Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 66(5): 1000-1018, 2024 May.
Article in English | MEDLINE | ID: mdl-38305844

ABSTRACT

Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.


Subject(s)
Aptamers, Nucleotide , Liver Diseases , SELEX Aptamer Technique , Humans , Liver Diseases/therapy , Liver Diseases/genetics , Liver Diseases/diagnosis , SELEX Aptamer Technique/methods , Animals , Biomarkers
2.
Adv Sci (Weinh) ; 11(12): e2306499, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229201

ABSTRACT

EZH2 is the catalytic subunit of the histone methyltransferase Polycomb Repressive Complex 2 (PRC2), and its somatic activating mutations drive lymphoma, particularly the germinal center B-cell type. Although PRC2 inhibitors, such as tazemetostat, have demonstrated anti-lymphoma activity in patients, the clinical efficacy is not limited to EZH2-mutant lymphoma. In this study, Activin A Receptor Type 1 (ACVR1), a type I Bone Morphogenetic Protein (BMP) receptor, is identified as critical for the anti-lymphoma efficacy of PRC2 inhibitors through a whole-genome CRISPR screen. BMP6, BMP7, and ACVR1 are repressed by PRC2-mediated H3K27me3, and PRC2 inhibition upregulates their expression and signaling in cell and patient-derived xenograft models. Through BMP-ACVR1 signaling, PRC2 inhibitors robustly induced cell cycle arrest and B cell lineage differentiation in vivo. Remarkably, blocking ACVR1 signaling using an inhibitor or genetic depletion significantly compromised the in vitro and in vivo efficacy of PRC2 inhibitors. Furthermore, high levels of BMP6 and BMP7, along with ACVR1, are associated with longer survival in lymphoma patients, underscoring the clinical relevance of this study. Altogether, BMP-ACVR1 exhibits anti-lymphoma function and represents a critical PRC2-repressed pathway contributing to the efficacy of PRC2 inhibitors.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Signal Transduction/physiology , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism
3.
Nat Struct Mol Biol ; 31(1): 54-67, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177672

ABSTRACT

THEMIS plays an indispensable role in T cells, but its mechanism of action has remained highly controversial. Using the systematic proximity labeling methodology PEPSI, we identify THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis assays and mass spectrometry analysis reveal that phosphorylation of THEMIS at the evolutionally conserved Tyr34 residue is oppositely regulated by SHP1 and the kinase LCK. Similar to THEMIS-/- mice, THEMISY34F/Y34F knock-in mice show a significant decrease in CD4 thymocytes and mature CD4 T cells, but display normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, the Tyr34 motif in THEMIS, when phosphorylated upon T cell antigen receptor activation, appears to act as an allosteric regulator, binding and stabilizing SHP1 in its active conformation, thus ensuring appropriate negative regulation of T cell antigen receptor signaling. However, cytokine signaling in CD8 T cells fails to elicit THEMIS Tyr34 phosphorylation, indicating both Tyr34 phosphorylation-dependent and phosphorylation-independent roles of THEMIS in controlling T cell maturation and expansion.


Subject(s)
Intercellular Signaling Peptides and Proteins , Thymocytes , Mice , Animals , Mice, Knockout , Thymocytes/metabolism , Receptors, Antigen, T-Cell , Signal Transduction
4.
Cancer Cell ; 42(1): 135-156.e17, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38101410

ABSTRACT

Comprehensive molecular analyses of metastatic hepatocellular carcinoma (HCC) are lacking. Here, we generate multi-omic profiling of 257 primary and 176 metastatic regions from 182 HCC patients. Primary tumors rich in hypoxia signatures facilitated polyclonal dissemination. Genomic divergence between primary and metastatic HCC is high, and early dissemination is prevalent. The remarkable neoantigen intratumor heterogeneity observed in metastases is associated with decreased T cell reactivity, resulting from disruptions to neoantigen presentation. We identify somatic copy number alterations as highly selected events driving metastasis. Subclones without Wnt mutations show a stronger selective advantage for metastasis than those with Wnt mutations and are characterized by a microenvironment rich in activated fibroblasts favoring a pro-metastatic phenotype. Finally, metastases without Wnt mutations exhibit higher enrichment of immunosuppressive B cells that mediate terminal exhaustion of CD8+ T cells via HLA-E:CD94-NKG2A checkpoint axis. Collectively, our results provide a multi-dimensional dissection of the complex evolutionary process of metastasis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Multiomics , Mutation , Tumor Microenvironment/genetics
5.
Eur Transp Res Rev ; 14(1): 27, 2022.
Article in English | MEDLINE | ID: mdl-38625292

ABSTRACT

Objectives: This study developed an analytical framework that aims at understanding the evolutionary processes of a micro-mobility system (for example, bike-sharing), which offers insights into the transforming nature of a city transport system. Methods: Firstly, the framework applied a Gaussian Mixture Model to examine the long-term fluctuations of travel demands. Secondly, it investigated the growth trajectories of service points via exponential and logistic growth models. Cumulative connections with other points represented the growth of a service location. An eigendecomposition approach was used to uncover the hidden structures behind the growth curves. Results: This framework was applied in the docked bike-sharing program in New York City, USA. The results show that there existed periodic patterns of travel demands in the long term. The majority of stations grew rapidly after they began to operate. However, the temporal signatures of stations' growth displayed some variations across different locations. Conclusion: This proposed workflow can be employed in other cities with similar context to better investigate how micro-mobility systems evolve.

SELECTION OF CITATIONS
SEARCH DETAIL