Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Carbon Balance Manag ; 18(1): 25, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112828

ABSTRACT

BACKGROUND: The alpine meadow is one of the most important ecosystems in the Qinghai-Tibet Plateau (QTP), and critically sensitive to climate change and human activities. Thus, it is crucial to precisely reveal the current state and predict future trends in the carbon budget of the alpine meadow ecosystem. The objective of this study was to explore the applicability of the Biome-BGC model (BBGC) in the Qinghai Lake Basin (QLB), identify the key parameters affecting the variation of net ecosystem exchange (NEE), and further predict the future trends in carbon budget in the QLB. RESULTS: The alpine meadow mainly acted as carbon sink during the growing season. For the eco-physiological factors, the YEL (Yearday to end litterfall), YSNG (Yearday to start new growth), CLEC (Canopy light extinction coefficient), FRC:LC (New fine root C: new leaf C), SLA (Canopy average specific leaf area), C:Nleaf (C:N of leaves), and FLNR (Fraction of leaf N in Rubisco) were confirmed to be the top seven parameters affecting carbon budget of the alpine meadow. For the meteorological factors, the sensitivity of NEE to precipitation was greater than that to vapor pressure deficit (VPD), and it was greater to radiation than to air temperature. Moreover, the combined effect of two different meteorological factors on NEE was higher than the individual effect of each one. In the future, warming and wetting would enhance the carbon sink capacity of the alpine meadow during the growing season, but extreme warming (over 3.84 ℃) would reduce NEE (about 2.9%) in the SSP5-8.5 scenario. CONCLUSION: Overall, the alpine meadow ecosystem in the QLB generally performs as a carbon sink at present and in the future. It is of great significance for the achievement of the goal of carbon neutrality and the management of alpine ecosystems.

2.
Mol Hum Reprod ; 29(9)2023 08 30.
Article in English | MEDLINE | ID: mdl-37471586

ABSTRACT

Circular RNAs (circRNAs), which exert critical functions in the regulation of transcriptional and post-transcriptional gene expression, are found in mammalian cells but their functions in mammalian preimplantation embryo development remain poorly understood. Here, we showed that circKDM5B mediated miRNA-128 (miR-128) to regulate porcine early embryo development. We screened circRNAs potentially expressed in porcine embryos through an integrated analysis of sequencing data from mouse and human embryos, as well as porcine oocytes. An authentic circRNA originating from histone demethylase KDM5B (referred to as circKDM5B) was abundantly expressed in porcine embryos. Functional studies revealed that circKDM5B knockdown not only significantly reduced blastocyst formation but also decreased the number of total cells and trophectoderm (TE) cells. Moreover, the knockdown of circKDM5B resulted in the disturbance of tight junction assembly and impaired paracellular sealing within the TE epithelium. Mechanistically, miR-128 inhibitor injection could rescue the early development of circKDM5B knockdown embryos. Taken together, the findings revealed that circKDM5B functions as a miR-128 sponge, thereby facilitating early embryonic development in pigs through the modulation of gene expression linked to tight junction assembly.


Subject(s)
Blastocyst , MicroRNAs , RNA, Circular , Animals , Humans , Mice , Blastocyst/metabolism , Embryo, Mammalian , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Mammals/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Swine , Jumonji Domain-Containing Histone Demethylases/genetics
3.
J Ethnopharmacol ; 310: 116422, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36972781

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY: Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS: Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS: In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION: In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.


Subject(s)
Acute Kidney Injury , Cisplatin , Humans , Cisplatin/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Inflammation/chemically induced , HSP90 Heat-Shock Proteins/therapeutic use
4.
Asian J Androl ; 25(1): 103-112, 2023.
Article in English | MEDLINE | ID: mdl-35546286

ABSTRACT

This study aims to characterize the cell atlas of the epididymis derived from a 46,XY disorders of sex development (DSD) patient with a novel heterozygous mutation of the nuclear receptor subfamily 5 group A member 1 (NR5A1) gene. Next-generation sequencing found a heterozygous c.124C>G mutation in NR5A1 that resulted in a p.Q42E missense mutation in the conserved DNA-binding domain of NR5A1. The patient demonstrated feminization of external genitalia and Tanner stage 1 breast development. The surgical procedure revealed a morphologically normal epididymis and vas deferens but a dysplastic testis. Microfluidic-based single-cell RNA sequencing (scRNA-seq) analysis found that the fibroblast cells were significantly increased (approximately 46.5%), whereas the number of main epididymal epithelial cells (approximately 9.2%), such as principal cells and basal cells, was dramatically decreased. Bioinformatics analysis of cell-cell communications and gene regulatory networks at the single-cell level inferred that epididymal epithelial cell loss and fibroblast occupation are associated with the epithelial-to-mesenchymal transition (EMT) process. The present study provides a cell atlas of the epididymis of a patient with 46,XY DSD and serves as an important resource for understanding the pathophysiology of DSD.


Subject(s)
Disorder of Sex Development, 46,XY , Disorders of Sex Development , Male , Humans , Epididymis , Disorder of Sex Development, 46,XY/genetics , Mutation , Mutation, Missense , Steroidogenic Factor 1/genetics
5.
Front Physiol ; 13: 890566, 2022.
Article in English | MEDLINE | ID: mdl-35721535

ABSTRACT

Aims/Introduction: Diabetic nephropathy (DN) is one of the main complications of diabetes. Genomics may reveal the essential pathogenesis of DN. We analyzed datasets to search for key genes to explore pathological mechanisms of DN. Materials and Methods: In this study, weighted gene co-expression network analysis (WGCNA) was used to divide the differential expression genes (DEGs) from GSE142025 into different modules, and enrichment pathway analysis was conducted for each module to find key genes related to cell death pathway. Then, verification was carried out through network and histopathology. Finally, the regulatory mechanisms of key gene expression, including transcription factors (TFs), miRNA and E3 ligases related to ubiquitination, were predicted through website prediction and then miRNA results were validated using GSE51674 dataset. Results: The results of WGCNA and enrichment pathway analysis indicated that ferroptosis had significantly occurred in advanced DN (AND) group. Analysis of DEGs indicated that the occurrence and development of ferroptosis are mainly through ALOX15-mediated lipid metabolism pathway, which was found in all intrinsic cells of the glomerulus detected by IHC and IF staining. Moreover, network predictions were used for searching ALOX15-related TFs and ubiquitination. Meanwhile, the network predictions combining with other dataset furtherly discovered miRNAs which regulated ALOX15 expression. This study showed that the levels of mmu-miR-142-3p increased in DN mice kidney tissues, compared with the NC group. Conclusion: Ferroptosis existed in glomerular intrinsic cells of ADN group and its potential key candidate gene was ALOX15 which may be regulated by miR-142 and miRNA-650, TFs (CREBBP, EP300, HDAC1, MTA1, SPI1, STAT6) and E3 ligases related to ubiquitination (PML, ZMIZ1, MARCHF1, MARCHF3, MARCHF8, MARCHF11).

6.
Acta Pharmacol Sin ; 43(5): 1264-1273, 2022 May.
Article in English | MEDLINE | ID: mdl-34363008

ABSTRACT

Acute pancreatitis (AP), an inflammatory disorder of the pancreas, is a complicated disease without specific drug therapy. (R)-4,6-dimethoxy-3-(4-methoxy phenyl)-2,3-dihydro-1H-indanone [(R)-TML104] is a synthesized analog of the natural product resveratrol sesquiterpenes (±) -isopaucifloral F. This study aimed to investigate the effect and underlying mechanism of (R)-TML104 on AP. The experimental AP model was induced by caerulein hyperstimulation in BALB/c mice. (R)-TML104 markedly attenuated caerulein-induced AP, as evidenced by decreased pancreatic edema, serum amylase levels, serum lipase levels, and pancreatic myeloperoxidase activity. In addition, (R)-TML104 significantly inhibited the expression of pancreatic chemokines C-C motif chemokine ligand 2 and macrophage inflammatory protein-2 and the infiltration of neutrophils and macrophages. Mechanistically, (R)-TML104 activated AMP-activated protein kinase and induced sirtuin 1 (SIRT1) expression. (R)-TML104 treatment markedly induced the SIRT1-signal transducer and activator of transcription 3 (STAT3) interaction and reduced acetylation of STAT3, thus inhibiting the inflammatory response mediated by the interleukin 6-STAT3 pathway. The effect of (R)-TML104 on SIRT1-STAT3 interaction was reversed by treatment with a SIRT1 inhibitor selisistat (EX527). Together, our findings indicate that (R)-TML104 alleviates experimental pancreatitis by reducing the infiltration of inflammatory cells through modulating SIRT1.


Subject(s)
Ceruletide , Pancreatitis , Acute Disease , Animals , Ceruletide/adverse effects , Mice , Pancreas/metabolism , Pancreatitis/drug therapy , Resveratrol/pharmacology , Resveratrol/therapeutic use , Sirtuin 1/metabolism
7.
Zool Res ; 42(5): 562-573, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34355875

ABSTRACT

Inositol requiring mutant 80 (INO80) is a chromatin remodeler that regulates pluripotency maintenance of embryonic stem cells and reprogramming of somatic cells into pluripotent stem cells. However, the roles and mechanisms of INO80 in porcine pre-implantation embryonic development remain largely unknown. Here, we show that INO80 modulates trophectoderm epithelium permeability to promote porcine blastocyst development. The INO80 protein is highly expressed in the nuclei during morula-to-blastocyst transition. Functional studies revealed that RNA interference (RNAi)-mediated knockdown of INO80 severely blocks blastocyst formation and disrupts lineage allocation between the inner cell mass and trophectoderm. Mechanistically, single-embryo RNA sequencing revealed that INO80 regulates multiple genes, which are important for lineage specification, tight junction assembly, and fluid accumulation. Consistent with the altered expression of key genes required for tight junction assembly, a permeability assay showed that paracellular sealing is defective in the trophectoderm epithelium of INO80 knockdown blastocysts. Importantly, aggregation of 8-cell embryos from the control and INO80 knockdown groups restores blastocyst development and lineage allocation via direct complementation of the defective trophectoderm epithelium. Taken together, these results demonstrate that INO80 promotes blastocyst development by regulating the expression of key genes required for lineage specification, tight junction assembly, and fluid accumulation.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Blastocyst/physiology , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Morula/physiology , Swine , ATPases Associated with Diverse Cellular Activities/genetics , Animals , DNA-Binding Proteins/genetics , Embryo Culture Techniques/veterinary , Fertilization in Vitro , Gene Expression Regulation/physiology , Oocytes/physiology , Permeability
8.
Metab Brain Dis ; 36(7): 1969-1983, 2021 10.
Article in English | MEDLINE | ID: mdl-34273043

ABSTRACT

Diabetes-associated affective disorders are of wide concern, and oxidative stress plays a vital role in the pathological process. This study was to investigate the cerebroprotective effects of hesperetin against anxious and depressive disorders caused by diabetes, exploring the potential mechanisms related to activation of Nrf2/ARE pathway. Streptozotocin-induced diabetic rats were intragastrically administrated with hesperetin (0, 50, and 150 mg/kg) for 10 weeks. Forced swimming test, open field test, and elevated plus maze were used to evaluate the anxiety and depression-like behaviors of rats. The brain was collected for assays of Nrf2/ARE pathway. Moreover, high glucose-cultured SH-SY5Y cells were used to further examine the neuroprotective effects of hesperetin and underlying mechanisms. Hesperetin showed anxiolytic and antidepressant effects in diabetic rats according to the behavior tests, and increased p-Nrf2 in cytoplasm and Nrf2 in nucleus followed by elevations in mRNA levels and protein expression of glyoxalase 1 (Glo-1) and γ-glutamylcysteine synthetase (γ-GCS) in brain, known target genes of Nrf2/ARE signaling. Moreover, hesperetin attenuated high glucose-induced neuronal damages through activation of the classical Nrf2/ARE pathway in SH-SY5Y cells. Further study indicated that PKC inhibition or GSK-3ß activation pretreatment attenuated even abolished the effect of hesperetin on the protein expression of Glo-1 and γ-GCS in high glucose-cultured SH-SY5Y cells. In summary, hesperetin ameliorated diabetes-associated anxiety and depression-like behaviors in rats, which was achieved through activation of the Nrf2/ARE pathway. Furthermore, an increase in nuclear Nrf2 phosphorylation from PKC activation and GSK-3ß inhibition contributed to the activation of Nrf2/ARE pathway by hesperetin.


Subject(s)
Diabetes Mellitus, Experimental , NF-E2-Related Factor 2 , Animals , Anxiety/drug therapy , Anxiety/etiology , Depression/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hesperidin , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats
9.
Math Biosci Eng ; 16(5): 4692-4707, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31499684

ABSTRACT

Extreme learning machine (ELM) is a kind of learning algorithm for single hidden-layer feedforward neural network (SLFN). Compared with traditional gradient-based neural network learning algorithms, ELM has the advantages of fast learning speed, good generalization performance and easy implementation. But due to the random determination of input weights and hidden biases, ELM demands more hidden neurons and cannot guarantee the optimal network structure. Here, we report a new learning algorithm to overcome the disadvantages of ELM by tuning the input weights and hidden biases through an improved electromagnetism-like mechanism (EM) algorithm called DAEM and Moore-Penrose (MP) generalized inverse to analytically determine the output weights of ELM. In DAEM, three different solution updating strategies inspired by dragonfly algorithm (DA) are implemented. Experimental results indicate that the proposed algorithm DAEM-ELM has better generalization performance than traditional ELM and other evolutionary ELMs.

11.
Sci Total Environ ; 696: 134007, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31465919

ABSTRACT

The "targeted ecopharmacovigilance (EPV)" strategy emphasizes the control of environmental pollution by high-priority hazardous pharmaceuticals from principal pollution sources especially in areas that are high risk as a result of drug administration. We conducted a prospective empirical study to explore the possibility of using a targeted EPV intervention as an optimized management tool for the control of aquatic pollution by antibiotics, a common type of pharmaceutical residue, in a rural area in China. Because of the notably high levels of ofloxacin in the studied aquatic environment and the well-accepted environmental risks posed by fluoroquinolone residues, ofloxacin was selected as the targeted high-priority antibiotic pollutant. Based on the main sources of antibiotic pollution in the studied rural aquatic environment, which had been traced previously, a five-step targeted EPV intervention was designed and conducted from Feb 2018 to Jan 2019. The results showed that the residual levels of ofloxacin in the studied Chinese rural aquatic environment significantly decreased during the targeted EPV intervention. Importantly, the EPV measures targeting ofloxacin were found to effectively reduce the environmental pollution by other non-targeted antibiotics. The data from a survey of 45 participants (42 residents and 3 clinicians) and 12 program committee members revealed that the targeted EPV intervention was acceptable to both participants and organizers and could be used as an economical and feasible solution for addressing antibiotic pollution in aquatic environments.


Subject(s)
Anti-Bacterial Agents/analysis , Environmental Monitoring/methods , Pharmacovigilance , Water Pollutants, Chemical/analysis , Water Pollution/prevention & control
12.
Food Funct ; 10(7): 4361-4371, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31276149

ABSTRACT

The anti-cancer activities of brown algae and some active extracts or components from brown algae have been demonstrated. But the anti-tumor activities of eckol, a new natural phlorotannin derived from marine brown algae, are poorly understood. In order to investigate the in vivo anti-tumor effect and its potential mechanisms of eckol in a sarcoma 180 (S180) xenograft-bearing animal model, S180 xenograft-bearing mice were randomly divided into 4 groups: model control, and eckol low-dose (0.25 mg kg-1), middle-dose (0.5 mg kg-1) and high-dose (1.0 mg kg-1) groups. After eckol administration, the tumor inhibition, tumor tissue histology, thymus index and spleen index were measured. The apoptotic tumor cells were detected using the terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL) assay. The protein expression levels of cleaved Caspase-3 and Caspase-9 (two key apoptotic proteins), Bcl-2 and Bax (two key anti-apoptosis-related genes), as well as epidermal growth factor receptor (EGFR, a well-known cell proliferation-stimulating molecule in tumorigenesis) and p-EGFR in tumor tissues were determined by western blot. A carbon particle clearance test, measurement of serum cytokine levels, a splenic T lymphocyte proliferation test, and T lymphocyte subpopulation analysis were used to evaluate the effect of eckol on the immune function of tumor-bearing mice. Moreover, CD11c+-dendritic cell (DC) infiltration in tumor tissues was detected by immunohistochemistry, and the surface molecules on bone marrow-derived DCs were analyzed using flow cytometry. The pro-apoptosis and anti-proliferation activities of eckol were manifested by the increased TUNEL-positive apoptotic cells, the upregulated Caspase-3 and Caspase-9 expression, and the downregulated expression of Bcl-2, Bax, EGFR and p-EGFR in eckol-treated transplanted S180 tumors. Most importantly, eckol stimulated the mononuclear phagocytic system, recruited and activated DCs, promoted the tumor-specific Th1 responses, increased the CD4+/CD8+ T lymphocyte ratio, and enhanced cytotoxic T lymphocyte responses in the eckol-treated animals, suggesting its potent stimulatory property on innate and adaptive immune responses. This study suggested that eckol might act as a functional food constituent derived from marine brown algae with a potential in vivo anti-tumor effect achieved by improving the immune response.


Subject(s)
Antineoplastic Agents/pharmacology , Dioxins/pharmacology , Phaeophyceae/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cytokines/metabolism , Dendritic Cells/pathology , Disease Models, Animal , Down-Regulation , ErbB Receptors/metabolism , Humans , Male , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Sarcoma/drug therapy , Spleen/drug effects , Spleen/pathology , T-Lymphocytes/immunology , Thymus Gland/drug effects , Thymus Gland/pathology , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein/genetics
13.
Math Biosci Eng ; 16(3): 1190-1209, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30947415

ABSTRACT

Particle swarm optimizer was proposed in 1995, and since then, it has become an extremely popular swarm intelligent algorithm with widespread applications. Many modified versions of it have been developed, in which, comprehensive learning particle swarm optimizer is a very powerful one. In order to enhance its performance further, a local search based on Latin hypercube sampling is combined with it in this work. Due to that a hypercube should become smaller and smaller for better local search ability during the search process, a control method is designed to set the size of the hypercube. Via numerical experiments, it can be observed that the comprehensive learning particle swarm optimizer with the local search based on Latin hypercube sampling has a strong ability on both global and local search. The hybrid algorithm is applied in cylindricity error evaluation problem and it outperforms several other algorithms.


Subject(s)
Computer Simulation , Machine Learning , Algorithms , Models, Theoretical , Pattern Recognition, Automated/methods , Reproducibility of Results , Software
14.
Front Oncol ; 9: 1449, 2019.
Article in English | MEDLINE | ID: mdl-31921694

ABSTRACT

Regenerating islet-derived protein 3A (Reg3A), a protein mainly expressed in the digestive system, has been found over-expressed in many kinds of gastrointestinal cancer, including hepatocellular carcinoma, pancreatic cancer, gastric cancer, and colorectal cancer, therefore has been considered as a promising tumor marker. In recent years, considerable attention has been focused on the tumorigenesis effects of Reg3A, which were mainly manifested as cell proliferation promotion, cell apoptosis inhibition, the regulation of cancer cell migration and invasion. In particular, based on the significant up-regulation of Reg3A during pancreatic inflammation as well as its tumorigenic potential, Reg3A has been considered to play a key role in inflammation-linked pancreatic carcinogenesis. In addition, we here systematically generalized the reported Reg3A-related signaling molecules, which included JAK2-STAT3- NF-κB, SOCS3, EXTL3-PI3K-Akt, GSK3ß, Wnt/ß-catenin as well as some invasion and migration-related genes (Snail, MMP-2, MMP-9, E-cadherin, RhoC, and MTA1). And gp130, EGFR, EXTL3, and Fibronectin 1 might act as potential receptors for Reg3A.

15.
Biomed Pharmacother ; 109: 2145-2154, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30551472

ABSTRACT

Although dietary flavonoid quercetin alleviates diabetes-associated cognitive decline in rodents, the mechanisms are not clearly clarified. This study was designed to investigate whether quercetin showed neuroprotection on central neurons against chronic high glucose through the enhancement of Nrf2/ARE/glyoxalase 1 (Glo-1) pathway. SH-SY5Y cells were divided into 8 groups: normal glucose, high glucose (HG), osmotic pressure control, solvent control, HG plus low, middle, high concentrations of quercetin, or Nrf2 activator (sulforaphane). After treatment for 72 h, the associated parameters were measured. We found quercetin and sulforaphane increased cell viability, and enhanced Glo-1 functions (Glo-1 activity, the reduced glutathione and advanced glycation end-products levels) as well as Glo-1 protein and mRNA levels in SH-SY5Y cells cultured with HG. Meanwhile, quercetin and sulforaphane activated Nrf2/ARE pathway, reflected by the raised Nrf2 and p-Nrf2 levels, and the elevated protein and mRNA levels of γ-glutamycysteine synthase (γ-GCS), a known target gene of Nrf2/ARE signaling. Moreover, Nrf2/ARE pathway was activated after pretreatment with a PKC activator, p38 MAPK inhibitor, or GSK-3ß inhibitor under the condition of HG, and quercetin addition further strengthened this pathway; however, PKC inhibition or GSK-3ß activation pretreatment reversed the effects of quercetin on the protein expression of γ-GCS in the HG condition. In summary, quercetin exerts the neuroprotection by enhancing Glo-1 functions in central neurons under chronic HG condition, which may be mediated by activation of Nrf2/ARE pathway; furthermore, the increased Nrf2 phosphorylation mediated by PKC activation and/or GSK-3ß inhibition may involve in the activation of Nrf2/ARE pathway.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Glucose/toxicity , Lactoylglutathione Lyase/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotection/drug effects , Quercetin/pharmacology , Antioxidants/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , NF-E2-Related Factor 2/agonists , Neurons/drug effects , Neurons/metabolism , Neuroprotection/physiology , Phosphorylation/drug effects , Phosphorylation/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
16.
ACS Appl Mater Interfaces ; 10(41): 35495-35502, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30251823

ABSTRACT

Black phosphorus (BP) nanosheets with unique biocompatibility and superior optical performance have attracted enormous attention in material science. However, their instability and poor solution-processability severely limit their clinical applications. In this work, we demonstrate the use of silk fibroin (SF) as an exfoliating agent to produce thin-layer BP nanosheets with long-term stability and facile solution-processability. Presence of SF prevents rapid oxidation and degradation of the resultant BP nanosheets, enhancing their performance in physiological environment. The SF-modified BP nanosheets exhibit subtle solution-processability and are fabricated into various BP-based material formats. As superior photothermal agents, BP-based wound dressings effectively prevent bacterial infection and promote wound repair. Therefore, this work opens new avenues for unlocking current challenges of BP nanosheet applications for practical biomedical purposes.


Subject(s)
Bacterial Infections/drug therapy , Fibroins , Nanocomposites , Phosphorus , Wound Healing/drug effects , Wound Infection/drug therapy , Animals , Cell Line , Fibroins/chemistry , Fibroins/pharmacology , Humans , Mice , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Phosphorus/chemistry , Phosphorus/pharmacology
17.
Clin Breast Cancer ; 18(5): e985-e995, 2018 10.
Article in English | MEDLINE | ID: mdl-29983379

ABSTRACT

BACKGROUND: Contrast-enhanced spectral mammography (CESM) is a new image examination technology that has developed over the past few years. As CESM technology keeps improving, a current meta-analysis review is needed to systematically evaluate the potential diagnostic value of CESM. METHODS: A total of 18 studies were included in the review. Sensitivity, specificity, and other important parameters of CESM accuracy for breast cancer diagnosis were pooled and analyzed using random-effects models. Summary receiver operating characteristic curves were calculated for overall accuracy estimation. RESULTS: The summary estimates for CESM in the diagnosis of breast cancer were as follows: the pooled sensitivity and specificity were 0.89 (95% confidence interval [CI], 0.88-0.91) and 0.84 (95% CI, 0.82-0.85), respectively. Positive likelihood ratio was 3.73 (95% CI, 2.68-5.20), negative likelihood ratio was 0.10 (95% CI, 0.06-0.15), and diagnostic odds ratio was 71.36 (95% CI, 36.28-140.39). The area under the curve was 0.96 (standard error = 0.011). CONCLUSION: CESM has a high diagnostic accuracy for evaluating breast cancer and can be considered as a useful test for initial assessment of breast lesions.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography , Radiographic Image Enhancement , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Early Detection of Cancer , Female , Humans , Mammography/statistics & numerical data , Odds Ratio , Sensitivity and Specificity
18.
Phytother Res ; 32(8): 1574-1582, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29682805

ABSTRACT

Rhizome of Anemarrhena asphodeloides Bunge (AA, family Liliaceae) has been widely used in China for thousands of years to treat febrile diseases and diabetes. Steroidal saponins from AA show good antidiabetes effects and ameliorate diabetic complications. This study was designed to investigate the effects of sarsasapogenin (Sar), a major sapogenin from AA, on diabetic nephropathy (DN) in rats, and to explore the possible mechanisms. Diabetic rats were divided into 3 groups treated orally with Sar (0, 20, or 60 mg/kg) and carboxymethylcellulose sodium, whereas normal rats for Sar (0 or 60 mg/kg) and carboxymethylcellulose sodium. We found that chronic treatment with Sar for 9 weeks significantly ameliorated renal dysfunction of diabetic rats, as evidenced by decreases in albuminuria, kidney weight index, serum uric acid, and morphologic changes such as extracellular matrix expansion and accumulation (fibronectin and collagen IV levels, etc.). Meanwhile, Sar treatment resulted in decreases in interleukin-18, NLRP3, and activated caspase 1 levels as well as advanced glycation endproducts (AGEs) and their receptor (RAGE) levels in the renal cortex of diabetic rats. However, Sar has no effects on the above indices in the normal rats. Therefore, Sar can markedly ameliorate diabetic nephropathy in rats via inhibition of NLRP3 inflammasome activation and AGEs-RAGE interaction.


Subject(s)
Diabetic Nephropathies/drug therapy , Spirostans/pharmacology , Anemarrhena/chemistry , Animals , China , Diabetes Mellitus, Experimental/complications , Drugs, Chinese Herbal/pharmacology , Glycation End Products, Advanced , Interleukin-18/metabolism , Kidney/drug effects , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Rats, Sprague-Dawley , Rhizome/chemistry , Saponins/pharmacology , Uric Acid/blood
19.
Chemosphere ; 194: 450-462, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29227893

ABSTRACT

Implementing "targeted" eco-pharmacovigilance(EPV) which focuses on individual or specific pharmaceuticals on a prioritised basis is a feasible, economical and customized approach to reduce the environmental concentrations and risks of pharmaceuticals. Non-steroidal anti-inflammatory drugs(NSAIDs) remaining in environment are a kind of priority hazard substances, due to a notable case that diclofenac residues caused the loss of more than 99% of vultures across the Indian sub-continent. Ketoprofen, as another widely used NSAID with comparable or even higher global consumption than diclofenac, in the environment has been shown to present a potential risk to non-target terrestrial and aquatic species. Based on the review of 85 articles reporting the analyses of ketoprofen residues in environment since 2010, we found that this NSAID frequently present in various environmental compartments around the world. Therefore, it is urgent to implement EPV targeting ketoprofen pollution. Here, we provide some recommendations for implementing the targeted EPV for ketoprofen, including: Closely monitoring ketoprofen in the natural environment; Reducing the residues of ketoprofen through source control; Encouraging urine source separation and treatment; Limiting the application of veterinary ketoprofen; Designing and constituting a framework system of targeted EPV. But some challenges, such as ambiguity in the accountability of the main bodies responsible for continued monitoring of ketoprofen residues, the lack of optimized urine source separation scenarios and procedure, the need for detailed design and application schemes of the framework system of targeted EPV, etc. should be addressed.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Ketoprofen/analysis , Pharmacovigilance , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Environmental Pollutants/toxicity , Ketoprofen/toxicity
20.
Naunyn Schmiedebergs Arch Pharmacol ; 391(2): 159-168, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29275517

ABSTRACT

The aim of this study is to investigate effects and potential mechanisms of sarsasapogenin (Sar), an active component purified from Rhizoma Anemarrhenae, on high glucose-induced amyloid-beta (Aß) peptide overproduction in HT-22 cells. HT-22 cells were divided into normal glucose; high glucose (HG); HG co-treated with low, middle, and high concentration of Sar (1, 5, 25 µmol/L); and peroxisome proliferator-activated receptor γ (PPARγ) agonist (10 µmol/L pioglitazone). After treatment for 24 h, protein expression of Aß and ß-site Aß precursor protein cleaving enzyme 1 (BACE1) and activated PPARγ level were determined by Western blot; Aß42 levels were also measured by using both immunofluorescence and ELISA methods. BACE1 activity and mRNA level were assessed by fluorospectrophotometry and quantitative PCR, respectively. Cell viability was assayed with a CCK-8 kit. Elevated Aß expression and Aß42 level were found in HG-treated HT-22 cells, accompanied by increased BACE1 protein and mRNA levels as well as enzymatic activity, which was markedly attenuated by three concentrations of Sar and pioglitazone. Moreover, HG reduced nuclear PPARγ levels, which was reversed by middle and high concentrations of Sar as well as pioglitazone. PPARγ antagonist GW9662 (20 µmol/L) pretreatment reversed the effect of Sar on BACE1 protein expression in HG-cultured HT-22 cells. Additionally, Sar suppressed HG-induced decreases in cell viability of HT-22 cells. High glucose can induce an increase in Aß levels and a decrease in cell viability in HT-22 cells, while co-treatment with Sar improves these results, which is mediated likely through activation of PPARγ and subsequent downregulation of BACE1.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/biosynthesis , Drugs, Chinese Herbal/pharmacology , Glucose/toxicity , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/biosynthesis , Spirostans/pharmacology , Animals , Cell Line, Transformed , Cell Survival/drug effects , Cell Survival/physiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...