Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
medRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798542

ABSTRACT

Leveraging data from multiple ancestries can greatly improve fine-mapping power due to differences in linkage disequilibrium and allele frequencies. We propose MultiSuSiE, an extension of the sum of single effects model (SuSiE) to multiple ancestries that allows causal effect sizes to vary across ancestries based on a multivariate normal prior informed by empirical data. We evaluated MultiSuSiE via simulations and analyses of 14 quantitative traits leveraging whole-genome sequencing data in 47k African-ancestry and 94k European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr47k+Eur47k was well-calibrated and attained higher power than SuSiE applied to Eur94k; interestingly, higher causal variant PIPs in Afr47k compared to Eur47k were entirely explained by differences in the extent of LD quantified by LD 4th moments. Compared to very recently proposed multi-ancestry fine-mapping methods, MultiSuSiE attained higher power and/or much lower computational costs, making the analysis of large-scale All of Us data feasible. In real trait analyses, MultiSuSiE applied to Afr47k+Eur94k identified 579 fine-mapped variants with PIP > 0.5, and MultiSuSiE applied to Afr47k+Eur47k identified 44% more fine-mapped variants with PIP > 0.5 than SuSiE applied to Eur94k. We validated MultiSuSiE results for real traits via functional enrichment of fine-mapped variants. We highlight several examples where MultiSuSiE implicates well-studied or biologically plausible fine-mapped variants that were not implicated by other methods.

2.
medRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38106023

ABSTRACT

The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.

3.
medRxiv ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37961337

ABSTRACT

Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N=316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the well-established role of CTLA4 in CD8+ T cells for All autoimmune disease. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.

4.
Nat Genet ; 55(12): 2200-2210, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38036783

ABSTRACT

In autoimmune diseases such as rheumatoid arthritis, the immune system attacks the body's own cells. Developing a precise understanding of the cell states where noncoding autoimmune risk variants impart causal mechanisms is critical to developing curative therapies. Here, to identify noncoding regions with accessible chromatin that associate with cell-state-defining gene expression patterns, we leveraged multimodal single-nucleus RNA and assay for transposase-accessible chromatin (ATAC) sequencing data across 28,674 cells from the inflamed synovial tissue of 12 donors. Specifically, we used a multivariate Poisson model to predict peak accessibility from single-nucleus RNA sequencing principal components. For 14 autoimmune diseases, we discovered that cell-state-dependent ('dynamic') chromatin accessibility peaks in immune cell types were enriched for heritability, compared with cell-state-invariant ('cs-invariant') peaks. These dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory T, dendritic and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory elements can help identify precise cell states enriched for disease-critical genetic variation.


Subject(s)
Autoimmune Diseases , Chromatin , Humans , Chromatin/genetics , Regulatory Sequences, Nucleic Acid/genetics , Chromosomes , Autoimmune Diseases/genetics , Genome, Human
5.
Nat Genet ; 55(11): 1854-1865, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814053

ABSTRACT

The analysis of longitudinal data from electronic health records (EHRs) has the potential to improve clinical diagnoses and enable personalized medicine, motivating efforts to identify disease subtypes from patient comorbidity information. Here we introduce an age-dependent topic modeling (ATM) method that provides a low-rank representation of longitudinal records of hundreds of distinct diseases in large EHR datasets. We applied ATM to 282,957 UK Biobank samples, identifying 52 diseases with heterogeneous comorbidity profiles; analyses of 211,908 All of Us samples produced concordant results. We defined subtypes of the 52 heterogeneous diseases based on their comorbidity profiles and compared genetic risk across disease subtypes using polygenic risk scores (PRSs), identifying 18 disease subtypes whose PRS differed significantly from other subtypes of the same disease. We further identified specific genetic variants with subtype-dependent effects on disease risk. In conclusion, ATM identifies disease subtypes with differential genome-wide and locus-specific genetic risk profiles.


Subject(s)
Genetic Predisposition to Disease , Population Health , Humans , Biological Specimen Banks , Genome-Wide Association Study/methods , Risk Factors , Comorbidity , Multifactorial Inheritance/genetics , United Kingdom/epidemiology
6.
Front Sports Act Living ; 5: 1269870, 2023.
Article in English | MEDLINE | ID: mdl-38162697

ABSTRACT

Introduction: Climbing is an increasingly popular activity and imposes specific physiological demands on the human body, which results in unique injury presentations. Of particular concern are overuse injuries (non-traumatic injuries). These injuries tend to present in the upper body and might be preventable with adequate knowledge of risk factors which could inform about injury prevention strategies. Research in this area has recently emerged but has yet to be synthesized comprehensively. Therefore, the aim of this study was to conduct a systematic review of the potential risk factors and injury prevention strategies for overuse injuries in adult climbers. Methods: This systematic review was conducted in accordance with the PRISMA guidelines. Databases were searched systematically, and articles were deemed eligible based upon specific criteria. Research included was original and peer-reviewed, involving climbers, and published in English, German or Czech. Outcomes included overuse injury, and at least one or more variable indicating potential risk factors or injury prevention strategies. The methodological quality of the included studies was assessed with the Downs and Black Quality Index. Data were extracted from included studies and reported descriptively for population, climbing sport type, study design, injury definition and incidence/prevalence, risk factors, and injury prevention strategies. Results: Out of 1,183 records, a total of 34 studies were included in the final analysis. Higher climbing intensity, bouldering, reduced grip/finger strength, use of a "crimp" grip, and previous injury were associated with an increased risk of overuse injury. Additionally, a strength training intervention prevented shoulder and elbow injuries. BMI/body weight, warm up/cool downs, stretching, taping and hydration were not associated with risk of overuse injury. The evidence for the risk factors of training volume, age/years of climbing experience, and sex was conflicting. Discussion: This review presents several risk factors which appear to increase the risk of overuse injury in climbers. Strength and conditioning, load management, and climbing technique could be targeted in injury prevention programs, to enhance the health and wellbeing of climbing athletes. Further research is required to investigate the conflicting findings reported across included studies, and to investigate the effectiveness of injury prevention programs. Systematic Review Registration: https://www.crd.york.ac.uk/, PROSPERO (CRD42023404031).

7.
Res Sq ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168385

ABSTRACT

The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations; LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected significantly nonzero effect correlations for proximal SNP pairs (e.g., -0.37±0.09 for low-frequency positive-LD 0-100bp SNP pairs) that decayed with distance (e.g., -0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g., -0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD 0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results). We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic distances, e.g., -0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of 47kb (due to alternative splicing)) and -0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently, SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs (ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super enhancer SNPs)-even though these quantities are widely assumed to be equal. We recapitulated our findings via forward simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative selection.

8.
Nat Genet ; 54(10): 1572-1580, 2022 10.
Article in English | MEDLINE | ID: mdl-36050550

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) provides unique insights into the pathology and cellular origin of disease. We introduce single-cell disease relevance score (scDRS), an approach that links scRNA-seq with polygenic disease risk at single-cell resolution, independent of annotated cell types. scDRS identifies cells exhibiting excess expression across disease-associated genes implicated by genome-wide association studies (GWASs). We applied scDRS to 74 diseases/traits and 1.3 million single-cell gene-expression profiles across 31 tissues/organs. Cell-type-level results broadly recapitulated known cell-type-disease associations. Individual-cell-level results identified subpopulations of disease-associated cells not captured by existing cell-type labels, including T cell subpopulations associated with inflammatory bowel disease, partially characterized by their effector-like states; neuron subpopulations associated with schizophrenia, partially characterized by their spatial locations; and hepatocyte subpopulations associated with triglyceride levels, partially characterized by their higher ploidy levels. Genes whose expression was correlated with the scDRS score across cells (reflecting coexpression with GWAS disease-associated genes) were strongly enriched for gold-standard drug target and Mendelian disease genes.


Subject(s)
Genome-Wide Association Study , Single-Cell Analysis , Gene Expression Profiling/methods , Multifactorial Inheritance/genetics , RNA-Seq , Single-Cell Analysis/methods , Triglycerides
9.
NPJ Biofilms Microbiomes ; 8(1): 45, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672331

ABSTRACT

Dysbiosis of the oral microbiome mediates chronic periodontal disease. Realignment of microbial dysbiosis towards health may prevent disease. Treatment with antibiotics and probiotics can modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. Antibacterial peptides or bacteriocins, such as nisin, and a nisin-producing probiotic, Lactococcus lactis, have not been examined in this context, yet warrant examination because of their biomedical benefits in eradicating biofilms and pathogenic bacteria, modulating immune mechanisms, and their safety profile in humans. This study's goal was to examine the potential for nisin and a nisin-producing probiotic to abrogate periodontal bone loss, the host inflammatory response, and changes in oral microbiome composition in a polymicrobial mouse model of periodontal disease. Nisin and a nisin-producing Lactococcus lactis probiotic significantly decreased the levels of several periodontal pathogens, alveolar bone loss, and the oral and systemic inflammatory host response. Surprisingly, nisin and/or the nisin-producing L. lactis probiotic enhanced the population of fibroblasts and osteoblasts despite the polymicrobial infection. Nisin mediated human periodontal ligament cell proliferation dose-dependently by increasing the proliferation marker, Ki-67. Nisin and probiotic treatment significantly shifted the oral microbiome towards the healthy control state; health was associated with Proteobacteria, whereas 3 retroviruses were associated with disease. Disease-associated microbial species were correlated with IL-6 levels. Nisin or nisin-producing probiotic's ability to shift the oral microbiome towards health, mitigate periodontal destruction and the host immune response, and promote a novel proliferative phenotype in reparative connective tissue cells, addresses key aspects of the pathogenesis of periodontal disease and reveals a new biomedical application for nisin in treatment of periodontitis and reparative medicine.


Subject(s)
Alveolar Bone Loss , Lactococcus lactis , Microbiota , Nisin , Periodontal Diseases , Probiotics , Alveolar Bone Loss/prevention & control , Animals , Anti-Bacterial Agents , Cell Proliferation , Dysbiosis , Lactococcus lactis/genetics , Mice , Periodontal Diseases/microbiology
10.
Am J Hum Genet ; 109(3): 446-456, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35216679

ABSTRACT

Attempts to identify and prioritize functional DNA elements in coding and non-coding regions, particularly through use of in silico functional annotation data, continue to increase in popularity. However, specific functional roles can vary widely from one variant to another, making it challenging to summarize different aspects of variant function with a one-dimensional rating. Here we propose multi-dimensional annotation-class integrative estimation (MACIE), an unsupervised multivariate mixed-model framework capable of integrating annotations of diverse origin to assess multi-dimensional functional roles for both coding and non-coding variants. Unlike existing one-dimensional scoring methods, MACIE views variant functionality as a composite attribute encompassing multiple characteristics and estimates the joint posterior functional probabilities of each genomic position. This estimate offers more comprehensive and interpretable information in the presence of multiple aspects of functionality. Applied to a variety of independent coding and non-coding datasets, MACIE demonstrates powerful and robust performance in discriminating between functional and non-functional variants. We also show an application of MACIE to fine-mapping and heritability enrichment analysis by using the lipids GWAS summary statistics data from the European Network for Genetic and Genomic Epidemiology Consortium.


Subject(s)
Genome, Human , Genome-Wide Association Study , Genome, Human/genetics , Genome-Wide Association Study/methods , Genomics , Humans , Molecular Sequence Annotation , Polymorphism, Single Nucleotide/genetics , Probability
11.
Elife ; 102021 04 13.
Article in English | MEDLINE | ID: mdl-33847263

ABSTRACT

Aging is associated with complex molecular and cellular processes that are poorly understood. Here we leveraged the Tabula Muris Senis single-cell RNA-seq data set to systematically characterize gene expression changes during aging across diverse cell types in the mouse. We identified aging-dependent genes in 76 tissue-cell types from 23 tissues and characterized both shared and tissue-cell-specific aging behaviors. We found that the aging-related genes shared by multiple tissue-cell types also change their expression congruently in the same direction during aging in most tissue-cell types, suggesting a coordinated global aging behavior at the organismal level. Scoring cells based on these shared aging genes allowed us to contrast the aging status of different tissues and cell types from a transcriptomic perspective. In addition, we identified genes that exhibit age-related expression changes specific to each functional category of tissue-cell types. Altogether, our analyses provide one of the most comprehensive and systematic characterizations of the molecular signatures of aging across diverse tissue-cell types in a mammalian system.


Subject(s)
Cellular Senescence/genetics , Gene Expression Profiling , Mice/physiology , Single-Cell Analysis , Animals , Female , Male , Mice, Inbred C57BL
12.
Sci Rep ; 11(1): 6175, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731726

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine hormone that regulates phosphate and vitamin D metabolism. In models of FGF23 excess, renal deoxyribonuclease 1 (Dnase1) mRNA expression is downregulated. Dnase-1 is an endonuclease which binds monomeric actin. We investigated whether FGF23 suppresses renal Dnase-1 expression to facilitate endocytic retrieval of renal sodium dependent phosphate co-transporters (NaPi-IIa/c) from the brush border membrane by promoting actin polymerization. We showed that wild type mice on low phosphate diet and Fgf23-/- mice with hyperphosphatemia have increased renal Dnase1 mRNA expression while in Hyp mice with FGF23 excess and hypophosphatemia, Dnase1 mRNA expression is decreased. Administration of FGF23 in wild type and Fgf23-/- mice lowered Dnase1 expression. Taken together, our data shows that Dnase1 is regulated by FGF23. In 6-week-old Dnase1-/- mice, plasma phosphate and renal NaPi-IIa protein were significantly lower compared to wild-type mice. However, these changes were transient, normalized by 12 weeks of age and had no impact on bone morphology. Adaptation to low and high phosphate diet were similar in Dnase1-/- and Dnase1+/+ mice, and loss of Dnase1 gene expression did not rescue hyperphosphatemia in Fgf23-/- mice. We conclude that Dnase-1 does not mediate FGF23-induced inhibition of renal tubular phosphate reabsorption.


Subject(s)
Deoxyribonuclease I/metabolism , Fibroblast Growth Factors/metabolism , Hyperphosphatemia/metabolism , Hypophosphatemia/metabolism , Kidney/metabolism , Phosphates/metabolism , Animals , Fibroblast Growth Factor-23 , Mice , Mice, Inbred C57BL , Mice, Knockout
13.
Nat Commun ; 11(1): 4933, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004787

ABSTRACT

The influence of seasons on biological processes is poorly understood. In order to identify biological seasonal patterns based on diverse molecular data, rather than calendar dates, we performed a deep longitudinal multiomics profiling of 105 individuals over 4 years. Here, we report more than 1000 seasonal variations in omics analytes and clinical measures. The different molecules group into two major seasonal patterns which correlate with peaks in late spring and late fall/early winter in California. The two patterns are enriched for molecules involved in human biological processes such as inflammation, immunity, cardiovascular health, as well as neurological and psychiatric conditions. Lastly, we identify molecules and microbes that demonstrate different seasonal patterns in insulin sensitive and insulin resistant individuals. The results of our study have important implications in healthcare and highlight the value of considering seasonality when assessing population wide health risk and management.


Subject(s)
Environmental Exposure , Insulin Resistance/physiology , Metabolic Networks and Pathways/physiology , Microbiota/physiology , Seasons , Adult , Aged , Blood Glucose/analysis , Blood Glucose/metabolism , California , Cluster Analysis , Female , Health Status , Humans , Insulin/metabolism , Longitudinal Studies , Male , Metabolomics , Middle Aged , RNA-Seq
14.
NPJ Biofilms Microbiomes ; 6(1): 10, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32157085

ABSTRACT

Periodontal disease is a microbially-mediated inflammatory disease of tooth-supporting tissues that leads to bone and tissue loss around teeth. Although bacterially-mediated mechanisms of alveolar bone destruction have been widely studied, the effects of a polymicrobial infection on the periodontal ligament and microbiome/virome have not been well explored. Therefore, the current investigation introduced a new mouse model of periodontal disease to examine the effects of a polymicrobial infection on periodontal ligament (PDL) properties, changes in bone loss, the host immune response, and the microbiome/virome using shotgun sequencing. Periodontal pathogens, namely Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum were used as the polymicrobial oral inoculum in BALB/cByJ mice. The polymicrobial infection triggered significant alveolar bone loss, a heightened antibody response, an elevated cytokine immune response, a significant shift in viral diversity and virome composition, and a widening of the PDL space; the latter two findings have not been previously reported in periodontal disease models. Changes in the PDL space were present at sites far away from the site of insult, indicating that the polymicrobial radius of effect extends beyond the bone loss areas and site of initial infection and wider than previously appreciated. Associations were found between bone loss, specific viral and bacterial species, immune genes, and PDL space changes. These findings may have significant implications for the pathogenesis of periodontal disease and biomechanical properties of the periodontium. This new polymicrobial mouse model of periodontal disease in a common mouse strain is useful for evaluating the features of periodontal disease.


Subject(s)
Alveolar Bone Loss/microbiology , Cytokines/metabolism , Periodontal Diseases/microbiology , Periodontal Ligament/virology , Viruses/classification , Alveolar Bone Loss/virology , Animals , Disease Models, Animal , Female , Fusobacterium nucleatum/pathogenicity , Metagenomics/methods , Mice , Mice, Inbred BALB C , Periodontal Diseases/immunology , Periodontal Diseases/virology , Periodontal Ligament/microbiology , Phylogeny , Porphyromonas gingivalis/pathogenicity , Tannerella forsythia/pathogenicity , Treponema denticola/pathogenicity , Viruses/genetics , Viruses/immunology , Viruses/isolation & purification
15.
Nat Commun ; 11(1): 774, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034137

ABSTRACT

An underlying question for virtually all single-cell RNA sequencing experiments is how to allocate the limited sequencing budget: deep sequencing of a few cells or shallow sequencing of many cells? Here we present a mathematical framework which reveals that, for estimating many important gene properties, the optimal allocation is to sequence at a depth of around one read per cell per gene. Interestingly, the corresponding optimal estimator is not the widely-used plug-in estimator, but one developed via empirical Bayes.


Subject(s)
Computational Biology/methods , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/methods , Single-Cell Analysis/statistics & numerical data , Computational Biology/statistics & numerical data , Gene Expression , Gene Regulatory Networks , In Situ Hybridization, Fluorescence , Models, Theoretical , Reproducibility of Results , S100 Calcium-Binding Protein A4/genetics
16.
Nat Commun ; 10(1): 3433, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366926

ABSTRACT

Multiple hypothesis testing is an essential component of modern data science. In many settings, in addition to the p-value, additional covariates for each hypothesis are available, e.g., functional annotation of variants in genome-wide association studies. Such information is ignored by popular multiple testing approaches such as the Benjamini-Hochberg procedure (BH). Here we introduce AdaFDR, a fast and flexible method that adaptively learns the optimal p-value threshold from covariates to significantly improve detection power. On eQTL analysis of the GTEx data, AdaFDR discovers 32% more associations than BH at the same false discovery rate. We prove that AdaFDR controls false discovery proportion and show that it makes substantially more discoveries while controlling false discovery rate (FDR) in extensive experiments. AdaFDR is computationally efficient and allows multi-dimensional covariates with both numeric and categorical values, making it broadly useful across many applications.


Subject(s)
Algorithms , Data Interpretation, Statistical , Research Design , Genome-Wide Association Study , Humans , Magnetic Resonance Imaging , Microbiota/genetics , Polymorphism, Single Nucleotide/genetics , Proteomics , Quantitative Trait Loci/genetics , Sequence Analysis, RNA
17.
Kidney Int ; 96(4): 890-905, 2019 10.
Article in English | MEDLINE | ID: mdl-31301888

ABSTRACT

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis, and its early rise in patients with chronic kidney disease is independently associated with all-cause mortality. Since inflammation is characteristic of chronic kidney disease and associates with increased plasma FGF23 we examined whether inflammation directly stimulates FGF23. In a population-based cohort, plasma tumor necrosis factor (TNF) was the only inflammatory cytokine that independently and positively correlated with plasma FGF23. Mouse models of chronic kidney disease showed signs of renal inflammation, renal FGF23 expression and elevated systemic FGF23 levels. Renal FGF23 expression coincided with expression of the orphan nuclear receptor Nurr1 regulating FGF23 in other organs. Antibody-mediated neutralization of TNF normalized plasma FGF23 and suppressed ectopic renal Fgf23 expression. Conversely, TNF administration to control mice increased plasma FGF23 without altering plasma phosphate. Moreover, in Il10-deficient mice with inflammatory bowel disease and normal kidney function, plasma FGF23 was elevated and normalized upon TNF neutralization. Thus, the inflammatory cytokine TNF contributes to elevated systemic FGF23 levels and also triggers ectopic renal Fgf23 expression in animal models of chronic kidney disease.


Subject(s)
Fibroblast Growth Factors/blood , Inflammatory Bowel Diseases/immunology , Renal Insufficiency, Chronic/immunology , Tumor Necrosis Factor-alpha/metabolism , Adult , Animals , Cell Line , Cohort Studies , Disease Models, Animal , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/immunology , Fibroblast Growth Factors/metabolism , Humans , Inflammatory Bowel Diseases/blood , Interleukin-10/deficiency , Interleukin-10/genetics , Kidney/immunology , Kidney/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Primary Cell Culture , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
18.
Nature ; 569(7758): 663-671, 2019 05.
Article in English | MEDLINE | ID: mdl-31142858

ABSTRACT

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Subject(s)
Biomarkers/metabolism , Computational Biology , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Host Microbial Interactions/genetics , Prediabetic State/microbiology , Proteome/metabolism , Transcriptome , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Biomarkers/analysis , Cohort Studies , Datasets as Topic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/metabolism , Healthy Volunteers , Humans , Inflammation/metabolism , Influenza Vaccines/immunology , Insulin/metabolism , Insulin Resistance , Longitudinal Studies , Male , Microbiota/physiology , Middle Aged , Prediabetic State/genetics , Prediabetic State/metabolism , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Stress, Physiological , Vaccination/statistics & numerical data
19.
Front Physiol ; 9: 1494, 2018.
Article in English | MEDLINE | ID: mdl-30405444

ABSTRACT

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and vitamin D metabolism. In patients with acute kidney injury (AKI), FGF23 levels rise rapidly after onset of AKI and are associated with AKI progression and increased mortality. In mouse models of AKI, excessive rise in FGF23 levels is accompanied by a moderate increase in FGF23 expression in bone. We examined the folic acid-induced AKI (FA-AKI) mouse model to determine whether other organs contribute to the increase in plasma FGF23 and assessed the vitamin D axis as a possible trigger for increased Fgf23 gene expression. Twenty-four hours after initiation of FA-AKI, plasma intact FGF23 and 1,25(OH)2D were increased and kidney function declined. FA-treated mice developed renal inflammation as shown by increased Tnf and Tgfb mRNA expression. Fgf23 mRNA expression was 5- to 15-fold upregulated in thymus, spleen and heart of FA-treated mice, respectively, but only 2-fold in bone. Ectopic renal Fgf23 mRNA expression was also detected in FA-AKI mice. Plasma FGF23 and Fgf23 mRNA expression in thymus, spleen, heart, and bone strongly correlated with renal Tnf mRNA expression. Furthermore, Vdr mRNA expression was upregulated in spleen, thymus and heart and strongly correlated with Fgf23 mRNA expression in the same organ. In conclusion, the rapid rise in plasma FGF23 in FA-AKI mice is accompanied by increased Fgf23 mRNA expression in multiple organs and increased Vdr expression in extra osseous tissues together with increased plasma 1,25(OH)2D and inflammation may trigger the rise in FGF23 in FA-AKI.

20.
Nat Commun ; 9(1): 2134, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849030

ABSTRACT

Visualization and exploration of high-dimensional data is a ubiquitous challenge across disciplines. Widely used techniques such as principal component analysis (PCA) aim to identify dominant trends in one dataset. However, in many settings we have datasets collected under different conditions, e.g., a treatment and a control experiment, and we are interested in visualizing and exploring patterns that are specific to one dataset. This paper proposes a method, contrastive principal component analysis (cPCA), which identifies low-dimensional structures that are enriched in a dataset relative to comparison data. In a wide variety of experiments, we demonstrate that cPCA with a background dataset enables us to visualize dataset-specific patterns missed by PCA and other standard methods. We further provide a geometric interpretation of cPCA and strong mathematical guarantees. An implementation of cPCA is publicly available, and can be used for exploratory data analysis in many applications where PCA is currently used.

SELECTION OF CITATIONS
SEARCH DETAIL
...