PTEN Phosphohydrolase/genetics , Programmed Cell Death 1 Receptor/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Class I Phosphatidylinositol 3-Kinases/immunology , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Gene Expression Regulation, Neoplastic , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Mice , Mice, Knockout , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Signal Transduction , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/immunology
2.
Nat Commun ; 11(1): 1880, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312982

ABSTRACT

PI3K/AKT signaling is known to regulate cancer metabolism, but whether metabolic feedback regulates the PI3K/AKT pathway is unclear. Here, we demonstrate the important reciprocal crosstalk between the PI3K/AKT signal and pentose phosphate pathway (PPP) branching metabolic pathways. PI3K/AKT activation stabilizes G6PD, the rate-limiting enzyme of the PPP, by inhibiting the newly identified E3 ligase TIRM21 and promotes the PPP. PPP metabolites, in turn, reinforce AKT activation and further promote cancer metabolic reprogramming by blocking the expression of the AKT inhibitor PHLDA3. Knockout of TRIM21 or PHLDA3 promotes crosstalk and cell proliferation. Importantly, PTEN null human cancer cells and in vivo murine models are sensitive to anti-PPP treatments, suggesting the importance of the PPP in maintaining AKT activation even in the presence of a constitutively activated PI3K pathway. Our study suggests that blockade of this reciprocal crosstalk mechanism may have a therapeutic benefit for cancers with PTEN loss or PI3K/AKT activation.


Subject(s)
Nuclear Proteins/metabolism , Pentose Phosphate Pathway/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribonucleoproteins/metabolism , A549 Cells , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Models, Animal , Gene Knockout Techniques , Glucosephosphate Dehydrogenase , Humans , Male , Mice , Neoplasm Transplantation , Neoplasms/metabolism , Nuclear Proteins/pharmacology , PTEN Phosphohydrolase/metabolism , Pentose Phosphate Pathway/physiology , Ribonucleoproteins/pharmacology , Signal Transduction
3.
Elife ; 72018 11 09.
Article in English | MEDLINE | ID: mdl-30412053

ABSTRACT

Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of leukemia, but limited knowledge is available on the key determinants of LSC 'stemness'. Using single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model. Although initiated by PTEN-controlled ß-catenin activation, Spi1 expression and LSC 'stemness' are maintained by a ß-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver mutation. Perturbing any component of this circuit either genetically or pharmacologically can prevent LSC formation or eliminate existing LSCs. LSCs lose their 'stemness' when Spi1 expression is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment. Importantly, similar regulatory mechanisms may be also present in human T-ALL.


Subject(s)
Gene Expression Regulation , Neoplastic Stem Cells/physiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , Hepatitis A Virus Cellular Receptor 2/metabolism , Mice , Proto-Oncogene Proteins/genetics , Sequence Analysis, RNA , Trans-Activators/genetics , beta Catenin/metabolism
4.
Mol Cancer Ther ; 17(10): 2091-2099, 2018 10.
Article in English | MEDLINE | ID: mdl-30045927

ABSTRACT

Targeting the PI3K pathway is a promising strategy for treating prostate cancers with PTEN-loss. However, current anti-PI3K therapies fail to show long lasting in vivo effects. We find that not only the PI3Kα- and PI3kß-isoforms, but also PI3Kδ, are associated with the epithelial-mesenchymal transition (EMT), a critical process distinguishing indolent from aggressive prostate cancer. This suggests that cotargeting PI3Kα/ß/δ could preempt the rebound activation of the parallel pathways induced by α- or ß-isoform-selective inhibitor and prevent EMT. Indeed, BAY1082439, a new selective PI3Kα/ß/δ inhibitor, is highly effective in vivo in inhibiting Pten-null prostate cancer growth and preventing EMT in the mutant Pten/Kras metastatic model. The anti-PI3Kδ property of BAY1082439 further blocks B-cell infiltration and lymphotoxin release, which are tumor microenvironment factors that promote castration-resistant growth. Together, our data suggest a new approach for the treatment of prostate cancer by targeting both tumor cells and tumor microenvironment with PI3Kα/ß/δ inhibitor. Mol Cancer Ther; 17(10); 2091-9. ©2018 AACR.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Progression , Humans , Immunohistochemistry , Immunophenotyping , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Mice , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Kinase Inhibitors/therapeutic use
5.
Article in Chinese | MEDLINE | ID: mdl-25330673

ABSTRACT

OBJECTIVE: To study the antiproliferation effect on HepG2 cells and its underlying mechanism of the active chemical composition of the Viburnum Odoratissimum. METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay and trypan blue dye exclusion assay were used to assess the effect of vibsane-type diterpenoids on the proliferation of various tumor cells. Alterations in cell cycle and apoptosis were determined by flowcytometry. The enzymatic activity of caspase-3/7 was measured by Apo-ONE homogeneous Caspase-3/7 Assay kit. RESULTS: Compound 1 #, a vibsane-type diterpenoid, was found to significantly inhibit the growth of HepG2 cells by anticancer proliferation activity screening. It was demonstrated that the modified groups on side chain coupled to C11 site affected the cell growth-inhibition activity of compounds by structure-activity analysis. In addition, HepG2 cell line was most sensitive to compound 1 #, which induced growth arrest of HepG2 cells in a dose- and time-dependent manner. Study on the mechanisms underlying these effects indicated that compound 1 # induced significant G0/G1 phase arrest of HepG2 cells in a time- and concentration-dependent manner. Meanwhile, It was found that higher concentrations of compound (5-10 micromol/L) caused evident increase in the unmber of apoptotic cells and dose-dependent activation of caspase-3/7. CONCLUSION: Vibsane-type diterpenoids could significantly inhibit the growth of HCC HepG2 cells. Induction of cell cycle arrest and apoptosis may play important roles in their anticancer effects.


Subject(s)
Cell Proliferation/drug effects , Diterpenes/pharmacology , Viburnum/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Hep G2 Cells , Humans
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 22(3): 791-6, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-24989296

ABSTRACT

The aim of this study was to investigate the effect of WR2721(amifostine) against bone marrow hematopoietic damage of mice exposed to 6.5 Gy of (60)Co-γ ray. A total of 60 C57/BL6J mice was divided into 3 groups:normal group (mice were injected with physiological salt solution), irradiation group (mice were injected with physiologic salt solution before irradiation) and WR2721 group (mice were injected with WR2721 before irradiation). The WBC, neutrophil (Neut), Plt and RBC levels in peripheral blood of 3 group mice were counted within 60 days after irradiation; the bone marrow nuclear cells (BMNC) were counted at 2 and 24 hours after irradiation; the hematopoietic stem/progenitor cell (LK/LSK) level and colony formation capability were detected by flow cytometry at 2 and 24 hours after irradiation. The results indicated that the counts of WBC and neut at 4 and 18 days, Plt at 7-18 days and RBC at 10-30 day after irradiation in WR2721 group were higher than those in irradiation group (P < 0.05); the BMNC, LSK and LK levels obviously increased at 24 hours after irradiation (P < 0.05), the CFU-GEMM, CFU-GM, CFU-MK BFU-E and CFU-E all significantly increased at 2 and 24 hours after irradiation (P < 0.01), as compared with irradiation group. It is concluded that WR2721 can effectively alleviate early hematopoietic damage and promote the fast recovery of peripheral blood cells in mice exposed to γ-ray, suggesting that the WR2721 has significant radioprotective effect on hematopoietic system.


Subject(s)
Amifostine/pharmacology , Bone Marrow Cells/cytology , Hematopoietic Stem Cells/cytology , Radiation-Protective Agents/pharmacology , Animals , Blood Cell Count , Bone Marrow Cells/drug effects , Bone Marrow Cells/radiation effects , Gamma Rays , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Male , Mice , Mice, Inbred C57BL , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...