Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur Heart J ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39165142

ABSTRACT

BACKGROUND AND AIMS: Heart failure (HF) is a leading cause of mortality worldwide and characterized by significant co-morbidities and dismal prognosis. Neutrophil extracellular traps (NETs) aggravate inflammation in various cardiovascular diseases; however, their function and mechanism of action in HF pathogenesis remain underexplored. This study aimed to investigate the involvement of a novel VWF-SLC44A2-NET axis in HF progression. METHODS: NET levels were examined in patients with HF and mouse models of transverse aortic constriction (TAC) HF. PAD4 knockout mice and NET inhibitors (GSK-484, DNase I, NEi) were used to evaluate the role of NETs in HF. RNA sequencing was used to investigate the downstream mechanisms. Recombinant human ADAMTS13 (rhADAMTS13), ADAMTS13, and SLC44A2 knockouts were used to identify novel upstream factors of NETs. RESULTS: Elevated NET levels were observed in patients with HF and TAC mouse models of HF. PAD4 knockout and NET inhibitors improved the cardiac function. Mechanistically, NETs induced mitochondrial dysfunction in cardiomyocytes, inhibiting mitochondrial biogenesis via the NE-TLR4-mediated suppression of PGC-1α. Furthermore, VWF/ADAMTS13 regulated NET formation via SLC44A2. Additionally, sacubitril/valsartan amplifies the cardioprotective effects of the VWF-SLC44A2-NET axis blockade. CONCLUSIONS: This study established the role of a novel VWF-SLC44A2-NET axis in regulating mitochondrial homeostasis and function, leading to cardiac apoptosis and contributing to HF pathogenesis. Targeting this axis may offer a potential therapeutic approach for HF treatment.

2.
Theranostics ; 14(11): 4256-4277, 2024.
Article in English | MEDLINE | ID: mdl-39113793

ABSTRACT

Rationale: Posttranslational modifications of proteins have not been addressed in studies aimed at elucidating the cardioprotective effect of exercise in atherosclerotic cardiovascular disease (ASCVD). In this study, we reveal a novel mechanism by which exercise ameliorates atherosclerosis via lactylation. Methods: Using ApoE-/- mice in an exercise model, proteomics analysis was used to identify exercise-induced specific lactylation of MeCP2 at lysine 271 (K271). Mutation of the MeCP2 K271 lactylation site in aortic plaque macrophages was achieved by recombinant adenoviral transfection. Explore the molecular mechanisms by which motility drives MeCP2 K271 lactylation to improve plaque stability using ATAC-Seq, CUT &Tag and molecular biology. Validation of the potential target RUNX1 for exercise therapy using Ro5-3335 pharmacological inhibition. Results: we showed that in ApoE-/- mice, methyl-CpG-binding protein 2 (MeCP2) K271 lactylation was observed in aortic root plaque macrophages, promoting pro-repair M2 macrophage polarization, reducing the plaque area, shrinking necrotic cores, reducing plaque lipid deposition, and increasing collagen content. Adenoviral transfection, by introducing a mutant at lysine 271, overexpressed MeCP2 K271 lactylation, which enhanced exercise-induced M2 macrophage polarization and increased plaque stability. Mechanistically, the exercise-induced atheroprotective effect requires an interaction between MeCP2 K271 lactylation and H3K36me3, leading to increased chromatin accessibility and transcriptional repression of RUNX1. In addition, the pharmacological inhibition of the transcription factor RUNX1 exerts atheroprotective effects by promoting the polarization of plaque macrophages towards the pro-repair M2 phenotype. Conclusions: These findings reveal a novel mechanism by which exercise ameliorates atherosclerosis via MeCP2 K271 lactylation-H3K36me3/RUNX1. Interventions that enhance MeCP2 K271 lactylation have been shown to increase pro-repair M2 macrophage infiltration, thereby promoting plaque stabilization and reducing the risk of atherosclerotic cardiovascular disease. We also established RUNX1 as a potential drug target for exercise therapy, thereby providing guidance for the discovery of new targets.


Subject(s)
Apolipoproteins E , Atherosclerosis , Macrophages , Methyl-CpG-Binding Protein 2 , Animals , Humans , Male , Mice , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Disease Models, Animal , Macrophages/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mice, Inbred C57BL , Physical Conditioning, Animal , Plaque, Atherosclerotic/metabolism , Protein Processing, Post-Translational
3.
Clin Transl Med ; 14(7): e1749, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951127

ABSTRACT

During myocardial ischaemia‒reperfusion injury (MIRI), the accumulation of damaged mitochondria could pose serious threats to the heart. The migrasomes, newly discovered mitocytosis-mediating organelles, selectively remove damaged mitochondria to provide mitochondrial quality control. Here, we utilised low-intensity pulsed ultrasound (LIPUS) on MIRI mice model and demonstrated that LIPUS reduced the infarcted area and improved cardiac dysfunction. Additionally, we found that LIPUS alleviated MIRI-induced mitochondrial dysfunction. We provided new evidence that LIPUS mechanical stimulation facilitated damaged mitochondrial excretion via migrasome-dependent mitocytosis. Inhibition the formation of migrasomes abolished the protective effect of LIPUS on MIRI. Mechanistically, LIPUS induced the formation of migrasomes by evoking the RhoA/Myosin II/F-actin pathway. Meanwhile, F-actin activated YAP nuclear translocation to transcriptionally activate the mitochondrial motor protein KIF5B and Drp1, which are indispensable for LIPUS-induced mitocytosis. These results revealed that LIPUS activates mitocytosis, a migrasome-dependent mitochondrial quality control mechanism, to protect against MIRI, underlining LIPUS as a safe and potentially non-invasive treatment for MIRI.


Subject(s)
Disease Models, Animal , Myocardial Reperfusion Injury , Animals , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/therapy , Ultrasonic Waves , Male , Mice, Inbred C57BL , Mitochondria/metabolism
4.
Adv Sci (Weinh) ; : e2310227, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984448

ABSTRACT

Doxorubicin (DOX) is an effective anticancer agent, but its clinical utility is constrained by dose-dependent cardiotoxicity, partly due to cardiomyocyte ferroptosis. However, the progress of developing cardioprotective medications to counteract ferroptosis has encountered obstacles. Protosappanin A (PrA), an anti-inflammatory compound derived from hematoxylin, shows potential against DOX-induced cardiomyopathy (DIC). Here, it is reported that PrA alleviates myocardial damage and dysfunction by reducing DOX-induced ferroptosis and maintaining mitochondrial homeostasis. Subsequently, the molecular target of PrA through proteome microarray, molecular docking, and dynamics simulation is identified. Mechanistically, PrA physically binds with ferroptosis-related proteins acyl-CoA synthetase long-chain family member 4 (ACSL4) and ferritin heavy chain 1 (FTH1), ultimately inhibiting ACSL4 phosphorylation and subsequent phospholipid peroxidation, while also preventing FTH1 autophagic degradation and subsequent release of ferrous ions (Fe2+) release. Given the critical role of ferroptosis in the pathogenesis of ischemia-reperfusion (IR) injury, this further investigation posits that PrA can confer a protective effect against IR-induced cardiac damage by inhibiting ferroptosis. Overall, a novel pharmacological inhibitor is unveiled that targets ferroptosis and uncover a dual-regulated mechanism for cardiomyocyte ferroptosis in DIC, highlighting additional therapeutic options for chemodrug-induced cardiotoxicity and ferroptosis-triggered disorders.

5.
Nat Commun ; 15(1): 4688, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824144

ABSTRACT

Ultrasmall copper nanoclusters have recently emerged as promising photocatalysts for organic synthesis, owing to their exceptional light absorption ability and large surface areas for efficient interactions with substrates. Despite significant advances in cluster-based visible-light photocatalysis, the types of organic transformations that copper nanoclusters can catalyze remain limited to date. Herein, we report a structurally well-defined anionic Cu40 nanocluster that emits in the second near-infrared region (NIR-II, 1000-1700 nm) after photoexcitation and can conduct single-electron transfer with fluoroalkyl iodides without the need for external ligand activation. This photoredox-active copper nanocluster efficiently catalyzes the three-component radical couplings of alkenes, fluoroalkyl iodides, and trimethylsilyl cyanide under blue-LED irradiation at room temperature. A variety of fluorine-containing electrophiles and a cyanide nucleophile can be added onto an array of alkenes, including styrenes and aliphatic olefins. Our current work demonstrates the viability of using readily accessible metal nanoclusters to establish photocatalytic systems with a high degree of practicality and reaction complexity.

6.
Int J Nurs Sci ; 11(2): 171-178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38707692

ABSTRACT

Objectives: Providing satisfactory healthcare services for breast cancer survivors can effectively reduce their burden and the pressure on medical resources. The aim of this study was to explore health care service demands for community-dwelling breast cancer survivors using the Kano model. Methods: A cross-sectional survey was conducted from January to March 2023 among breast cancer survivors discharged from a tertiary cancer hospital. Participants were asked to fill out a self-designed questionnaire involving the Kano model, which helped to categorize and prioritize the attributes of healthcare services. The questionnaire included 30 health care services. Additionally, their social demographic characteristics were collected during the survey. Results: A total of 296 valid questionnaires were collected, and demand attributes of the 30 health care services were evaluated. The findings revealed that one of 30 services was classified as "must-be attributes" (body image management), 13 as "one-dimensional attributes" (focused on medical security support, health management, and health counseling), 3 as "attractive attributes" (focused on communication needs and telehealth services), and 11 as "indifferent attributes" (mainly in the area of psycho-social services). Conclusions: Breast cancer survivors in the community have different levels of need for various health care services. It's crucial for healthcare providers to identify these needs and devise effective strategies to deliver the appropriate services. Services with must-be and one-dimensional attributes should be given priority, and efforts should be made to provide services with attractive attributes, hence improving the quality of life of breast cancer survivors.

7.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38726929

ABSTRACT

The time-dependent quantum transportation through a metal/polymer/metal system is theoretically investigated on the basis of a Su-Schrieffer-Heeger model combined with the hierarchical equations of motion formalism. Using a non-adiabatic dynamical method, the evolution of the electron subspace and lattice atoms with time can be obtained. It is found that the calculated transient currents vary with time and reach stable values after a response time under the bias voltages. However, the stable current as the system reaches its dynamical steady state exhibits a discrepancy between two sweep directions of the bias voltage, which results in pronounced electrical hysteresis loops in the current-voltage curve. By analyzing the evolution of instantaneous energy eigenstates, the occupation number of the instantaneous eigenstates, and the lattice of the polymer, we show that the formation of excitons and the delay of their annihilation are responsible for the hysteretic current-voltage characteristics, where electron-phonon interactions play the key factor. Furthermore, the hysteresis width and amplitude can also be modulated by the strength of the electron-phonon coupling, level-width broadening function, and temperature. We hope these results about past condition-dependent switching performance at a sweep voltage can provide further insight into some of the basic issues of interest in hysteresis processes in conducting polymers.

8.
J Phys Chem B ; 128(22): 5500-5505, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776125

ABSTRACT

In polymer solar cells (PSCs), charge-transfer (CT) state absorption plays an important role in evaluating the CT-state energy and energy loss. However, due to the disordered nature of polymers, a comprehensive understanding of CT absorption properties remains elusive. Especially, the dominant role of dynamic and static disorder in determining CT absorption is frequently debated. Herein, we theoretically constructed an organic donor-acceptor model to investigate the impact of these two types of disorders on CT absorption properties. It is demonstrated that the CT absorption properties depend significantly on the type of disorder. Specifically, it is found that dynamic disorder has a more significant impact on the peak and position of CT absorption as well as the broadening properties, compared to static disorder. The study indicates that minimizing dynamic disorder can lead to a reduction in overall disorder, which is beneficial for improving the performance of PSCs.

9.
Cardiovasc Res ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696702

ABSTRACT

AIMS: CD4+ T cells are activated during inflammatory dilated cardiomyopathy (iDCM) development to induce immunogenic responses that damage the myocardium. Low-intensity pulsed ultrasound (LIPUS), a novel physiotherapy for cardiovascular diseases, has recently been shown to modulate inflammatory responses. However, its efficacy in iDCM remains unknown. Here, we investigated whether LIPUS could improve the severity of iDCM by orchestrating immune responses and explored its therapeutic mechanisms. METHODS AND RESULTS: In iDCM mice, LIPUS treatment reduced cardiac remodelling and dysfunction. Additionally, CD4+ T cell inflammatory responses were suppressed. LIPUS increased Treg cells while decreasing Th17 cells. LIPUS mechanically stimulates endothelial cells, resulting in increased secretion of extracellular vesicles (EVs), which are taken up by CD4+ T cells and alter their differentiation and metabolic patterns. Moreover, EVs selectively loaded with microRNA (miR)-99a are responsible for the therapeutic effects of LIPUS. The hnRNPA2B1 translocation from the nucleus to the cytoplasm and binding to caveolin-1 and miR-99a confirmed the upstream mechanism of miR-99a transport. This complex is loaded into EVs and taken up by CD4+ T cells, which further suppress mTOR and TRIB2 expression to modulate cellular differentiation. CONCLUSION: Our findings revealed that LIPUS uses an EV-dependent molecular mechanism to protect against iDCM progression. Therefore, LIPUS is a promising new treatment option for iDCM.

10.
J Environ Manage ; 356: 120560, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547825

ABSTRACT

The urban thermal environment undergoes significant influences from changes in land use/land cover (LULC). This article uses CA-ANN and ANN algorithms to forecast LULC and changes in the urban thermal environment in Nanjing for the years 2030 and 2040. It investigates the interplay between LULC changes, land surface temperature (LST), and the urban thermal field variance index (UTFVI). The findings reveal that urban land exhibited a significant expansion trend from 2000 to 2019, reaching 1083.43 km2 in 2019. The forecast indicates that urban land may increase by 8.79% and 10.92% by 2030 and 2040, respectively. Conversely, vegetation and bare land may decrease. The LST is likely to continue to rise, accompanied by a significant expansion of the high temperature range and a contraction of the low temperature range. By 2030 and 2040, the area with LST<20 °C is likely to decrease by 2.17% and 3.19%, while the area with LST>30 °C is likely to expand by 5.68% and 8.08%, respectively. The UTFVI area of urban land may decrease at none and middle levels but may notably expand at stronger and strongest levels. The areas with UTFVI at none, weak, and middle levels show a declining trend, while the increase in UTFVI at the strong level may exceed 46.29% and the strongest level of UTFVI may continue to expand. This study offers new insights into urban sustainable development and thermal environment governance.


Subject(s)
Environmental Monitoring , Urban Renewal , Temperature , China , Algorithms , Cities , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL