Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 665
Filter
1.
Front Plant Sci ; 15: 1372580, 2024.
Article in English | MEDLINE | ID: mdl-38736444

ABSTRACT

The Homeodomain-Leucine Zipper (HD-ZIP) transcription factors play a pivotal role in governing various aspects of plant growth, development, and responses to abiotic stress. Despite the well-established importance of HD-ZIPs in many plants, their functions in Acoraceae, the basal lineage of monocots, remain largely unexplored. Using recently published whole-genome data, we identified 137 putative HD-ZIPs in two Acoraceae species, Acorus gramineus and Acorus calamus. These HD-ZIP genes were further classified into four subfamilies (I, II, III, IV) based on phylogenetic and conserved motif analyses, showcasing notable variations in exon-intron patterns among different subfamilies. Two microRNAs, miR165/166, were found to specifically target HD-ZIP III genes with highly conserved binding sites. Most cis-acting elements identified in the promoter regions of Acoraceae HD-ZIPs are involved in modulating light and phytohormone responsiveness. Furthermore, our study revealed an independent duplication event in Ac. calamus and a one-to-multiple correspondence between HD-ZIP genes of Ac. calamus and Ac. gramineus. Expression profiles obtained from qRT-PCR demonstrated that HD-ZIP I genes are strongly induced by salinity stress, while HD-ZIP II members have contrasting stress responses in two species. HD-ZIP III and IV genes show greater sensitivity in stress-bearing roots. Taken together, these findings contribute valuable insights into the roles of HD-ZIP genes in stress adaptation and plant resilience in basal monocots, illuminating their multifaceted roles in plant growth, development, and response to abiotic stress.

2.
Int J Gen Med ; 17: 1923-1935, 2024.
Article in English | MEDLINE | ID: mdl-38736669

ABSTRACT

Purpose: The functions of C-type lectin domain family 4 member D (CLEC4D), one member of the C-type lectin/C-type lectin-like domain superfamily, in immunity have been well described, but its roles in cancer biology remain largely unknown. Patients and Methods: This study aims to explore the role of CLEC4D in gastric cancer (GC). Bioinformatics preliminarily analyzed the expression of CLEC4D in gastric cancer. Immunohistochemical staining was used to detect the expression level and clinical pathological characteristics of CLEC4D in gastric cancer. The biological function of CLEC4D in gastric cancer cell lines was verified through in vitro and in vivo experiments. Results: In this study, CLEC4D expression was found to be markedly increased in gastric cancer (GC) tissues compared with matched normal gastric tissues, and high CLEC4D expression independently predicted unfavorable overall survival in patients with GC. Knockdown of CLEC4D markedly inhibited GC cell proliferation and migration. Mechanistically, CLEC4D knockdown deactivated the Akt and NF-κB signaling pathways in GC cells. Conclusion: Together, these results demonstrate that aberrantly increased CLEC4D expression promotes cancer phenotypes via the Akt and NF-κB signaling pathways in GC cells.

3.
Sensors (Basel) ; 24(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732919

ABSTRACT

Automotive radar is one of the key sensors for intelligent driving. Radar image sequences contain abundant spatial and temporal information, enabling target classification. For existing radar spatiotemporal classifiers, multi-view radar images are usually employed to enhance the information of the target and 3D convolution is employed for spatiotemporal feature extraction. These models consume significant hardware resources and are not applicable to real-time applications. In this paper, RadarTCN, a novel lightweight network, is proposed that achieves high-accuracy online target classification using single-view radar image sequences only. In RadarTCN, 2D convolution and 3D-TCN are employed to extract spatiotemporal features sequentially. To reduce data dimensionality and computational complexity, a multi-layer max pooling down-sampling method is designed in a 2D convolution module. Meanwhile, the 3D-TCN module is improved through residual pruning and causal convolution is introduced for leveraging the performance of online target classification. The experimental results demonstrate that RadarTCN can achieve high-precision online target recognition for both range-angle and range-Doppler map sequences. Compared to the reference models on the CARRADA dataset, RadarTCN exhibits better classification performance, with fewer parameters and lower computational complexity.

4.
ACS Nano ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38756047

ABSTRACT

Responsive nanoparticle surfactants (NPSs) can dynamically and reversibly modulate the interfacial interactions between incompatible components, which are essential in the interfacial catalysis, corrosion, and self-assembly of block copolymers (BCPs). However, NPSs with stimuli-responsive behavior often involve tedious chemical synthesis and surface modifications. Herein, we propose a strategy to in situ construct a kind of dynamic and reversible NPSs by the interfacial electrostatic interaction between the negatively charged nanoparticles (NPs) and the positively charged homopolymers. The NPSs assembled at the oil/water interface reduce the interfacial tension and direct the confined assembly of BCP. Meanwhile, the dynamic NPSs can be disassembled by increasing the pH value or introducing competitive electrostatic attractions, which can dynamically and reversibly change the interfacial properties as well as the alignment of polymer chains, enabling BCP microparticles with reversibly switchable lamellar and cylindrical structures. Furthermore, by the introduction of aggregation-induced emission luminogens as tails to the NPSs, the reversible transformation of BCP microparticles can be visualized by fluorescence emission, which is dependent on the nanostructures of microparticles. This work establishes a concept for dynamically manipulating interfacial interactions and reversibly switching BCP microparticles without time-consuming NPS synthesis, showing promising applications in the fabrication of smart materials with switchable structures and properties.

5.
Curr Neurovasc Res ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38757147

ABSTRACT

The key to treating Acute Ischemic Stroke (AIS) is to rapidly reopen occluded blood vessels, restore blood flow, and rescue the ischemic penumbra. Treatment methods mainly include thrombolysis, endovascular intervention, etc. However, these treatments are limited by strict time windows and technical conditions. Simpler and more feasible methods to improve cerebral blood flow are currently a hot topic in clinical research. In recent years, several studies have shown that changes in body position can effectively improve cerebral blood flow in patients. However, the effect on the neurological functional prognosis of AIS remains inconclusive. This review has examined the effects of changes in body position on the clinical prognosis of AIS, combining relevant guidelines and the latest research. The study has provided evidence of an improvement in the clinical prognosis of AIS.

6.
J Microencapsul ; 41(4): 312-325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717966

ABSTRACT

The instability of ester bonds, low water solubility, and increased cytotoxicity of flavonoid glycoside esters significantly limit their application in the food industry. Therefore, the present study attempted to resolve these issues through liposome encapsulation. The results showed that baicalin butyl ester (BEC4) and octyl ester (BEC8) have higher encapsulation and loading efficiencies and lower leakage rate from liposomes than baicalin. FTIR results revealed the location of BEC4 and BEC8 in the hydrophobic layer of liposomes, which was different from baicalin. Additionally, liposome encapsulation improved the water solubility and stability of BEC4 and BEC8 in the digestive system and PBS but significantly reduced their cytotoxicity. Furthermore, the release rate of BEC4 and BEC8 from liposomes was lower than that of baicalin during gastrointestinal digestion. These results indicate that liposome encapsulation alleviated the negative effects of fatty chain introduction into flavonoid glycosides.


Subject(s)
Esters , Flavonoids , Liposomes , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/administration & dosage , Liposomes/chemistry , Humans , Esters/chemistry , Solubility , Cell Survival/drug effects , Drug Compounding
7.
J Ethnopharmacol ; 331: 118275, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729534

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Da-Jian-Zhong decoction (DJZD) is a herbal formula clinically used for abdominal pain and diarrhea induced by spleen-Yang deficiency syndrome. Recently, treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) with DJZD has received increasing attention, but the underlying mechanism of action remains elusive. AIM OF THE STUDY: We aimed to evaluate the therapeutic effect of DJZD on IBS-D rats and to elucidate the underlying mechanisms. MATERIALS AND METHODS: An IBS-D rats model was constructed using a two-factor superposition method of neonatal maternal separation and Senna folium aqueous extract lavage. Moreover, the effect of DJZD was evaluated based on the body weight, rectal temperature, abdominal withdrawal reflex (AWR), and Bristol stool scale score (BSS). The factors that regulate the DJZD effects on IBS-D were estimated using whole microbial genome, transcriptome sequencing (RNA-Seq), flow cytometry, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analyses. RESULTS: We found that DJZD alleviated the symptoms of IBS-D rats, with the low-dose (2.4 g/kg) as the better ones, as shown by the higher body weight and lower AWR score and BSS. At the phylum level, the relative abundance of Bacteroidetes was obviously increased, and at the genus level, Lactobacillus and Parabacteroides were increased, while that of Firmicutes_bacterium_424 and Ruminococcus gnavus was decreased in DJZD group. Furthermore, the significantly enriched GO terms after treatment with DJZD mainly included the immune response, positive regulation of activated T cell proliferation, and positive regulation of interleukin-17 (IL-17) production. Importantly, flow cytometry analysis further revealed that the T helper cell type 17/regulatory T cell (Th17/Treg) balance contributed to the DJZD-induced alleviation of IBS-D symptoms, as DJZD downregulated Th17/Treg ratio and Th17 cell-related cytokines IL-17 and IL-6 levels in the colon. CONCLUSIONS: These results demonstrated that DJZD has a good therapeutic effect on IBS-D rats, probably by maintaining the homeostasis of gut microbiota and regulating Th17/Treg balance and its related inflammatory factors.

8.
Health Place ; 87: 103250, 2024 May.
Article in English | MEDLINE | ID: mdl-38696875

ABSTRACT

Ensuring women receive vital prenatal care is crucial for maternal and newborn health. Limited research explores factors influencing prenatal care-seeking from a geospatial perspective. This study, based on a substantial Wuhan dataset (23,947 samples), investigates factors influencing prenatal care-seeking, focusing on transport accessibility and hospital attributes. Findings indicate a nuanced relationship: (1) A non-linear trend, resembling an inverted "U," reveals the complex interplay between transport accessibility, hospital attributes, and prenatal care visits. Hospital attributes have a more pronounced impact than transport accessibility. (2) Interaction analysis underscores that lower prenatal care visits relate to low-income and education levels, despite reasonable public transport accessibility. (3) Spatial disparities are significant, with suburban areas facing increased obstacles compared to urban areas, particularly for those in suburban rural areas. This study enhances understanding by emphasizing threshold effects and spatial heterogeneity, offering valuable perspectives for refining prenatal care policies and practices.


Subject(s)
Health Services Accessibility , Patient Acceptance of Health Care , Prenatal Care , Humans , Female , Prenatal Care/statistics & numerical data , Pregnancy , Patient Acceptance of Health Care/statistics & numerical data , Adult , Hospitals , Transportation , China , Rural Population
9.
J Oral Rehabil ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717032

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) derived from the synovium, known as synovium mesenchymal stem cells (SMSCs), exhibit significant potential for articular cartilage regeneration owing to their capacity for chondrogenic differentiation. However, the microRNAs (miRNAs) governing this process and the associated mechanisms remain unclear. While mechanical stress positively influences chondrogenesis in MSCs, the miRNA-mediated response of SMSCs to mechanical stimuli is not well understood. OBJECTIVE: This study explores the miRNA-driven mechano-transduction in SMSCs chondrogenesis under mechanical stress. METHODS: The surface phenotype of SMSCs was analysed by flow cytometry. Chondrogenesis capacities of SMSCs were examined by Alcian blue staining. High throughput sequencing was used to screen mechano-sensitive miRNAs of SMSCs. The RNA expression level of COL2A1, ACAN, SOX9, BMPR2 and miR-143-3p of SMSCs were tested by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-143-3p and TLR4 was confirmed by luciferase reporter assays. The protein expression levels of related genes were assessed by western blot. RESULTS: High-throughput sequencing revealed a notable reduction in miR-143-3p levels in mechanically stressed SMSCs. Gain- or loss-of-function strategies introduced by lentivirus demonstrated that miR-143-3p overexpression hindered chondrogenic differentiation, whereas its knockdown promoted this process. Bioinformatics scrutiny and luciferase reporter assays pinpointed a potential binding site for miR-143-3p within the 3'-UTR of bone morphogenetic protein receptor type 2 (BMPR2). MiR-143-3p overexpression decreased BMPR2 expression and phosphorylated Smad1, 5 and 8 levels, while its inhibition activated BMPR2-Smad pathway. CONCLUSION: This study elucidated that miR-143-3p negatively regulates SMSCs chondrogenic differentiation through the BMPR2-Smad pathway under mechanical tensile stress. The direct targeting of BMPR2 by miR-143-3p established a novel dimension to our understanding of mechano-transduction mechanism during SMSC chondrogenesis. This understanding is crucial for advancing strategies in articular cartilage regeneration.

10.
IEEE Trans Image Process ; 33: 3271-3284, 2024.
Article in English | MEDLINE | ID: mdl-38696297

ABSTRACT

Advances in multisource remote sensing have allowed for the development of more comprehensive observation. The adoption of deep convolutional neural networks (CNN) naturally includes spatial-spectral information, which has achieved promising performance in multisource data classification. However, challenges are still found with the extraction of spatial distribution and spectrum relationships, which eventually limit the classification performance. To solve the issue, a spatial-spectral perception network (S2PNet) is proposed to extract the advantages of different data sources and the cross information between data sources in a targeted manner. Specifically, the spatial perception network is developed to build the spatial distribution relationship from high-resolution images, while the spectral perception network extracts the spectrum relationship from spectral images. For perceiving cross information, a memory unit is utilized to store the features from different data sources in succession. In addition, the distance loss and reconstruction loss are introduced to keep the feature integrity, and the cross-entropy loss ensures that features can distinguish different classes. The comprehensive experiments are conducted on several datasets to validate the superiority of the proposed algorithm. The proposed S2PNet outperforms the considered classifiers with an average improvement of +0.77%, +5.62%, +1.58%, and +1.79% for overall accuracy values.

11.
Biochem Biophys Rep ; 38: 101719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708422

ABSTRACT

Empirical studies have indicated that excessive tea consumption may potentially decrease folate levels within the human body. The main active component in green tea, epigallocatechin gallate (EGCG), significantly reduces the concentration of 5-methyltetrahydrofolate (5-MTHF) in both solution and serum. However, our findings also demonstrate that the pro-degradation effect of EGCG on 5-MTHF can be reversed by L-ascorbic acid (AA). Subsequent investigations suggest that EGCG could potentially expedite the degradation of 5-MTHF by generating hydrogen peroxide. In summary, excessive tea intake may lead to reduced folate levels in the bloodstream, yet timely supplementation of AA could potentially safeguard folate from degradation.

12.
Food Chem ; 451: 139497, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38692240

ABSTRACT

The objective of this study was to evaluate the impacts of different drying technologies including microwave drying (MD), vacuum microwave drying (VMD), sun drying (SD), vacuum drying (VD), hot air drying (HAD), and vacuum freeze drying (VFD) on the physical characteristics, nutritional properties and antioxidant capacities of kiwifruit pomace in order to realize by-product utilization and improve energy efficiency. Results showed that both MD and VMD significantly reduced drying time by >94.6%, compared to traditional thermal drying which took 14-48 h. MD exhibited the highest content of soluble dietary fiber (9.5%) and the lowest energy consumption. Furthermore, VMD resulted in the highest content of vitamin C (198.78 mg/100 g) and reducing sugar (73.78%), and the antioxidant capacities ranked only second to VFD. Given the financial advantages and product quality, VMD was suggested to be advantageous technology in actual industrial production.

13.
Gastrointest Endosc ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692516

ABSTRACT

BACKGROUND AND AIMS: Lymph node metastasis significantly affects the prognosis of early gastric cancer patients. Endoscopic ultrasonography (EUS) plays a crucial role in the preoperative assessment of early gastric cancer. This study evaluated the efficacy of EUS in identifying lymph node metastasis in early gastric cancer patients and developed a risk score model to aid in choosing the best treatment options. METHODS: We retrospectively analyzed the effectiveness of EUS for detecting lymph node metastasis in early gastric cancer patients. A risk score model for predicting lymph node metastasis preoperatively was created using independent risk factors identified through binary logistic regression analysis and subsequently validated. Receiver operating characteristic (ROC) curves were generated for both the development and validation cohorts. RESULTS: The overall accuracy of EUS in identifying lymph node metastasis was 85.3%, although its sensitivity (29.2%) and positive predictive value (38.7%) were relatively low. Patients were categorized based on preoperative risk factors for lymph node metastasis, including tumor size ≥20 mm, lymph nodes ≥10 mm, BMI ≥24 kg/m2, and lymph node metastasis on CT scans. A 7-point risk score model was developed to assess the likelihood of lymph node metastasis. The areas under the ROC curve (AUCs) for the development and validation sets were 0.842 and 0.837, respectively, with sensitivities of 64% and 79%, respectively. CONCLUSION: We developed a practical risk score model based on preoperative factors to help EUS predict lymph node metastasis in early gastric cancer patients, guiding the selection of optimal treatment approaches for these patients.

14.
BMC Biol ; 22(1): 114, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764013

ABSTRACT

BACKGROUND: Cotton is a major world cash crop and an important source of natural fiber, oil, and protein. Drought stress is becoming a restrictive factor affecting cotton production. To facilitate the development of drought-tolerant cotton varieties, it is necessary to study the molecular mechanism of drought stress response by exploring key drought-resistant genes and related regulatory factors. RESULTS: In this study, two cotton varieties, ZY007 (drought-sensitive) and ZY168 (drought-tolerant), showing obvious phenotypic differences under drought stress, were selected. A total of 25,898 drought-induced genes were identified, exhibiting significant enrichment in pathways related to plant stress responses. Under drought induction, At subgenome expression bias was observed at the whole-genome level, which may be due to stronger inhibition of Dt subgenome expression. A gene co-expression module that was significantly associated with drought resistance was identified. About 90% of topologically associating domain (TAD) boundaries were stable, and 6613 TAD variation events were identified between the two varieties under drought. We identified 92 genes in ZY007 and 98 in ZY168 related to chromatin 3D structural variation and induced by drought stress. These genes are closely linked to the cotton response to drought stress through canonical hormone-responsive pathways, modulation of kinase and phosphatase activities, facilitation of calcium ion transport, and other related molecular mechanisms. CONCLUSIONS: These results lay a foundation for elucidating the molecular mechanism of the cotton drought response and provide important regulatory locus and gene resources for the future molecular breeding of drought-resistant cotton varieties.


Subject(s)
Chromatin , Droughts , Gene Expression Regulation, Plant , Gossypium , Gossypium/genetics , Gossypium/physiology , Chromatin/metabolism , Stress, Physiological/genetics , Genes, Plant
15.
J Prosthet Dent ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604904

ABSTRACT

STATEMENT OF PROBLEM: The impact of different coloring liquid shades and dipping times on the color, transparency, and flexural strength of monolithic zirconia ceramics is unclear. PURPOSE: The purpose of this in vitro study was to evaluate the effects of different coloring liquid shades (A2, 3M2, and 5M2) and dipping times (no dipping, 30 seconds, 60 seconds, and 90 seconds) on the color difference (ΔE00), relative translucency parameter (ΔRTP00), and 3-point flexural strength (σ) of monolithic zirconia ceramics. MATERIAL AND METHODS: Yttria-stabilized zirconia (3Y-TZP, 3 mol%) was cut into Ø16×1.2-mm plates (n=10) and 25×4×1.2-mm bars (n=15), which were colored using 3 shades of coloring liquid at 4 dipping times. Color coordinates were measured on a gray background by using a digital spectrophotometer with an integrating sphere attachment. The color and translucency differences were evaluated using 50:50% perceptibility (PT00 and TPT00) and acceptability (AT00 and TAT00) thresholds. The 3-point flexural strengths of the bar-shaped specimens were measured using a universal testing machine and analyzed using the Weibull distribution to calculate the Weibull modulus (m) and characteristic fracture strength (σ0). The data were analyzed with the 2-way ANOVA, Kruskal-Wallis, and LSD post hoc tests (α=.05). RESULTS: Both shade and dipping time significantly affected the color and translucency of monolithic zirconia (P<.001). The ΔE00 was above the PT00 for all groups, with only 3M2-90 and A2-60 being below the AT00. The main cause of color differences was the difference in lightness. Only A2 showed ΔRTP00 below the TPT00 (A2-30 (ΔRTP00=0.26), A2-60 (ΔRTP00=0.29), and A2-90 (ΔRTP00=0.46)). All experimental groups showed translucency differences below TAT00. In addition, only the dipping time had a significant effect on the flexural strength of zirconia (P<.001). CONCLUSIONS: The optical properties of monolithic zirconia ceramics were affected by the shade and dipping time of the coloring liquid. The mismatch in lightness was the main reason for the color difference. The dipping time affects the flexural strength of monolithic zirconia, whereas the shade of the coloring liquid did not seem to influence flexural strength.

16.
Acta Pharmacol Sin ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641746

ABSTRACT

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.

17.
Sci Total Environ ; 927: 172349, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615770

ABSTRACT

Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.


Subject(s)
Biomass , Fungi , Nitrogen , Pinus , Soil Microbiology , Soil , China , Pinus/microbiology , Nitrogen/analysis , Soil/chemistry , Mycorrhizae/physiology , Mycobiome , Forests , Fertilizers/analysis
18.
Ann Biol Clin (Paris) ; 82(1): 70-80, 2024 04 19.
Article in French | MEDLINE | ID: mdl-38638020

ABSTRACT

Pediatric acute liver failure (PALF) is a severe liver dysfunction with complex pathological mechanisms and rapid development. MiRNAs have been identified as promising biomarkers for human disease screening and monitoring. This study focused on evaluating the clinical significance of miR-224-5p in PALF and revealing its potential molecular mechanism in regulating liver cell injury. This study enrolled 103 children with PALF and 55 healthy children without liver diseases. Serum miR-224-5p levels were compared between the two groups, and their clinical significance was estimated by analyzing the correlation with clinicopathological features and outcomes of PALF children. In vitro, a normal liver cell was treated with lipopolysaccharide (LPS), and cell growth and inflammation were assessed by CCK8 and ELISA assay. Upregulated miR-224-5p in PALF showed significance in screening PALF children from healthy children with the sensitivity and specificity of 78.64% and 84.47%, respectively. Increasing serum miR-224-5p in PALF children was closely associated with increasing prothrombin time, alanine transaminase, international normalized ratio, total bilirubin, ammonia, and aspartic transaminase and decreasing albumin of PALF children. MiR-224-5p was also identified as a risk factor for adverse outcomes in children with PALF. In LPS-treated liver cells, miR-224-5p could negatively regulate ZBTB20, and silencing miR-224-5p could alleviate the inhibited cell growth and promoted inflammation by LPS, which was reversed by ZBTB20 knockdown. Increasing miR-224-5p distinguished PALF children, predict severe disease development and risk of adverse prognosis. miR-224-5p also reguled LPS-induced liver cell injury via negatively regulating ZBTB20.


Subject(s)
Lipopolysaccharides , MicroRNAs , Humans , Child , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , Hepatocytes , Liver , Inflammation/diagnosis , Inflammation/genetics , Nerve Tissue Proteins , Transcription Factors
19.
Compr Rev Food Sci Food Saf ; 23(3): e13343, 2024 05.
Article in English | MEDLINE | ID: mdl-38629458

ABSTRACT

Innovations in food packaging systems could meet the evolving needs of the market; emerging concepts of non-migrating technologies reduce the negative migration of preservatives from packaging materials, extend shelf life, and improve food quality and safety. Non-migratory packaging activates the surface of inert materials through pretreatment to generate different active groups. The preservative is covalently grafted with the resin of the pretreated packaging substrate through the graft polymerization of the monomer and the coupling reaction of the polymer chain. The covalent link not only provides the required surface properties of the material for a long time but also retains the inherent properties of the polymer. This technique is applied to the processing for durable, stable, and easily controllable packaging widely. This article reviews the principles of various techniques for packaging materials, surface graft modification, and performance characterization of materials after grafting modification. Potential applications in the food industry and future research trends are also discussed.


Subject(s)
Food Packaging , Food Storage , Food Packaging/methods , Polymers/chemistry , Food Quality
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 376-381, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660839

ABSTRACT

OBJECTIVE: To detect the expression of RNA methyltransferase 14(METTL14) in bone marrow of patients with newly diagnosed acute myeloid leukemia (AML), and to investigate the clinical and prognostic significance of METTL14 expression in newly diagnosed AML. METHODS: Bone marrow samples were collected from 100 patients with newly diagnosed AML as observation group and 60 patients with iron deficiency anemia AML as control group. And collected the clinical data of the AML patients. Real-time quantitative PCR (qRT-PCR) was used to detect the expression level of METTL14 in AML and IDA patients. The relationship between the expression level of METTL14 and clinicopathological features, prognosis was analyzed. Kaplan-Meier curves were used to analyze the effect of METTL14 on overall survival (OS) in AML patients. Cox risk regression model was used to analyze the prognostic factors affecting in patients with AML. RESULTS: Compared with the control group, the expression of METTL14 was significantly increased in AML patients (P < 0.05). Compared with the METTL14 low-expression group, patients in the METTL14 high-expression group had advanced age, high bone marrow cell number, poor efficacyand poor prognosis(P < 0.05). The overall survival time of patients with the METTL14 high-expression group was significantly shorter than that of the low-expression group (P < 0.05). The high expression of METTL14 was an independent risk factor for poor prognosis in AML. CONCLUSION: METTL14 is significantly overexpressed in AML patients, and its correlated with poor clinicopathological features and poor prognosis. It can be used as a prognostic marker and potential therapeutie target for AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Methyltransferases , Humans , Leukemia, Myeloid, Acute/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Prognosis , Bone Marrow/metabolism , Male , Female , Clinical Relevance
SELECTION OF CITATIONS
SEARCH DETAIL
...